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Abstract

Geostatistical mapping can be defined as analytical production of maps by using field observations,

auxiliary information and a computer program that calculates values at locations of interest. Today,

increasingly the heart of a mapping project is, in fact, the computer program that implements some

(geo)statistical algorithm to a given point data set. Purpose of this guide is to assist you in producing

quality maps by using fully-operational tools, without a need for serious additional investments. It will

first introduce you the to the basic principles of geostatistical mapping and regression-kriging, as the key

prediction technique, then it will guide you through four software packages: ILWIS GIS, R+gstat, SAGA

GIS and Google Earth, which will be used to prepare the data, run analysis and make final layouts. These

materials have been used for the five-days advanced training course “Hands-on-geostatistics: merging

GIS and spatial statistics”, that is regularly organized by the author and collaborators. Visit the course

website to obtain a copy of the datasets used in this exercise.
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Foreword

An impression I had over the years, while working for various digital soil mapping
projects, is that there is a serious gap between what is known by few (researchers) and
what is actually implemented in practice (users). On one hand, we have sophisticated
the ways to produce more and more detailed/informative maps, on the other hand the
users rely on traditional mapping systems. This seems to be a gap between the users
and tools rather than a gap in the theory. In the last few years, things have started
improving rapidly. First, tools that allow merging of GIS and (geo)statistical operations
have been made operational and available to many. Second, there is an increase of free
remote sensing (e.g. MODIS) and relief data (e.g. SRTM DEM), which are available at
global scale at resolution of 250 m or finer (see further Table 3.2). And third, many pro-
cessing steps can now be automated, which makes it possible to run computations using
extensive and complex databases. Now many environmental agencies have to catch up
with this rapid advances of both technology and software. Only within JRC Ispra there
are several mapping and monitoring projects — BIOSOIL, LUCAS, Geochemical Atlas
of Europe, INTAMAP, Danube Basin — that now completely rely on the availability of
such semi-automated mapping tools.

The main purpose of this guide is to assist you in using geostatistical tools with
your own data. You are now invited to produce quality maps by using fully-operational
tools implemented in an open-source software. I advocate the band of four: ILWIS,
R+gstat, SAGA GIS and Google Earth. There are probably several alternatives on the
market, however, the arguments are clear: (1) all four are available as open-source
or as freeware; (2) all alow scripting (data processing automation) and extension of
existing functionality, and (3) all support data exchange through GDAL and similar
engines. I assume that your experience with using open source packages was probably
very frustrating, because many provide only command-line interface and the commands
follow some particular philosophy for which there is a limited support. However, my
experience with for example R is that, after one learns the basic steps and ways to get
support and more explanation of algorithms, it is a steep learning curve. My intention
with this handbook was similar – I wanted to assist you in obtaining the software and
making the first steps, warn what might be the bottlenecks and what you should avoid
doing, and provide the most crucial tricks’n’tips on how to build scripts and organize the
data processing. Ideally, you should be able to generate maps from your point datasets
and interpret the results, just by following this guide.

v
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The guide consists of four chapters. The first chapter is an introductory chapter to
the practice of geostatistical mapping and gives an overview of the spatial prediction
techniques. The second chapter zooms into regression-kriging and its characteristics,
advantages and limitations. The third chapter is completely dedicated to installation
and doing first steps in the software, and the last, fourth, chapter gives a step-by-step
guide through analysis and generation of final layouts by using a digital soil mapping
case study. After reading the first chapter, you should understand what the geostatis-
tical mapping is; after reading the second chapter, you should know how to select the
right spatial prediction technique for your application; after reading the third chapter,
you should be able to install all packages used in the handbook and be aware of their
capabilities; and after reading the fourth chapter, you should know how to run geosta-
tistical mapping, prepare final layouts and interpret the results of analysis for your own
case study.

This guide evolved as a lecturing material that has been used for a 5-day training
course called “Hands-on-geostatistics: Merging GIS and Spatial Statistics”. The ob-
jective of this course was to provide theoretical backgrounds and practical training on
the use of hybrid geostatistical/GIS tools for various applications ranging from spatial
prediction to sampling and error propagation. In addition, the leitmotive of the course
was to provide practical training in command-based software packages such as R. We
aimed at Master and PhD level students and post-doctoral researchers in various fields
of environmental and geo-sciences interested in spatial prediction and analysis of envi-
ronmental variables. We have run this course already twice: at the Facolta di Agraria
in Naples (29.01-03.02.2007), and at JRC Ispra (03.06-07.06.2007). At both occasions,
the interest exceeded our expectations. In fact, many course participants complained
that their previous geostatistics courses focused too much on plain geostatistics (pure
theoretical training) or were based on commercial packages (e.g. Isatis, ArcGIS). In our
case, about 40% of the course has been dedicated to work in open-source software and
practical aspects of data analysis: it included training on how to build and edit scripts
in R and ILWIS, how to use commands in gstat and sp packages, how to export GIS
layers to Google Earth and generate final layouts etc. This guide follows more or less
the same structure, except it is probably more extensive and one would not be able to
teach all these topics within five days.

Many participants of the course repeatedly asked me the same question: “Can I
also use these tools with my own data and are they really for free?”. The answer is
definitively: YES! However, I can not guarantee that you can generate quality maps by
using low quality field data (please read the disclaimer on p. ix). In other words, nobody
can guarantee that your datasets can be saved with these tools, so make sure you provide
quality inputs. There are certainly limits to what you can do with regression-kriging.
For example, you will soon discover that larger datasets are more difficult to process and
can lead to computational difficulties. Running spatial prediction of � 103 points using
grids of �1M pixels might last several hours on a standard PC. The computation time
will increase exponentially for higher number of input points and finer grid resolutions.
Solving such computational cumbersome will be a quest, both for environmental and
computer scientists.

Another important motive to produce this handbook was to diminish frustrations a
typical beginner has with geostatistical theory. Many users of geostatistics are confused
with the amount of methods and with interpreting the results of some computation in a
statistical software. I have done my best to try to diminish the terminological confusion
(e.g. confusion between universal kriging using coordinates and predictors; confusion
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between running local and localized predictions) and warn the users which techniques
are valid for use and for which situations. With this handbook, you can now zoom into
a certain technique, into the data processing steps that are more interesting for your
case studies, and select the optimal methodology that fits your objectives. The rest, we
can discuss via the mailing lists.

The author of this user’s guide would like to thank people that have contributed
to this publication. The first on the long list is definitively Edzer Pebesma from the
University of Utrecht, the creator of gstat and one of the most open-minded people that
I have met so far. We can all, in fact, thank Edzer for kindly providing the source
code and his professional opinions (the gstat mailing list) over the last decade. This
document would certainly not exist without his generosity and dedication to the field.
The second on the list is David G. Rossiter who assisted me in organizing the course at
JRC. David has been contributing to the knowledge of geostatistics through his course
on geostatistics that he has been regularly organizing over the years at ITC. He also
kindly provided many handbooks and R codes that you can at any time access from his
website. The next on the list is my JRC colleague Gregoire Dubois who critically read
this document and provided suggestions and useful references. I also feel obliged here to
thank Fabio Terrible from the University of Naples for inviting me to organize this course
in his town and for hosting us in Naples. Likewise, I need to thank Pernille Brandt,
the head manager of the LMU Human Resources, and her assistants for supporting our
course at JRC. Many thanks also to participants of the Hands-on geostatistics course
for their interesting questions and comments that helped shaped this handbook.

The author would also like to thank Gehrt Ernst from the State Authority for Mining,
Energy and Geology, Hannover, Germany for providing the Ebergötzen dataset1 with a
full description of its content and lineage. I was truly surprise to discover the amount
of geostatistical ideas Erst had already back in 1990s (way before I even heard about
geostatistics). I am now slowly refreshing my German by studying the documents Ernst
forwarded.

From this point on, I will use a matrix notation to describe computational steps,
which is often not easy to follow by a non-mathematician. For an introduction to matrix
algebra, read the general introductions in classical statistical books such as Neter et al.
(1996, §5). A detailed introduction to matrix algebra used in geostatistics can be also
found in Wackernagel (2003). Finally, I should note that this handbook definitively
does not offer a complete coverage of the field of geostatistics and readers are advised to
extend their knowledge by obtaining the literature listed at the end of each chapter or
as referred to in the text. The terminology used in this handbook and many statements
are purely subjective and can be a subject of discussion.

Every effort has been made to trace copyright holders of the materials
used in this book. The European Commission apologizes for any uninten-
tional omissions and would be pleased to add an acknowledgment in future
editions.

Tomislav Hengl

Ispra (VA), September 2007

1The Ebergötzen datasets, scripts and codes used in this handbook can be obtained from the course

website http://geostat.pedometrics.org.

http://www.geog.uu.nl/~pebesma/
http://www.itc.nl/personal/rossiter/
http://www.itc.nl/personal/rossiter/
mailto:Ernst.Gehrt@niedersachsen.de
http://geostat.pedometrics.org
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Disclaimer

All software used in this guide is free software and comes with ABSOLUTELY NO
WARRANTY. The information presented herein is for informative purposes only and
not to receive any commercial benefits. Under no circumstances shall the author of this
Guide be liable for any loss, damage, liability or expense incurred or suffered which is
claimed to resulted from use of this Guide, including without limitation, any fault, error,
omission, interruption or delay with respect thereto (reliance at User’s own risk).

The readers are advised to use the digital PDF version of this document, because
many URL links are embedded and will not be visible from the paper version. You
are welcome to redistribute the programm codes and the complete document provided
under certain conditions. For more information, read the GNU general public licence.

The main idea of this document is to provide practical instructions to produce quality
maps using open-source software. The author of this guide wants to make it clear that no
quality maps can be produced if low quality inputs are used. Even the most sophisticated
geostatistical tools will not be able to save the data sets of poor quality. A quality point
data set is the one that fulfills the following requirements:

It is large enough — The data set needs to be large enough to allow statistical test-
ing. Typically, it is recommended to avoid using �50 points for reliable variogram
modeling and �10 points per predictor for reliable regression modeling2.

It is representative — The data set needs to represent the area of interest, both
considering the geographical coverage and the diversity of environmental features.
In the case that parts of the area or certain environmental features (land cover/use
types, geomorphological strata and similar) are misrepresented or completely ig-
nored, they should be masked out or revisited.

It is independent — The samples need to be collected using an objective sampling
technique. The selection of locations needs to be done in an unbiased way so
that no special preference is given to locations which are easier to visit, or are
influenced by any other type of human bias. Preferably, the point locations should
be selected using objective sampling designs such as simple random sampling,
regular sampling, stratified random sampling or similar.

2Reliability of a variogram/regression model decreases exponentially as n approaches small numbers.

ix

http://www.gnu.org/copyleft/gpl.html
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It is produced using a consistent methodology — The field sampling and laboratory
analysis methodology needs to be consistent, i.e. it needs to comprise standard-
ized methods that are described in detail and therefore reproducible. Likewise,
the measurements need to consistently report applicable support size and time
reference.

Its precision is significantly precise — Measurements of the environmental vari-
ables need to be obtained using field measurements that are significantly more
precise than the natural variation.

Geostatistical mapping using inconsistent point samples3, small data sets, or subjec-
tively selected samples is also possible, but it can lead to many headaches — both during
estimation of the spatial prediction models and during interpretation of the final maps.
In addition, analysis of such data can lead to unreliable estimates of the model in parts
or in the whole area of interest. As a rule of thumb, one should consider repetition of
a mapping project if the prediction error of the output maps exceeds the total variance
of the target variables in ≥50% of the study area.

3Either inconsistent sampling methodology, inconsistent support size or inconsistent sampling designs.



Frequently Asked Questions

(1.) Is spline interpolation different from kriging?

In principle, splines and kriging are very similar techniques. Especially regular-
ized splines with tension and universal kriging will yield very similar results. The
biggest difference is that the splines require that a users sets the smoothing pa-
rameter, while in the case of kriging the smoothing is determined objectively. See
also §1.2.3.

(2.) What is experimental variogram and what does it shows?

Experimental variogram is a plot showing how half of the squared differences
between the sampled values (semivariance) changes with the distance between the
point-pairs. We typically expect to see smaller semivariances at shorter distances
and then a stable semivariance (equal to global variance) at longer distances. See
also §1.3.1 and Fig. 1.7.

(3.) How do I model anisotropy in a variogram?

By adding two additional parameters — angle of the principal direction (strongest
correlation) and the anisotropy ratio. You do not need to fit variograms in different
directions. In gstat, you only have to indicate that there is anisotropy and the
software will fit an appropriate model. See also Fig. 1.9.

(4.) What is stationarity and should I worry about it?

Stationarity is a property of a variable to have similar statistical properties (similar
histogram, similar variogram) within the whole area of interest. There is the
first-order stationarity or the stationarity of the mean value and the second-order
stationarity or the covariance stationarity. The mean and covariance stationarity
and a normal distribution of values are the requirements for ordinary kriging. In
the case of regression-kriging, the target variable does not have to be stationary,
but only its residuals. See also §1.3.1.

(5.) What is the difference between regression-kriging, universal kriging and
kriging with external drift?

xi
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In theory, all three names describe the same technique. In practice, there are
some computational differences: in the case of regression-kriging, the deterministic
(regression) and stochastic (kriging) predictions are done separately; in the case
of kriging with external drift, both components are fitted simultaneously; the
term universal kriging is often reserved for the case when the deterministic part is
modelled as a function of coordinates. See also §2.1.2.

(6.) Can I interpolate categorical variables using regression-kriging?

A categorical variable can be treated by using logistic regression (i.e. multinomial
logistic regression if there are more categories). The residuals can then be inter-
polated using ordinary kriging and added back to the deterministic component.
Ideally, one should use memberships µ ∈ (0, 1) which can be directly converted to
logits and then treated as continuous variables. See also §2.3 and Figs. 4.14 and
4.19.

(7.) How can I produce geostatistical simulations using a regression-kriging
model?

The gstat package allows users to generate multiple Sequential Gaussian Simu-
lations using a regression-kriging model. However, this can be computationally
demanding for large datasets. See also §2.4 and Fig. 1.2.

(8.) How can I run regression-kriging on spatio-temporal point/raster data?

You can extend the 2D space with time dimension if you simply treat it as the
3rd space- dimension. Then you can also fit 3D variograms and run regression
models where observations are available in different time ‘positions’. Usually the
biggest problem of spatio-temporal regression-kriging is to ensure enough (�10)
observations in time-domain. You also need to have time-series of predictors (e.g.
time-series of remote sensing images). See also §2.5.

(9.) Can co-kriging be combined with regression-kriging?

Yes. Additional, more densely sampled covariates can be used to improve spatial
interpolation of the residuals. The interpolated residuals can then be added to the
deterministic part of variation.

(10.) In which situations might regression-kriging perform poorly?

Regression-kriging might perform poorly: if the point sample is small and nonrep-
resentative, if the relation between the target variable and predictors is non-linear,
if the points do not represent feature space or represent only the central part of
it. See also §2.8.2.

(11.) In which software can I run regression-kriging?

Regression-kriging, in full capacity, can be run in SAGA and gstat (implemented
in R and Idrisi). SAGA has an user-friendly environment to enter the prediction
parameters, however, it does not offer possibilities for more extensive statistical
analysis (especially variogram modelling is very limited). R seems to be the most
suitable computing environment for regression-kriging as it allows largest family
of statistical methods and supports data processing automation. See also §3.7.1.
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(12.) Can I run regression-kriging in ArcGIS?

In principle: No. In ArcGIS, as in ILWIS, it is possible to run separately regression
and kriging of residuals and then sum the maps, but it does not support regression-
kriging as explained in §2.1, nor simulations using a regression-kriging model. As
any other GIS, ArcGIS has limits considering the sophistication of the geostatistical
analysis. The statistical functionality of ArcView can be extended using the S-

PLUS extension.

(13.) How do I export results of spatial prediction (raster maps) to Google

Earth?

In ILWIS, you will first need to resample the map to the LatLonWGS84 system.
Then you can export the map as a graphical file (BMP) and insert it into Google

Earth as a ground overlay. You will need to know the bounding coordinates of the
map expressed in geographic degrees. See also §3.5.2.

(14.) Why should I invest my time to learn R language?

R is, at the moment, the cheapest, the broadest, and the most professional statis-
tical computing environment. In addition, it allows data processing automation,
import/export to various platforms, extension of functionality and open exchange
of scripts/packages. From few years ago, it also allows handling and generation of
maps. The official motto of an R guru is: anything is possible on R!

(15.) What do I do if I get stuck with R commands?

Study the R Html help files, browse the R News, purchase the books on R, subscribe
to the R mailing lists, obtain user-friendly R editors such as Tinn-R or use the
package R commander (Rcmdr). The best way to learn R is to look at the existing
scripts.

(16.) How can I handle large datasets (�103 points, �106 pixels) in R?

One option is to split the study area into regular blocks (e.g. 20 blocks) and then
run the predictions separately for each block, but using the global model. You can
also try installing/using some of the R packages develop to handle large datasets.
See also §3.7.2.

(17.) How do I determine a suitable grid size for output maps?

The grid size of the output maps needs to match the sampling density and scale
at which the processes of interest occur. We can always try to produce maps by
using the most detail grid size that our predictors allow us. Then, we can slowly
test how the prediction accuracy changes with coarser grid sizes and finally select
a grid size that allows maximum detail, while being computationally effective. See
also §4.2.3 and §4.7.1.

(18.) What is logit transformation and why should I use it?

Logit transformation converts the values bonded by two physical limits (e.g. min=0,
max=100%) to [−∞,+∞] range. It requires no intervention by user and it often
helps improving the normality of the target variable (residuals), which is often a
requirement for regression analysis. See also Fig. 4.15.

http://cran.r-project.org/doc/Rnews/
http://www.r-project.org/mail.html
http://www.sciviews.org/Tinn-R/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
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(19.) Why derive principal components of predictors (maps) instead of using
the original predictors?

Principal Component Analysis is an useful technique to reduce overlap of informa-
tion in the predictors. If combined with step-wise regression, it will typically help
us determine the smallest possible subset of significant predictors. See also §4.2.4.

(20.) How do I set the right coordinate system in R?

By setting the parameters of the CRS argument of a spatial data frame. Obtain
the European Petroleum Survey Group (EPSG) Geodetic Parameter database,
and try to locate the exact CRS parameters by browsing the existing Coordinate
Reference System. See also §4.2.1.

(21.) How can I evaluate the quality of my sampling plan?

For each existing point sample you can: evaluate clustering of the points by com-
paring the sampling plan with a random design, evaluate the representativity of
sampling in both geographical and feature space (histogram comparison), evaluate
consistency of the sampling intensity. See also §4.2.3.

(22.) How can I test if the difference between the two histograms of the same
feature is significant?

Use a non-parametric test such as the Kolmogorov-Smirnov test. Both histograms
must have the same intervals and show probability values. See also Fig. 4.9.

(23.) How do I set an initial variogram?

One possibility is to use: nugget parameter = measurement error, sill parameter =
sampled variance, and range parameter = 10% of the spatial extent of the data (or
two times the mean distance to the nearest neighbour). This is only an empirical
formula. See also §4.4.

(24.) Can I automate regression-kriging so that no user-input is needed?

Automation of regression-kriging is possible in R. An user can combine data im-
port, step-wise regression, variogram fitting, spatial prediction (gstat), and com-
pletely automate generation of maps. See also §3.7.4.

(25.) How do I test if the two prediction methods are significantly different?

Derive RMSE at validation points for both techniques and then test the difference
between the distributions using the two sample t-test. See also §4.6.

(26.) Can we really produce quality maps with much less samples than we
originally planned (is down-scaling possible with regression-kriging)?

If the correlation with the environmental predictors is very strong, you do not
need as many point observations to produce quality maps. In such cases, the issue
becomes more how to locate the samples so that the extrapolation in the feature
space is minimized. See also §2.6 and §4.7.2.

http://www.epsg.org
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(27.) How can I allocate additional observations to improve the precision of
a map?

You can use the package spatstat and then run weighted point pattern random-
ization with the map of the normalized prediction variance as the weight map.
This will produce a random design with the inspection density proportional to the
value of the standardized prediction error. In the next iteration, precision of your
map will gradually improve. See also Fig. 4.27.

(28.) How do I export R plots directly to Google Earth?

PNG of R plots can be exported as Google Earth overlays using the maptools

package. The procedure is explained in §4.8.2.
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Theoretical backgrounds

1.1 Basic concepts

Geostatistics is a subset of statistics specialized in analysis and interpretation of ge-
ographically referenced data (Goovaerts, 1997; Webster and Oliver, 2001; Nielsen and
Wendroth, 2003). In other words, geostatistics comprises statistical techniques that are
adjusted to spatial data. Typical questions of interest to a geostatistician are:

how does a variable vary in space?

what controls its variation in space?

where to locate samples to describe its spatial variability?

how many samples are needed to represent its spatial variability?

what is a value of a variable at some new location?

what is the uncertainty of the estimate?

In the most pragmatic context, geostatistics is an analytical tool for statistical anal-
ysis of sampled field data. Today, geostatistics is not only used to analyse point data but
also increasingly in combination with various GIS layers: e.g. to explore spatial variation
in remote sensing data, to quantify noise in the images and for their filtering (e.g. filling
of the voids/missing pixels), to improve generation of DEMs and for their simulations,
to optimize spatial sampling, selection of spatial resolution for image data and selection
of support size for ground data (Kyriakidis et al., 1999; Atkinson and Quattrochi, 2000).

According to the bibliographic research of Zhou et al. (2007), the top 10 application
fields of geostatistics (the largest number of research articles) are: (1) geosciences, (2)
water resources, (3) environmental sciences, (4) agriculture and/or soil sciences, (5/6)
mathematics and statistics, (7) ecology, (8) civil engineering, (9) petroleum engineering
and (10) limnology. The list could be extended and differs from country to country of
course. Evolution of applications of geostatistics can also be followed through the activ-
ities of the following research groups: geoENVia, IAMG, pedometrics, geocomputation
and spatial accuracy.

One of the main uses of geostatistics is to predict values of a sampled variable
over the whole area of interest, which is referred to as spatial prediction or spatial
interpolation. Note that there is a small difference between the two because prediction

1

http://geoenvia.org
http://www.iamg.org
http://pedometrics.org
http://geocomputation.org
http://spatial-accuracy.org
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can imply both interpolation and extrapolation, so we will more commonly use the term
spatial prediction in this handbook, even though the term spatial interpolation has been
more widely accepted (Lam, 1983; Mitas and Mitasova, 1999; Dubois and Galmarini,
2004).

An important distinction between geostatistical and conventional mapping of envi-
ronmental variables is that the geostatistical prediction is based on application of quan-
titative, statistical techniques. Unlike the traditional approaches to mapping, which
rely on the use of empirical knowledge, in the case of geostatistical mapping we com-
pletely rely on the actual measurements and (semi-)automated algorithms. Although
this sounds as if the spatial prediction is done purely by a computer program, the ana-
lysts have many options to choose whether to use linear or non-linear models, whether to
consider spatial position or not, whether to transform or use the original data, whether
to consider multicolinearity effects or not. So it is also an expert-based system in a way.

In summary, geostatistical mapping can be defined as analytical production of
maps by using field observations, auxiliary information and a computer pro-
gram that calculates values at locations of interest (a study area). It typically
comprises the following five steps:

(1.) design the sampling and data processing,

(2.) collect field data and do laboratory analysis,

(3.) analyse the points data and estimate the model,

(4.) implement the model and evaluate its performance,

(5.) produce and distribute the output geoinformation1.

Today, increasingly, the natural resource inventories need to be regularly updated or
improved in detail, which means that after step (5), we often need to consider collection
of new samples or additional samples that are then used to update an existing GIS layer.
In that sense, it is probably more valid to speak about geostatistical monitoring.

1.1.1 Environmental variables

Environmental variables are quantitative or descriptive measures of different envi-
ronmental features. Environmental variables can belong to different domains, ranging
from biology (distribution of species and biodiversity measures), soil science (soil prop-
erties and types), vegetation science (plant species and communities, land cover types),
climatology (climatic variables at surface and benith/above), hydrology (water quanti-
ties and conditions) and similar. They are commonly collected through field sampling
(supported by remote sensing), which are then used to produce maps showing their
distribution in an area. Such accurate and up-to-date maps of environmental features
represent a crucial input to spatial planning, decision making, land evaluation or land
degradation assessment (Table 1.1).

From a meta-physical perspective, what we are most often mapping in geostatistics
are, in fact, quantities of molecules of a certain kind. For example, a measure of soil
or water acidity is the pH factor. By definition, pH is a negative exponent of the

1By this I mainly think of on-line databases, i.e. data distribution portals.
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Fig. 1.1: Example of a geostatistical mapping of occurrence of sister (plant) species. After
Latimer et al. (2004).

concentration of the H+ ions2. By mapping it over the whole area of interest, we
produce a map of continuous values of concentration (continuous fields) of H+ ions.

In the case of plants and animals, geostatistical mapping becomes much more com-
plicated. Here, we deal with distinct physical objects (individuals), often immeasurable
in quantity. In addition, animal species change their location dynamically, often in un-
predictable directions and with unpredictable spatial patterns (non-linear trajectories),
which asks for high sampling density in both space and time domains (Table 1.1).

To account for these problems, spatial modelers rarely aim at mapping the distri-
bution of individuals (e.g. represented as points), but instead use compound measures
that are suitable for management and decision making purposes. For example, animal
species can be represented using density or biomass measures (see e.g. Latimer et al.
(2004); Pebesma et al. (2005)). In vegetation mapping, most commonly field observa-
tions of the plant occurrence (ranging from 0 to 100%) are recorded (Fig. 1.1). In
addition to mapping of temporary distribution of species, biologist aim at developing
statistical models to define optimal ecological conditions for a certain species. This is
often referred to as habitat mapping (Latimer et al., 2004; Antonić et al., 2005) and
can be also dealt with geostatistics. Occurrence of species or habitat conditions can also
be presented as continuous fields, i.e. using raster maps.

1.1.2 Aspects of spatial variability

Relevant and detailed geoinformation is a prerequisite for successful management of
natural resources in many applied environmental and geosciences. Until recently, maps

2It is often important to understand the definition of an environmental variable. For example, in the

case of pH, we should know that the quantities are already on a log-scale so that no further transformation

of the variable is anticipated (see further §4.2.1).
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Table 1.1: Some common environmental variables of interest to decision making and their proper-
ties: SRV — short-range variability; TV — temporal variability; VV — vertical variability; SSD
— standard sampling density; DRS — remote-sensing detectability. F — high, ? — medium,
− — low or non-existent. Approximated by the author.

Environmental

features/topics

Common variables

of interest to decision making

S
R
V

T
V

V
V

S
S
D

R
S
D

Mineral exploration:

oil, gas, mineral

resources

mineral occurrence and concentrations of

minerals; reserves of oil and natural gas;

magnetic anomalies;

? − F ? ?

Freshwater resources

and water quality

O2, ammonium and phosphorus concentrations

in water; concentration of herbicides; trends in

concentrations of pollutants; temperature

change;

? ? ? ? −

Socio-economic

parameters

population density; population growth; GDP

per km2; life expectancy rates; human

development index; noise intensity;

? ? − F F

Land degradation:

erosion, landslides,

surface runoff

soil loss; erosion risk; quantities of runoff;

dissolution rates of various chemicals; landslide

susceptibility;

? ? − − F

Natural hazards: fires,

floods, earthquakes, oil

spills

burnt areas; fire frequency; water level;

earthquake hazard; financial losses; human

casualties; wildlife casualties;

F F − ? F

Human-induced

radioactive

contamination

gama doze rates; concentrations of isotopes;

PCB levels found in human blood; cancer rates;
? F − ? F

Soil fertility and

productivity

organic matter, nitrogen, phosphorus and

potassium in soil; biomass production; (grain)

yields; number of cattle per ha; leaf area index;

F ? ? ? ?

Soil pollution

concentrations of heavy metals especially:

arsenic, cadmium, chromium, copper, mercury,

nickel, lead and hexachlorobenzene; soil acidity;

F ? − F −

Distribution of animal

species (wildlife)

occurrence of species; biomass; animal species

density; biodiversity indices; habitat

conditions;

F F − ? −

Distribution of natural

vegetation

land cover type; vegetation communities;

occurrence of species; biomass; density

measures; vegetation indices; species richness;

habitat conditions;

? ? − F F

Meteorological

conditions

temperature; rainfall; albedo; cloud fraction;

snow cover; radiation fluxes; net radiation;

evapotranspiration;

? F ? ? F

Climatic conditions

and changes

mean, minimum and maximum temperature;

monthly rainfall; wind speed and direction;

number of clear days; total incoming radiation;

trends of changes of climatic variables;

− F ? ? ?

Global atmospheric

conditions

aerosol size; cirrus reflectance; carbon

monoxide; total ozone; UV exposure;
? F F − F

Air quality in urban

areas

NOx, SO2 concentrations; emission of

greenhouse gasses; emission of primary and

secondary particles; ozone concentrations; Air

Quality Index;

F F F F −

Global and local sea

conditions

chlorophyll concentrations; biomass; sea

surface temperature; emissions to sea;
? F ? ? ?
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of environmental variables have primarily generated by using mental models (expert
systems). Because field data collection is often the most expensive part of a survey,
survey teams typically visit only a limited number of sampling locations and then, based
on the sampled data and statistical and/or mental models, infer conditions for the whole
area of interest. As a consequence, maps of environmental variables have often been of
limited and inconsistent quality and usually too subjective.

Spatial variability of environmental variables is commonly a result of complex pro-
cesses working at the same time and over long periods of time, rather than an effect of
a single realization of a single factor. To explain variation of environmental variables
has never been an easy task. Many environmental variables vary not only horizontally
but also with depth, not only continuously but also abruptly. Field observations are, on
the other hand, usually very expensive and we are often forced to build 100% complete
maps by using a sample of �1%.
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Fig. 1.2: If we were able to sample a soil variable over the whole area of interest, we would
probably get an image such as this. This image was, in fact, produced using the geostatistical
simulations with a regression-kriging model (see further §4.18).

Imagine if we had enough funds to inventory each grid node in a study area, then
we would be able to produce a map which would probably look as the map shown in
Fig. 1.23. By carefully looking at this map, you can notice several things: (1) there seems
to be a spatial pattern of how the values change; (2) values that are closer together are
more similar; (3) locally, the values can differ without any systematic rule (randomly);
(4) in the middle of the area, the values seem to be in general higher (a discrete change)
etc. From the statistical perspective, an environmental variable can be viewed as an
information signal consisting of three components:

Z(s) = Z∗(s) + ε′(s) + ε′′ (1.1.1)

where Z∗(s) is the deterministic component, ε′(s) is the spatially correlated random
component and ε′′ is the pure noise, usually the result of the measurement error. This
model is in literature often referred to as the universal model of variation (see
further §2.1). Note that we use a capital letter Z because we assume that the model

3See further §4.5 and Fig. 2.1.
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is probabilistic, i.e. there is a range of equiprobable realisations of the same model
{Z(s), s ∈ A}.

In theory, we could decompose a map of an environmental variable into two grids:
(1) the deterministic and (2) the error surface; in practice, we are not able to do distin-
guish the deterministic from the error part of the signal because both can show similar
patterns. By collecting field measurements at different locations and with different sam-
pling densities, we might be able to infer about the source of variability and estimate
probabilistic models of variation. Then we can try to answer how much of the variation
is due to the measurement error, how much has been accounted for by the environmental
factors, how much is due to the spatial similarity of the values and how much is uncorre-
lated noise? Such systematic assessment of the error budget allows us to make realistic
interpretations and utilize models which reflect our knowledge about the variability of
target variables.

The first step towards successful geostatistical mapping of environmental variables
is to understand the sources of variability in the data. As we have seen previously, the
variability is a result of deterministic and stochastic processes plus the pure noise. In
other words, the variability in data is a sum of two components: (a) the natural spatial
variation and (b) the inherent noise, mainly do the measurement errors (Burrough
and McDonnell, 1998). Measurement errors typically occur during the positioning in
the field, during sampling or the laboratory analysis. These errors should ideally be
minimized, because they are not of primary concern for a mapper. What the mappers
are interested in is the natural spatial variation, which is mainly due to the physical
processes that can be explained (up to a certain level) by a mathematical model.

Fig. 1.3: Schematic examples of models of spatial variation: abrupt changes of values can be
modelled using a discrete model of spatial variation (a), smooth changes can be modelled using
a continuous model of spatial variation (b). In reality, we often need to work with a mixed (or
hybrid) model of spatial variation (c).

The second step towards reliable modelling is to consider all aspects of natural
variation. Although spatial prediction of environmental variables is primarily concerned
with geographical variability, there are also other aspects of natural soil variation that are
often overlooked by mappers: vertical, temporal and scale aspect. Below is an overview
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of the main concepts and problems associated with each of these (see also Table 1.1):

Geographical variation (2D) The results of spatial prediction are either visualized
as 2D maps or cross-sections. Some environmental variables, such as thickness
of soil horizons, the occurrence of vegetation species or soil types, do not have
a third dimension, i.e. they refer to the Earth’s surface only. Others, such as
temperature, population densities etc. can be measured at various altitudes, even
below Earth’s surface. Geographical part of variation can be modelled using either
a continuous, discrete or mixed model of spatial variation (Fig. 1.3).

Vertical variation (3D) Many environmental variables also vary with depth or alti-
tude. In many cases, the measured difference between the values is higher at a
depth differing by a few centimetres than at geographical distance of few meters.
Consider variables such as temperature or bird density — to explain their vertical
distribution can often be more difficult than for the horizontal space (Shamoun
et al., 2005). Transition between different soil layers, for example, can also be both
gradual and abrupt, which requires a double-mixed model of soil variation for 3D
spatial prediction. Some authors suggest the use of cumulative values on volume
(areal) basis to simplify mapping of the 3D variables. For example, McKenzie and
Ryan (1999) produced maps of total phosphorus and carbon estimated in the up-
per 1 m of soil and expressed in tons per hectare, which then simplifies production
and retrieval.

Temporal variation As mentioned previously, especially environmental variables con-
nected with animal and plant species vary not only within season but often within
few moments. Even the soil variables such as pH, nutrients, water-saturation levels
and water content, can vary over a few years, within a single season or even over
a few days (Heuvelink and Webster, 2001). Temporal variability makes geostatis-
tical mapping especially complex and expensive. Maps of environmental variables
produced for two different time references can differ significantly. This means
that most of maps are valid for a certain period (or moment) of time only. In
many cases the seasonal periodicity of environmental variables is regular, so that
prediction does not necessarily require new samples (see further §2.5).

Fig. 1.4: Influence of the support (grid cell) size: predictions of the same variable at coarse grid
will often show much less contrast. Example from Thompson et al. (2001).

Support size Support size is the discretisation level of a geographical surface and is
related to the concept of scale. In the case of spatial predictions, there are two
support sizes: the size of the blocks of land sampled, and grid resolution of the
auxiliary maps. Field observations are typically collected as point samples. The
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support size of the auxiliary maps is commonly much larger than the actual blocks
of land sampled, e.g. auxiliary variables are in general averaged (smoothed), while
the environmental variables can describe local (micro) features. As a result, the
correlation between the auxiliary maps and measured environmental variables is
often low or insignificant (Fig. 1.4). There are two solutions to this problem:
(a) to up-scale the auxiliary maps or work with super-high resolution/detail data
(e.g. IKONOS images of 1 m resolution), or (b) to average bulk or composite
samples within the regular blocks of land (Patil, 2002). The first approach is
more attractive for the efficiency of prediction, but at the cost of more processing
power and storage. The second solution will only result in a better fit, whereas
the efficiency of prediction, validated using point observations, may not change
significantly.

This means that mixing of lab data from different seasons, depths and with different
support sizes in general means lower predictive power and problems in fully interpreting
the results. If the focus of prediction modelling is solely the geographical component
(2D), then the samples need to be taken under fixed conditions: same season, same
depths, same blocks of land. This also means that each 2D map of an environmental
variable should always indicate a time reference (interval), applicable vertical
dimension4 and the sample (support) size i.e. the effective scale.

1.1.3 Spatial prediction models

Ideally, variability of environmental variables is determined by a finite set of inputs
and they exactly follow some known physical law. If the algorithm (formula) is known,
the values of the target variables can be predicted exactly. In reality, the relationship
between the feature of interest and physical environment is so complex5 that it cannot
be modelled exactly (Heuvelink and Webster, 2001). This is because we either do not
exactly know: (a) the final list of inputs into the model, (b) the rules (formulas) required
to derive the output from the inputs and (c) the significance of the random component
in the system. So the only possibility is that we can try to estimate a model by using the
actual field measurements of the target variable. This can be referred to as the indirect
or non-deterministic estimation.

Let us first define the problem using mathematical notation. Let a set of observations
of a target variable z be denoted as z(s1), z(s2),. . . , z(sn), where si = (xi, yi) is a
location and xi and yi are the coordinates (primary locations) in geographical space and
n is the number of observations (Fig. 1.5). The geographical domain of interest (area,
land surface, object) can be denoted as A. Assuming that the samples are representative,
unbiased and consistent (see further §4.2.3), values of the target variable at some new
location s0 can be derived using a spatial prediction model. It defines inputs, outputs
and the computational procedure to derive outputs based on the given inputs:

ẑ(s0) = E {Z|z(si), qk(s0), γ(h), s ∈ A} (1.1.2)

where z(si) is the input point dataset, qk(s0) is the list of deterministic predictors and
γ(h) is the covariance model defining the spatial autocorrelation structure (see further
Fig. 2.1).

4Orthogonal distance from the land surface.
5Because either the factors are unknown, or they are too difficult to measure, or the model itself

would be too complex for realistic computations.
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Fig. 1.5: Spatial prediction is a process of estimating the value of (quantitative) properties at
unvisited site within the area covered by existing observations: (a) a scheme in horizontal space,
(b) values of some target variable in a one-dimensional space.

In raster GIS terms, the geographical domain of interest is a rectangular matrix, i.e.
an array with a (large) number of grid nodes over the domain of interest (Fig. 1.6):

Z = {Z(sj), j = 1, . . . , N} ; sj ∈ A (1.1.3)

where Z is the data array, Z(sj) is the value at the grid node sj , and m is the total
number of grid nodes. Note that there is a difference between predicting values at grid
node (punctual) and prediction values of the whole grid cell (block), which has a full
topology6.

There seems to be many possibilities to interpolate point samples. At the Spa-
tial Interpolation Comparison 2004 exercise, for example, 31 algorithms competed in
predicting values of gamma dose rates at 1008 new locations and by using 200 training
data (Dubois and Galmarini, 2004; Dubois, 2005). The competitors ranged from splines,
neural networks up to various kriging algorithms. Similarly, the software package Surfer

offers dozens of interpolation techniques: Inverse Distance, Kriging, Minimum Cur-
vature, Polynomial Regression, Triangulation, Nearest Neighbour, Shepard’s Method,
Radial Basis Functions, Natural Neighbour, Moving Average, Local Polynomial, etc.

Fig. 1.6: Spatial prediction implies application of a prediction algorithm to an array of grid
nodes (point á point spatial prediction). The results are then displayed using a raster map.

An inexperienced user will often be confused by amount of techniques. Most of the
spatial prediction models are in fact somehow connected. As we will see later on, many

6The sp package in R, for example, makes a distinction between the Spatial Pixel data frame (grid

nodes) and a Spatial Grid data frame (grid cells).

http://www.ai-geostats.org/index.php?id=44
http://www.ai-geostats.org/index.php?id=44
http://www.ssg-surfer.com
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models are in fact just a special case of a more general prediction model. This makes
things much less complicated for the non-geostatisticians7.

Spatial prediction models (algorithms) can be classified based on several aspects.
Most importantly, they can be classified according to the amount of statistical analysis
included:

MECHANICAL/EMPIRICAL MODELS — These are models where arbitrary or
empirical model parameters are used. No estimate of the model error is available
and usually no strict assumptions about the variability of a feature exist. The
most known techniques that belong to this group are:

Thiessen polygons;

Inverse distance interpolation;

Regression on coordinates;

Splines;

. . .

STATISTICAL (PROBABILITY) MODELS — In the case of statistical models,
the model parameters are commonly estimated in an objective way, following the
probability theory. The predictions are accompanied with the estimate of the
prediction error. A drawback is that the input dataset usually need to satisfy
strict statistical assumptions. There are at least four groups of statistical models:

kriging (plain geostatistics);

environmental correlation (e.g. regression-based);

Bayesian-based models (e.g. Bayesian Maximum Entropy);

mixed models (regression-kriging);

. . .

Spatial prediction models can also be grouped based on the:

Smoothing effect — whether the model smooths predictions at sampling locations or
not:

Exact (measured and estimated values coincide);

Approximate (measured and estimated values do not have to coincide);

Proximity effect — whether the model uses all sampling locations or only locations
in local proximity:

Local (a local sub-sample; local models applicable);

Global (all samples; the same model for the whole area);

Convexity effect — whether the model makes predictions outside range of the data:

Convex (all predictions are within the range);

Non-convex (some predictions might be outside the range);

Support size — whether the model predicts at points or for blocks of land:
7As we will see later on in §2.1.1, spatial prediction can even be fully automated so that a user needs

only to provide quality inputs and the system will select the most suitable technique.
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Point-based or punctual prediction models;

Area-based or block prediction models;

Another way to look at the spatial prediction models is their ability to represent
models of spatial variation. Ideally, we wish to use mixed model of spatial variation
(Fig. 1.3c) because it is a generalization of the two models and can be more universally
applied. In practice, many spatial prediction models are limited to one of the two
models of spatial variation: predicting using polygon maps (§1.3.3) will show discrete
changes (Fig. 1.3a) in values; ordinary kriging (§1.3.1) will typically lead to smooth
maps (Fig. 1.3b).

1.2 Mechanical spatial prediction models

As mentioned previously, mechanical spatial prediction models can be very flexible and
easy to use. They can be considered to be subjective or empirical techniques because the
user him/her-self selects the parameters of the model, often without any deeper statisti-
cal analysis. Most commonly, a user typically accepts the default parameters suggested
by some software, hence the name mechanical models. The most used mechanical spatial
prediction models are Thiessen polygons, inverse distance interpolation, regression on
coordinates and splines, although the list could be extended (Lam, 1983; Myers, 1994).
In general, mechanical prediction models are more primitive than the statistical models
and often sub-optimal, however, there are situations where they can perform as good as
the statistical models (or better).

1.2.1 Inverse distance interpolation

Probably one of the oldest spatial prediction technique is the inverse distance inter-
polation (Shepard, 1968). As with many other spatial predictors, in the case of the
inverse distance interpolation, a value of target variable at some new location can be
derived as a weighted average:

ẑ(s0) =
n∑

i=1

λi(s0) · z(si) (1.2.1)

where λi is the weight for neighbour i. The sum of weights needs to equal one to ensure
an unbiased interpolator. Eq.(1.2.1) in matrix form is:

ẑ(s0) = λT
0 · z (1.2.2)

The simplest approach for determining the weights is to use the inverse distances
from all points to the new point:

λi(s0) =
1

dβ(s0,si)
n∑

i=0

1
dβ(s0,si)

; β > 1 (1.2.3)

where d(s0, si) is the distance from the new point to a known sampled point and β is
a coefficient that is used to adjust the weights. This way, points which are close to an
output pixel will obtain large weights and that points which are farther away from an
output pixel will obtain small weights. The higher the β, the less importance will be
put on distant points. The remaining problem is how to estimate β objectively so that
it reflects the inherent properties of a dataset.
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Inverse distance interpolation is an exact and convex interpolation method that fits
only the continuous model of spatial variation. For large datasets (� 103 points) it can
be time-consuming so it is often a good idea to set a threshold distance (search radius)
to speed up the calculations.

1.2.2 Regression on coordinates

Assuming that the values of target variable at some location are function of coordinates,
we can determine its values by finding a function which passes through (or close to)
the given set of discrete points. This group of techniques can be termed regression
on coordinates, although it is primarily known in literature by names trend surfaces
and/or moving surface interpolation, depending on whether the function is fitted for
the whole point dataset (trend) or for a local (moving) neighbourhood (Hardy, 1971).
Regression on coordinates is based on the following model (Webster and Oliver, 2001,
p.40–42):

Z(s) = f(x, y) + ε (1.2.4)

and the predictions are made by:

ẑ(s0) =
∑
r,s∈n

ars · xrys = aT · s0 (1.2.5)

where r + s < p is the number of transformations of coordinates, p is the order of the
surface. The model coefficients (a) are determined by maximising the local fit:

n∑
i=1

(ẑi − zi)2 → min (1.2.6)

which can be achieved by the Ordinary Least Squares solution (Neter et al., 1996):

a =
(
sT · s

)−1 ·
(
sT · z

)
(1.2.7)

In practice, local fitting of the moving surface is more used to generate maps than
trend surface interpolation. In the case of the moving surface, for each output grid
node, a polynomial surface is fitted to a larger8 number of points selected by a moving
window (circle). The main problem of this technique is that, by introducing higher
order polynomials, we can generate many artefacts and cause serious overshooting of
the values locally (see further Fig. 1.11). Moving surface will also completely fail to
represent discrete changes in space.

Regression on coordinates can be criticized for not relying on empirical knowledge
about the variation of a variable. As we will see later on in §1.3.2, it is probably
more advisable to use feature-related geographic predictors such as the distance
from a coast line, latitude or longitude and similar, instead of mechanically using the
x, y coordinates and their transforms. In that sense, regression on coordinates9 can be
considered as the least sophisticated spatial prediction technique.

8The number of points need to be larger than the number of parameters.
9Similar can be said also for the Universal kriging where coordinates are used to explain the deter-

ministic part of variation.
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1.2.3 Splines

A special group of interpolation techniques is based on splines. A spline is a special type
of piecewise polynomial and are preferable to simple polynomial interpolation because
more parameters can be defined including the amount of smoothing. The smoothing
spline function also assumes that there is a (measurement) error in the data that needs
to be smoothed locally. There are many versions and modifications of spline interpola-
tors. The most widely used techniques are thin-plate splines (Hutchinson, 1995) and
regularized spline with tension and smoothing (Mitášová and Mitas, 1993).

In the case of regularized spline with tension and smoothing (implemented in GRASS

GIS), the predictions are obtained by (Mitasova et al., 2005):

ẑ(s0) = a1 +
n∑

i=1

wi ·R(υi) (1.2.8)

where the a1 is a constant and R(υi) is the radial basis function determined using
(Mitášová and Mitas, 1993):

R(υi) = − [E1(υi) + ln(υi) + CE ] (1.2.9)

υi =
[
ϕ · h0

2

]2

(1.2.10)

where E1(υi) is the exponential integral function, CE=0.577215 is the Euler constant,
ϕ is the generalized tension parameter and h0 is the distance between the new and
interpolation point. The coefficients a1 and wi are obtained by solving the system:

n∑
i=1

wi = 0 (1.2.11)

a1 +
n∑

i=1

wi ·
[
R(υi) + δij ·

$0

$i

]
= z(si); j = 1, .., n (1.2.12)

where $0/$i are positive weighting factors representing a smoothing parameter at each
given point si. The tension parameter ϕ controls the distance over which the given
points influence the resulting surface, while smoothing parameter controls the vertical
deviation of of the surface from the points. By using an appropriate combination of
tension and smoothing, one can produce a surface which accurately fits the empirical
knowledge about the expected variation (Mitasova et al., 2005). Regularized spline with
tension and smoothing are, in a way, equivalent to universal kriging (see further §2.1.2)
where coordinates are used to explain the deterministic part of variation, and would
yield very similar results.

Splines have shown to be highly suitable for interpolation of densely sampled heights
and climatic variables (Hutchinson, 1995; Mitas and Mitasova, 1999). However, their
biggest criticism is inability to incorporate larger amounts of auxiliary maps to model
the deterministic part of variation. In addition, the smoothing and tension parameters
need to be set by the user.

1.3 Statistical spatial prediction models

In the case of statistical models, coefficients/rules used to derive outputs are derived in
an objective way following the theory of probability. Unlike mechanical models, in the
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case of statistical models, we need to follow several statistical data analysis steps before
we can generate maps. This makes the whole mapping process more complicated but
it eventually helps us: (a) produce more reliable/objective maps, (b) understand the
sources of errors in the data and (c) depict problematic areas/points that need to be
revisited.

1.3.1 Kriging

Kriging has for many decades been used as a synonym for geostatistical interpolation.
It originated in the mining industry in the early 1950’s as a means of improving ore
reserve estimation. The original idea came from the mining engineers D. G. Krige and
the statistician H. S. Sichel. The technique was first published in Krige (1951), but it
took almost a decade until a French mathematician G. Matheron derived the formulas
and basically established the whole field of linear geostatistics10 (Cressie, 1990; Webster
and Oliver, 2001; Zhou et al., 2007).

A standard version of kriging is called ordinary kriging (OK). Here the predictions
are based on the model:

Z(s) = µ + ε′(s) (1.3.1)

where µ is the constant stationary function (global mean) and ε′(s) is the spatially
correlated stochastic part of variation. The predictions are made as in Eq.(1.2.1):

ẑOK(s0) =
n∑

i=1

wi(s0) · z(si) = λT
0 · z (1.3.2)

where λ0 is the vector of kriging weights (wi), z is the vector of n observations at primary
locations. In a way, kriging can be seen as a sophistication of the inverse distance
interpolation. Recall from §1.2.1 that the key problem of inverse distance interpolation
is to determine how much importance should be given to each neighbour. Intuitively
thinking, there should be a way to estimate the weights in an objective way, so the
weights reflect the true spatial autocorrelation structure. The novelty that Matheron
(1962) and Gandin (1963) introduced to the analysis of point data is the derivation and
plotting of the so-called semivariances — differences between the neighbouring values:

γ(h) =
1
2
E

[
(z(si)− z(si + h))2

]
(1.3.3)

where z(si) is the value of target variable at some sampled location and z(si + h) is the
value of the neighbour at distance si + h. Suppose that there are n point observations,
this yields n · (n− 1)/2 pairs for which a semivariance can be calculated. We can then
plot all semivariances versus their distances, which will produce a variogram cloud as
shown in Fig. 1.7b. Such clouds are not easy to describe visually, so the values are
commonly averaged for standard distance called the lag. If we display such averaged
data, then we get a standard experimental variogram as shown in Fig. 1.7c. What
we usually expect to see is that semivariances are smaller at shorter distance and then
they stabilize at some distance. This can be interpreted as follows: the values of a
target variable are more similar at shorter distance, up to a certain distance where the

10Matheron (1962) named his theoretical framework the Theory of Regionalized Variables. It was

basically a theory for modelling stochastic surfaces using spatially sampled variables.
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differences between the pairs are more less equal the global variance11. This is known
as the spatial auto-correlation effect.

Fig. 1.7: Steps of variogram modelling: (a) location of points (300), (b) variogram cloud showing
semivariances for 44850 pairs, (c) semivariances aggregated to lags of about 300 m, and (d) the
final variogram model fitted using the default settings in gstat.

From a meta-physical perspective, spatial auto-correlation in the data can be con-
sidered as a result of diffusion — a random motion causing a system to decay towards
uniform conditions. One can argue that, if there is a physical process behind a feature,
one should model it using a deterministic function rather than to treat it as a stochastic
component. However, diffusion is a random motion so that there is a meta-statistical
argument to treat it is a stochastic component.

Once we calculated an experimental variogram, we can fit it using some of the
authorized variogram models, such as linear, spherical, exponential, circular, Gaus-
sian, Bessel, power and similar (Isaaks and Srivastava, 1989; Goovaerts, 1997). The
variograms are commonly fitted by iterative reweighted least squares estimation, where
the weights are determined based on the number of point pairs or based on the distance.
Most commonly, the weights are determined using Nj/h2

j , where Nj is the number of
pairs at certain lag, and hj is the distance (Fig. 1.7d). This means that the algorithm
will give much more importance to semivariances with large number of point pairs and
to the shorter distances. Fig. 1.7d shows the result of automated variogram fitting given

11For this reason, many geostatistical packages (e.g. Isatis) automatically plot the global variance

(horizontal line) directly in a variogram plot.
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an experimental variogram (Fig. 1.7c) and using the Nj/h2
j -weights: in this case, we

obtained an exponential model with the nugget parameter = 26, sill parameter = 440,
and the range parameter = 478 m. Note that this is only a sample variogram — if
we would go and collect several point samples, each would lead to somewhat different
variogram plot. The target variable is said to be stationary if several sample variograms
are very similar (constant), which is referred to as the covariance stationarity. Oth-
erwise, if the variograms differ much locally and/or globally, then we speak about a
non-stationary inherent properties. In principle, assumptions of kriging are that the
target variable is stationary and that it has a normal distribution, which is probably
the biggest limitation of kriging12. It is also important to note that there is a differ-
ence between the range factor and the range of spatial dependence, also known as the
practical range. A practical range is the Lag h for which γ(h)=0.95 γ(∞), i.e. that
distance at which the semivariance is close to 95% of the sill (Fig. 1.8b).

Fig. 1.8: Some basic concepts of variograms: (a) the difference between semivariance and covari-
ance; (b) it often important in geostatistics to distinguish between the sill variation (C0 + C1)
and the sill parameter (C1) and between the range parameter (R) and the practical range; (c)
a variogram that shows no spatial correlation can be defined by a single parameter (C0); (d) an
unbounded variogram typically leads to predictions similar to inverse distance interpolation.

Once we have estimated13 the variogram model, we can use it to derive semivariances
at all locations and solve the kriging weights. The kriging OK weights are solved by
multiplying the covariances:

λ0 = C−1 · c0; C(|h| = 0) = C0 + C1 (1.3.4)

where C is the covariance matrix derived for n× n observations and c0 is the vector of

12The constant variogram/histogram and normality are rarely tested in real case studies, which can

lead to poor predictions (although the output maps might appear to be fine). In the case of regression-

kriging (see further §2.1), the variable does not have to be stationary, so no need to test this property.
13We need to determine the parameters of the variogram model: e.g. the nugget (C0), sill (C1) and the

range (R) parameter. By knowing these parameters, we can estimate the semivariance at any location

in the area of interest.
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covariances at new location. Note that the C is in fact (n + 1)× (n + 1) matrix if it is
used to derive kriging weights. One extra row and column are used to ensure that the
sum of weights is equal to one:


C(s1, s1) · · · C(s1, sn) 1

...
...

...
C(sn, s1) · · · C(sn, sn) 1

1 · · · 1 0


−1

·


C(s0, s1)

...
C(s0, sn)

1

 =


w1(s0)

...
wn(s0)

ϕ

 (1.3.5)

where ϕ is the so-called Langrange multiplier .
In addition to estimation of values at new locations, a statistical spatial prediction

technique offers a measure of associated uncertainty of making these estimations by using
a given model. In geostatistics, this is often referred to as the prediction variance, i.e.
the estimated variance of the prediction error. OK variance is defined as the weighted
average of covariances from the new point (s0) to all calibration points (s1, .., sn), plus
the Lagrange multiplier (Webster and Oliver, 2001, p.183):

σ̂2
OK(s0) = (C0 + C1)− cT

0 · λ0

= C0 + C1 −
n∑

i=1

wi(s0) · C(s0, si) + ϕ
(1.3.6)

where C(s0, si) is the covariance between the new location and the sampled point pair,
and ϕ is the Lagrange multiplier, as shown in Eq.(1.3.5).

As you can notice, outputs from any statistical prediction model are always two
maps: (1) predictions and (2) prediction variance. The mean of the prediction variance
at all location can be termed the overall prediction variance, and can be used as a
measure of how precise is our final map: if the overall prediction variance gets close to
the global variance, then the map is 100% imprecise; if the overall prediction variance
tends to zero, then the map is 100% precise14.

Note that a common practice in geostatistics is to model the variogram using a
semivariance function and then, for the reasons of computational efficiency, use the co-
variances. In the case of solving the kriging weights, both the matrix of semivariances
and covariances give the same results, so you should not really make a difference be-
tween the two. The relation between the covariances and semivariances is (Isaaks and
Srivastava, 1989, p.289):

C(h) = C0 + C1 − γ(h) (1.3.7)

where C(h) is the covariance, and γ(h) is the semivariance function (Fig. 1.8a). So for
example, exponential model can be written in two ways:

γ (h) =

{
0 if |h| = 0

C0 + C1 ·
[
1− e−( h

R)
]

if |h| > 0
(1.3.8)

C (h) =

{
C0 + C1 if |h| = 0

C1 ·
[
e−( h

R)
]

if |h| > 0
(1.3.9)

14As we will see later on, the precision of mapping is measure of how well did we fit the point values.

The true quality of map can only be accessed by using validation points, preferably independent from

the point dataset used to make predictions.
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The covariance at zero distance (C(0)) is by definition equal to the mean residual
error (Cressie, 1993) — C(h11) also written as C(s1, s1), and which is equal to C(0) =
C0 + C1 = Var {z(s)}.

Fig. 1.9: Range ellipse for anisotropic model. After gstat User’s manual.

The variogram models can be extended to even larger number of parameters if either
(a) anisotropy or (b) smoothness are considered in addition to modelling of nugget and
sill variation. The 2D geometric anisotropy in gstat, for example, is modelled by replac-
ing the range parameter with three parameters — range in the major direction (direction
of the strongest correlation), angle of the principal direction and the anisotropy ratio,
e.g. (Fig. 1.9):

vgm(nugget=1, model="Sph", sill=10, range=2, anis=c(30,0.5))

where value of the angle of major direction is 30 (azimuthal direction measured in
degrees clockwise), and value of the anisotropy ratio is 0.5 (range in minor direction is
two times shorter).

Another sophistication of the standard 3-parameter variograms is the Matérn var-
iogram model, which has an additional parameter to describe the smoothness (Stein,
1999; Minasny and McBratney, 2005):

γ (h) = C0 · δ (h) + C1 ·
[

1
2v−1 · Γ(v)

·
(

h
R

)v

·Kv ·
(

h
R

)]
(1.3.10)

where δ (h) is the Kronecker delta, Kv is the modified Bessel function, Γ is the gamma
function and v is the smoothness parameter. The advantage of this model is that it
can be used universally to model both short and long distance variation. In reality,
variogram models with more parameters are more difficult to fit automatically because
the iterative algorithms might get stuck in local minima (Minasny and McBratney,
2005). To avoid such problems, we will rely in §4 on more simple variogram models such
as the Exponential model.

The fastest intuitive way to understand the principles of kriging is to use an educa-
tional program called EZ-Kriging, kindly provided by Dennis J.J. Walvoort from the
Alterra Green World Research. The GUI of EZ-Kriging consists of three panels: (1)

http://www.gstat.org/manual/node20.html
mailto:dennis.walvoort@wur.nl
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Fig. 1.10: Ordinary kriging explained: EZ-Kriging. Courtesy of Dennis J.J. Walvoort.

data configuration panel, (2) variogram panel, and (3) kriging panel (Fig. 1.10). This
allows you to zoom into ordinary kriging and explore its main characterises and be-
haviour: how do weights change for different variogram models, how data values affect
the weights, how does block size affects the kriging results etc. For example, if you
study how model shape, nugget, sill and range affect the kriging results, you will notice
that, assuming some standard variogram model (zero nugget, sill at global variance and
practical range at 10% of the largest distance), the weights will decrease exponentially15.
This is an important characteristic of kriging because it allows us to limit the search
window to speed up the calculation and put more emphasise on fitting the semivariances
at shorter distances. Note also that, although it commonly leads to smoothing of the
values, kriging is an exact and non-convex interpolator. It is exact in the sense that the
kriging estimates are equal to input values at sampling locations, and it is non-convex
because its predictions can be outside the data range, e.g. we can produce negative
concentrations.

Another important aspect of using kriging is the issue of the support size. In geo-
statistics, one can control the support size of the outputs by averaging multiple (random-
ized) point predictions over regular blocks of land. This is known as block prediction
(Heuvelink and Pebesma, 1999). A problem is that we can sample elevation at point
locations, and then interpolate them for blocks of e.g. 10Ö10 m, but we could also take
composite samples and interpolate them at point locations. This often confuses GIS
users because as well as using point measurements to interpolate values at regular point

15In practice, often >95% of weights will be explained by the nearest 30–50 points. Only if the

variogram is close to the pure nugget model, the more distant points will receive more importance, but

then the technique will produce poor predictions anyhow.

mailto:dennis.walvoort@wur.nl
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locations (e.g. by point kriging), and then display them using a raster map (see Fig. 1.6),
we can also make spatial predictions for blocks of land (block kriging) and display them
using the same raster model (Bishop and McBratney, 2001). For simplicity, in the case
of block-kriging, one should always use the cell size that corresponds to the support size.

1.3.2 Environmental correlation

If some exhaustively-sampled auxiliary variables or covariates are available in the area
of interest and if they are significantly correlated with our target variable (spatial cross-
correlation), and assuming that the point-values are not spatially auto-correlated, pre-
dictions can be obtained by focusing only on the deterministic part of variation:

Z(s) = f {qk(s)}+ ε (1.3.11)

where qk are the auxiliary predictors that can be used to explain the deterministic part
of spatial variation. This approach to spatial prediction has a strong physical interpreta-
tion. Consider Rowe and Barnes (1994) observation that earth surface energy-moisture
regimes at all scales/sizes are the dynamic driving variables of functional ecosystems at
all scales/sizes. The concept of vegetation/soil-environment relationships has frequently
been presented in terms of an equation with six key environmental factors as:

V × S[x, y, t̃] = f

{
s[x, y, t̃] c[x, y, t̃] o[x, y, t̃]
r[x, y, t̃] p[x, y, t̃] a[x, y, t̃]

(1.3.12)

where V stands for vegetation, S for soil, c stands for climate, o for organisms (including
humans), r is relief, p is parent material or geology, a is age of the system, x, y are
the coordinates and t is time dimension. This means that the predictors which are
available over entire areas of interest can be used to predict the value of an environmental
variable at unvisited locations — first by modelling the relationship between the target
and auxiliary environmental predictors at sample locations, and then by applying it to
unvisited locations using the known value of the auxiliary variables at those locations.
Common auxiliary environmental predictors used to map environmental variables are
land surface parameters, remote sensing images, and geological, soil and land-use maps
(McKenzie and Ryan, 1999). Because many auxiliary predictors (see further Table 3.2)
are now also available at low or no cost, it makes this approach to spatial prediction
ever more important (Hengl et al., 2007b).

Functional relations between environmental variables and factors are in general un-
known and the correlation coefficients can differ for different study areas, different sea-
sons and different scales. However, in many cases, relations with the environmental
predictors often reflect causal linkage: deeper and more developed soils occur at places
of higher potential accumulation and lower slope; different type of forests can be found
at different expositions and elevations; soils with more organic matter can be found
where the climate is cooler and wetter etc. This makes this technique especially suitable
for natural resource inventory teams because it allows them to validate their empirical
knowledge about the variation of the target features in the area of interest.

There are (at least) four groups of statistical models that have been used to make
spatial predictions with the help of environmental factors (Chambers and Hastie, 1992;
McBratney et al., 2003; Bishop and Minasny, 2005):

Classification-based models — Classification models are primarily developed and
used when we are dealing with discrete target variables (e.g. land cover or soil
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types). There is also a difference whether Boolean (crisp) or Fuzzy (continuous)
classification rules are used to create outputs. Outputs from the model fitting pro-
cess are class boundaries (class centres and standard deviations) or classification
rules.

Tree-based models — Tree-based models are often easier to interpret when a mix of
continuous and discrete variables are used as predictors (Chambers and Hastie,
1992). They are fitted by successively splitting a dataset into increasingly homo-
geneous groupings. Output from the model fitting process is a decision tree,
which can then be applied to make predictions of either individual property values
or class types for an entire area of interest.

Regression models — Regression analysis employs a family of functions called Gen-
eralized Linear Models (GLMs), which all assume a linear relationship between
the inputs and outputs (Neter et al., 1996). Output from the model fitting process
is a set of regression coefficients. Regression models can be also used to represent
non-linear relationships with the use of General Additive Models (GAMs).
The relationship between the predictors and targets can be solved using one-step
data-fitting or by using iterative data fitting techniques (neural networks and sim-
ilar).

Each of the models listed above can be equally applicable for mapping of environ-
mental variables and can exhibit advantages and disadvantages. For example, some
advantages of using tree-based regression are that they: can handle missing values,
can use continuous and categorical predictors, are robust to predictor specification, and
make very limited assumptions about the form of the regression model (Henderson et al.,
2004). Some disadvantages of regression trees, on the other hand, is that they require
large datasets and completely ignore spatial position of the input points.

A common regression-based approach to spatial prediction is the multiple linear
regression (Draper and Smith, 1998). Here, the predictions are again obtained by
weighted averaging (compare with Eq.(1.3.2)), this time by averaging the predictors:

ẑOLS(s0) = b̂0 + b̂1 · q1(s0) + . . . + b̂p · qp(s0) =
p∑

k=0

β̂k · qk(s0); q0(s0) ≡ 1 (1.3.13)

or in matrix algebra:

ẑOLS(s0) = βT·q (1.3.14)

where qk(s0) are the values of the auxiliary variables at the target location, p is the
number of predictors or auxiliary variables16, and β̂k are the regression coefficients solved
using the Ordinary Least Squares:

β̂ =
(
qT · q

)−1 · qT · z (1.3.15)

where q is the matrix of predictors (n×p+1) and z is the vector of sampled observations.
The prediction error of a multiple linear regression model is (Neter et al., 1996, p.210):

σ̂2
OLS(s0) = MSE ·

[
1 + qT

0 ·
(
qT · q

)−1 · q0

]
(1.3.16)

16To avoid confusion with geographical coordinates, we use the symbol q, instead of the more common

x, to denote a predictor.
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Fig. 1.11: Comparison of spatial prediction techniques for mapping SAND (%) in topsoil (see
further §4.7). Note that inverse distance interpolation and kriging are often quite similar, while
the moving trend surface (2nd order polynomial) can lead to artefacts (negative values) — locally
where the density of points is poor. The regression-based (OLS) predictions were produced using
a DEM, wetness index and geological mapping units as predictors.

where MSE is the mean square (residual) error around the regression line:

MSE =

n∑
i=1

[z(si)− ẑ(si)]
2

n− 2
(1.3.17)

and q0 is the vector of predictors at new, unvisited location. In the univariate case, the
variance of the prediction error can also be derived using:

σ̂2(s0) = MSE ·

1 +
1
n

+
[q(s0)− q̄]2

n∑
i=1

[q(si)− q̄]2

 = MSE · [1 + v(s0)] (1.3.18)

where v is the curvature of the confidence band around the regression line. This reflects
the amount of extrapolation in the feature space (Ott and Longnecker, 2001, p.570). It
can be seen from Eq. (1.3.18) that the prediction error, for a given n (sampling intensity),
depends on three factors:

(1.) Mean square residual error (MSE );

(2.) Spreading of points in the feature space
∑

[q(si)− q̄]2;

(3.) ‘Distance’ of the new observation from the centre of the feature space [q(s0)− q̄].
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So in general, if the model is linear, we can decrease the prediction variance if we
increase the spreading of the points in features space. Understanding this principles
allows us to prepare sampling plans that will achieve higher mapping precision and
minimize extrapolation in feature space (see further §2.6).

The sum of squares of residuals (SSE ) can be used to determine the adjusted
coefficient of multiple determination (R2

a), which describes the goodness of fit:

R2
a = 1−

(
n− 1
n− p

)
· SSE
SSTO

= 1−
(

n− 1
n− p

)
·
(
1−R2

) (1.3.19)

where SSTO is the total sum of squares (Neter et al., 1996), R2 indicates amount of
variance explained by model, whereas R2

a adjusts for the number of variables (p) used.
For many environmental mapping projects, a R2

a ≥0.85 is already a very satisfactory
solution and higher values will typically only mean over-fitting of the data (Park and
Vlek, 2002).

The principle of predicting environmental variables using factors of climate, relief,
geology and similar, is often referred to as environmental correlation. The envi-
ronmental correlation approach to mapping is a true alternative to ordinary kriging
(compare the produced patterns in Fig. 1.11). This is because both approaches deal
with different aspects of spatial variation: regression deals with the deterministic and
kriging with the spatially-correlated stochastic part of variation.

The biggest criticism of pure regression approach to spatial prediction is that the
position of points in the geographical space is completely ignored, both during the model
fitting and prediction. Imagine if we are dealing with two point datasets where one data
set is heavily clustered, while the other is well-spread over the area of interest — these
has to be a way to account for the clustering of the points so we take the model derived
using the clustered points with much bigger caution.

One way to account for this problem is to take the distance between the points
into account during the estimation of the regression coefficients. This can be achieved
by using the geographically weighted regression (Fotheringham et al., 2002). So
instead of using the OLS estimation (Eq.1.3.15) we use:

β̂WLS =
(
qT ·W · q

)−1 · qT ·W · z (1.3.20)

where W is a matrix of weights, determined using some distance decay function e.g.:

wi(si, sj) = σ2
E · exp

[
−3 · d2(si, sj)

k2

]
(1.3.21)

where σ2
E is the level of variation of the error terms, d(si, sj) is the Euclidian distance

between a sampled point pair and k is known as the bandwidth, which determines the
degree of locality — small values of k suggest that correlation only occurs between very
close point pairs and large values suggest that such effects exist even on a larger spatial
scale. Compare further with Eq.(2.1.3).

1.3.3 Predicting from polygon maps

A special case of environmental correlation is prediction from polygon maps i.e. stratified
areas (different land use/cover types, geological units etc). Assuming that the residuals



24 Theoretical backgrounds

show no spatial auto-correlation, a value at new location can be predicted by:

ẑ(s0) =
n∑

i=1

wi · z(s); wi =
{

1/nk for xi ∈ k

0 otherwise
(1.3.22)

where k is the unit identifier. This means that the weights within some unit will be
equal so that the predictions are made by simple averaging per unit (Webster and
Oliver, 2001):

ẑ(s0) = µ̄k =
1
nk

nk∑
i=1

z(si) (1.3.23)

Consequently, the output map will show only abrupt changes in the values between
the units. The prediction variance of this prediction model is simply the within-unit
variance:

σ̂2(s0) =
σ2

k

nk
(1.3.24)

From Eq.(1.3.24) it is obvious that the precision of the technique will be maximized
if the within-unit variation is infinitely small. Likewise, if the within-unit variation is
as high as the global variability, the predictions will be as bad as predicting by taking
any value from the normal distribution.

Another approach to make predictions from polygon maps is to use multiple regres-
sion. In this case, the predictors (mapping units) are used as indicators:

ẑ(s0) = b̂1 ·MU 1(s0) + . . . + b̂k ·MU k(s0); MU k ∈ [0|1] (1.3.25)

and it can be shown that the OLS fitted regression coefficients will equal the mean
values within each strata (bk = µ̄(MU k)), so that the Eqs.(1.3.25) and (1.3.23) are in
fact equivalent.

If, on the other hand, the residuals do show spatial auto-correlation, the predic-
tions can be obtained by stratified kriging. This is basically ordinary kriging done
separately for each strata and can often be impractical because we need to estimate
a variogram for each of the k strata (Boucneau et al., 1998). Note that the strata or
sub-areas need to be known a priory and they should never be derived from the data
used to generate spatial predictions.

1.3.4 Mixed or hybrid models

Mixed or hybrid spatial prediction models comprise of a combination of the techniques
listed previously. For example, a mixed geostatistical model employs both correlation
with auxiliary predictors and spatial autocorrelation simultaneously. There are two main
sub-groups of mixed geostatistical models: (a) co-kriging-based and (b) regression-
kriging-based techniques (Goovaerts, 1997), but the list could certainly be extended.

Note also that, in the case of environmental correlation by linear regression, we as-
sume some basic (additive) model, although the relationship can be much more complex.
To account for this, a linear regression model can be extended to a diversity of statisti-
cal models ranging from regression trees, General Additive Models, neural networks and
similar. Consequently, the mixed models are more generic than pure kriging-based or
regression-based techniques and can be used to represent both discrete and continuous
changes in the space, both deterministic and stochastic processes.
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One can also combine deterministic, statistical and expert-based estimation models.
For example, one can use a deterministic model to estimate a value of the variable, then
use actual measurements to fit a calibration model, analyse the residuals for spatial
correlation and eventually combine the statistical fitting and deterministic modelling
(Hengl et al., 2007b). Most often, expert-based models are supplemented with the actual
measurements, which are then used to refine the rules, e.g. using the neural networks
(Kanevski et al., 1997).

Important sources:

F Rossiter D.G., 2005. Geostatistics, lecture notes, ITC, Enschede, Netherlands.

F Nielsen, D. and Wendroth, O., 2003. Spatial and Temporal Statistics — Sampling
Field Soils and Their Vegetation. Catena-Verlag, Reiskirchen, 614 pp.

F Webster, R. and Oliver, M.A., 2001. Geostatistics for Environmental Scientists.
Statistics in Practice. John Wiley & Sons, Chichester, 265 pp.

F Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation (Applied
Geostatistics). Oxford University Press, New York, 496 pp.

F Isaaks, E.H. and Srivastava, R.M. 1989. An Introduction to Applied Geostatistics.
Oxford University Press, New York, 542 pp.

F http://www.wiley.co.uk/eoenv/ — The Encyclopedia of Environmetrics.

F http://geoenvia.org — A research association that promotes use of geostatisti-
cal methods for environmental applications.

http://www.itc.nl/personal/rossiter/teach/lecnotes.html#l6
http://www.wiley.co.uk/eoenv/
http://geoenvia.org
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2

Regression-kriging

As we saw in the previous chapter, there seems to be many possibilities to map environ-
mental variables using geostatistics. In reality, we always try to go for the most flexible,
most comprehensive and the most robust technique (preferably implemented in a soft-
ware with an user-friendly GUI). In fact, many (geo)statisticians believe that there is
only one Best Linear Unbiased Prediction (BLUP) model for spatial data (Gotway and
Stroup, 1997; Stein, 1999; Christensen, 2001). As we will see further on in this chapter,
one such generic mapping technique is the regression-kriging. All other techniques men-
tioned previously — ordinary kriging, environmental correlation, averaging of values per
polygons or inverse distance interpolation — can be seen as its special cases.

2.1 The Best Linear Unbiased Predictor of spatial data

Matheron (1969) proposed that a value of a target variable at some location can be
modelled as a sum of the deterministic and stochastic components:

Z(s) = m(s) + ε′(s) + ε′′ (2.1.1)

Fig. 2.1: A schematic example of regression-kriging: fitting a vertical cross-section with assumed
distribution of an environmental variable in horizontal space.

27
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which he termed universal model of spatial variation. We have seen in the previous
sections (§1.3.1 and §1.3.2) that both deterministic and stochastic components of spatial
variation can be modelled separately. By combining the two approaches, we obtain:

ẑ(s0) = m̂(s0) + ê(s0)

=
p∑

k=0

β̂k · qk(s0) +
n∑

i=1

λi · e(si)
(2.1.2)

where m̂(s0) is the fitted deterministic part, ê(s0) is the interpolated residual, β̂k are
estimated deterministic model coefficients (β̂0 is the estimated intercept), λi are kriging
weights determined by the spatial dependence structure of the residual and where e(si)
is the residual at location si. The regression coefficients β̂k can be estimated from the
sample by some fitting method, e.g. ordinary least squares (OLS) or, optimally, using
Generalized Least Squares (Cressie, 1993, p.166):

β̂GLS =
(
qT ·C−1 · q

)−1 · qT ·C−1 · z (2.1.3)

where β̂GLS is the vector of estimated regression coefficients, C is the covariance matrix
of the residuals, q is a matrix of predictors at the sampling locations and z is the
vector of measured values of the target variable. The GLS estimation of regression
coefficients is, in fact, a special case of the geographically weighted regression (compare
with Eq.1.3.20). In the case, the weights are determined objectively to account for the
spatial auto-correlation between the residuals.

Once the deterministic part of variation has been estimated, the residual can be
interpolated with kriging and added to the estimated trend (Fig. 2.1). The estimation of
the residuals is an iterative process: first the deterministic part of variation is estimated
using ordinary least squares (OLS), then the covariance function of the residuals is used
to obtain the GLS coefficients. Next, these are used to re-compute the residuals, from
which an updated covariance function is computed, and so on. Although this is by many
geostatisticians recommended as the proper procedure, Kitanidis (1994) showed that use
of the covariance function derived from the OLS residuals (i.e. a single iteration) is often
satisfactory, because it is not different enough from the function derived after several
iterations; i.e. it does not affect much the final predictions. Minasny and McBratney
(2007) recently reported similar results — it is much more important to use more useful
and higher quality data then to use more sophisticated statistical methods.

In matrix notation, regression-kriging is commonly written as (Christensen, 2001,
p.277):

ẑRK(s0) = qT
0 · β̂GLS + λT

0 · (z− q · β̂GLS) (2.1.4)

where ẑ(s0) is the predicted value at location s0, q0 is the vector of p + 1 predictors
and λ0 is the vector of n kriging weights used to interpolate the residuals. The model
in Eq.(2.1.4) is considered to be the Best Linear Predictor of spatial data. It has a
prediction variance that reflects the position of new locations (extrapolation) in both
geographical and feature space:

σ̂2
RK(s0) = (C0 + C1)− cT

0 ·C−1 · c0

+
(
q0 − qT ·C−1 · c0

)T ·
(
qT ·C−1 · q

)−1 ·
(
q0 − qT ·C−1 · c0

) (2.1.5)
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Fig. 2.2: Whether we will use pure regression model, pure kriging or hybrid regression-kriging
is basically determined by R-square: (a) if R-square is very high, then the residuals will be
infinitively small; (c) if R-square is insignificant, then we will probably finish with using ordinary
kriging; (b) in most cases, we will use a combination of regression and kriging.

where C0 + C1 is the sill variation and c0 is the vector of covariances of residuals at the
unvisited location.

Obviously, if the residuals show no spatial auto-correlation (pure nugget effect),
the regression-kriging (Eq.2.1.4) converges to pure multiple linear regression (Eq.1.3.14)
because the covariance matrix (C) becomes identity matrix:

C =

 C0 + C1 · · · 0
... C0 + C1 0
0 0 C0 + C1

 = (C0 + C1) · I (2.1.6)

so the kriging weights (Eq.1.3.4) at any location predict the mean residual i.e. 0 value.
Similarly, the regression-kriging variance (Eq.2.1.5) reduces to the multiple linear re-
gression variance (Eq.1.3.16):

σ2
RK(s0) = (C0 + C1)− 0 + qT

0 ·
(
qT · 1

(C0 + C1)
· q

)−1

· q0

σ2
RK(s0) = (C0 + C1) + (C0 + C1) · qT

0 ·
(
qT · q

)−1 · q0

and since (C0 + C1) = C(0) = MSE , the RK variance reduces to the MLR variance:

σ̂2
RK(s0) = σ̂2

OLS(s0) = MSE ·
[
1 + qT

0 ·
(
qT · q

)−1 · q0

]
(2.1.7)

Likewise, if the target variable shows no correlation with the auxiliary predictors,
the regression-kriging model reduces to ordinary kriging model because the deterministic
part equals the (global) mean value (Fig. 2.2c, Eq.1.3.25).

The formulas above show that, depending on the strength of the correlation, the RK
might turn to pure kriging — if predictors are uncorrelated with the target variable —
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or pure regression — if there is significant correlation and the residuals show pure nugget
variogram (Fig. 2.2). Hence, pure kriging and pure regression should be considered as
only special cases of regression-kriging (Hengl et al., 2004a, 2007b).

2.1.1 Selecting the right spatial prediction technique

Knowing that the most of the linear spatial prediction models are more or less con-
nected, we can start from testing the most generic technique, and then finish with using
the most suitable technique. Pebesma (2004, p.689), for example, implemented such
nested structure in his design of the gstat package. An user can switch between one to
other technique by following a simple decision tree (Fig. 2.3). First, we need to check
if the deterministic model is defined already, if it has not been, we can try to corre-
late the sampled variables with environmental factors. If the environmental factors are
significantly correlated, we can fit a multiple linear regression model (Eq.1.3.14) and
then analyse the residuals for spatial autocorrelation. If the residuals show no spatial
autocorrelation (pure nugget effect), we proceed with OLS estimation of the regres-
sion coefficients. Otherwise, if the residuals show spatial auto-correlation, we can run
regression-kriging. If the data shows no correlation with environmental factors, then we
can still analyse the variogram of the target variable. This time, we might also consider
modelling the anisotropy. If we can fit a variogram different from pure nugget effect,
then we can run ordinary kriging. Otherwise, if we can only fit a linear variogram, then
we might just use the inverse distance interpolation.

If the variogram of the target variable shows no spatial auto-correlation, and no
correlation with environmental factors, this practically means that the only statistically
valid prediction model is to estimate a global mean for the whole area. Although this
might frustrate you because it would lead to a non-sense map where each pixel shows
the same value, you should be aware that even this is informative1.

How does the selection of the spatial prediction model works in practice? In the
gstat package, a user can easily switch from one to other prediction model by changing
the arguments in the generic krige function in R (see further §3.1.3). For example, if
the name of the input field samples is points and the grid is defined by mapgrid, we
can run the inverse distance interpolation (§1.2.1) by specifying (Pebesma, 2004):

ev.id = krige(ev∼1, data=points, newdata=mapgrid)

where ev is the sampled environmental variable (vector) and ev.id is the resulting raster
map (see Fig. 1.11 for an example). Instead of using inverse distance interpolation we
might also try to fit the values using the coordinates and a 2nd order polynomial model:

ev.ts = krige(ev∼x+y+x*y+x*x+y*y, data=points, newdata=mapgrid)

which can be converted to the moving surface fitting by adding a search window (Fig. 1.11):

ev.mv = krige(ev∼x+y+x*y+x*x+y*y, data=points, newdata=mapgrid, nmax=20)

If we add a variogram model, then gstat will instead of running inverse distance
interpolation run ordinary kriging (§1.3.1):

ev.ok = krige(ev∼1, data=points, newdata=mapgrid, model=vgm(psill=5,

"Exp", range=1000, nugget=1))

1Sometimes an information that we are completely uncertain about a feature is better than a colorful

but completely unreliable map.
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YES
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variable correlated 
with environmental 

factors?

N
O

YESIs the 
physical model 

known?

N
O

ORDINARY 
KRIGING

YES
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spatial auto-
correlation?

YES
Do the

residuals show
spatial auto-
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YES
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variable shows
spatial auto-
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N
O

INVERSE 
DISTANCE

INTERPOLATION

YES
Can a
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be fitted?

N
O

ENVIRONMENTAL 
CORRELATION 

(OLS)

REGRESSION-
KRIGING

(calibration)

NO PREDICTIONS
POSSIBLE

REGRESSION-
KRIGING

(GLS)

DETERMINISTIC 
MODEL

NO

NO

Fig. 2.3: Decision tree for selecting a suitable spatial prediction model.

where vgm(psill=5, "Exp", range=1000, nugget=1) is the Exponential variogram
model with a sill parameter of 5, range parameter of 1000 m and the nugget parameter
of 1. Likewise, if there were environmental factors significantly correlated with the target
variable, we could run OLS regression (§1.3.2) by omitting the variogram model:

ev.ec = krige(ev∼q1+q2, data=points, newdata=mapgrid)

where q1 and q2 are environmental factors used as predictors (raster maps), which are
available as separate layers within the spatial layer2 mapgrid. If the residuals do show
spatial auto-correlation, then we can switch to regression-kriging (§2.1) by adding the
variogram:

ev.rk = krige(ev∼q1+q2, data=points, newdata=mapgrid, model=vgm(psill=3,

"Exp", range=500, nugget=0))

If the model between the environmental factors and our target variable is determin-
istic, then we can use the point samples to calibrate our predictions (assuming that the
residuals show spatial auto-correlation). The R command would then look something
like this:

2A grid data layer with multiple bands in R is called SpatialGridDataframe.
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ev.rkc = krige(ev∼ev.df, data=points, newdata=mapgrid,

model=vgm(psill=3, "Exp", range=500, nugget=0))

where ev.df are the values of the target variable estimated using a deterministic func-
tion.

In gstat, a user can also easily switch from estimation to simulations (§2.4) by adding
to the command above an additional argument: nsim=1. This will generate Sequential
Gaussian Simulations using the same prediction model. Multiple simulations can be
generated by increasing the number set for this argument. In addition, a user can
switch from block predictions by adding an argument, e.g. block=100; and from global
estimation of weights by adding a search radius or maximum number of pairs, e.g.
radius=1000 or nmax=60.

2.1.2 Universal kriging, kriging with external drift

The geostatistical literature uses many different terms for what are essentially the same
or at least very similar techniques. This confuses the users and distracts them from using
the right technique for their mapping projects. In this section, we will show that both
universal kriging, kriging with external drift and regregression-kriging are basically the
same technique. Matheron (1969) originally termed the technique Le krigeage universel,
however, the technique was intended as a generalized case of kriging where the trend
is modelled as a function of coordinates. Thus, many authors (Deutsch and Journel,
1998; Wackernagel, 2003; Papritz and Stein, 1999) reserve the term Universal Kriging
(UK) for the case when only the coordinates are used as predictors. If the deterministic
part of variation (drift) is defined externally as a linear function of some auxiliary
variables, rather than the coordinates, the term Kriging with External Drift (KED) is
preferred (Wackernagel, 2003; Chiles and Delfiner, 1999). In the case of UK or KED,
the predictions are made as with kriging, with the difference that the covariance matrix
of residuals is extended with the auxiliary predictors qk(si)’s (Webster and Oliver, 2001,
p.183). However, the drift and residuals can also be estimated separately and then
summed. This procedure was suggested by Ahmed and de Marsily (1987) and Odeh
et al. (1995) later named it Regression-kriging, while Goovaerts (1997, §5.4) uses the
term Kriging with a trend model to refer to a family of interpolator, and refers to RK
as Simple kriging with varying local means. Although equivalent, KED and RK differ in
the computational steps used.

Let us zoom into the two variants of regression-kriging. In the case of KED, predic-
tions at new locations are made by:

ẑKED(s0) =
n∑

i=1

wKED
i (s0)·z(si) (2.1.8)

for

n∑
i=1

wKED
i (s0)·qk(si) = qk(s0); k = 1, ..., p (2.1.9)

or in matrix notation:

ẑKED(s0) = δT
0 · z (2.1.10)

where z is the target variable, qk’s are the predictor variables i.e. values at a new location
(s0), δ0 is the vector of KED weights (wKED

i ), p is the number of predictors and z is the
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vector of n observations at primary locations. The KED weights are solved using the
extended matrices:

λKED
0 =

{
wKED

1 (s0), ..., wKED
n (s0), ϕ0(s0), ..., ϕp(s0)

}T

= CKED−1 · cKED0

(2.1.11)

where λKED
0 is the vector of solved weights, ϕp are the Lagrange multipliers, CKED is the

extended covariance matrix of residuals and cKED0 is the extended vector of covariances
at new location.

In the case of KED, the extended covariance matrix of residuals looks like this
(Webster and Oliver, 2001, p.183):

CKED =



C(s1, s1) · · · C(s1, sn) 1 q1(s1) · · · qp(s1)
...

...
...

...
...

C(sn, s1) · · · C(sn, sn) 1 q1(sn) · · · qp(sn)
1 · · · 1 0 0 · · · 0

q1(s1) · · · q1(sn) 0 0 · · · 0
...

... 0
...

...
qp(s1) · · · qp(sn) 0 0 · · · 0


(2.1.12)

and cKED0 like this:

cKED0 = {C(s0, s1), ..., C(s0, sn), q0(s0), q1(s0), ..., qp(s0)}T ; q0(s0) = 1 (2.1.13)

Hence, KED looks exactly as ordinary kriging (Eq.1.3.2), except the covariance ma-
trix/vector are extended with values of auxiliary predictors.

In the case of RK, the predictions are made separately for the drift and residuals
and then added back together:

ẑRK(s0) = qT
0 · β̂GLS + λT

0 · e (2.1.14)

It can be demonstrated that both KED and RK algorithms give exactly the same
results (Stein, 1999; Hengl et al., 2007b). Start from KED where the predictions are
made as in ordinary kriging using ẑKED(s0) = λT

KED · z. The KED kriging weights (λT
KED)

are obtained by solving the system (Wackernagel, 2003, p.179):[
C q
qT 0

]
·
[

λKED

φ

]
=

[
c0

q0

]
(2.1.15)

where φ is a vector of Lagrange multipliers. Writing this out yields:

C · λKED + q · φ = c0

qT · λKED = q0

(2.1.16)

from which follows:

qT · λKED = qT ·C−1 · c0 − qT ·C−1 · q · φ (2.1.17)
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and hence:

φ =
(
qT ·C−1 · q

)−1 · qT ·C−1 · c0 −
(
qT ·C−1 · q

)−1 · q0 (2.1.18)

where the identity qT · λKED = q0 has been used. Substituting φ back into Eq. (2.1.16)
shows that the KED weights equal (Papritz and Stein, 1999, p.94):

λKED = C−1 · c0 −C−1 · q ·
[(

qT ·C−1 · q
)−1 · qT ·C−1 · c0 −

(
qT ·C−1 · q

)−1 · q0

]
= C−1 ·

[
c0 + q ·

(
qT ·C−1q·

)−1 ·
(
q0 − qT ·C−1 · c0

)]
(2.1.19)

Let us now turn to RK. Recall from Eq.(2.1.3) that the GLS estimate for the vector
of regression coefficients is given by:

β̂GLS =
(
qT ·C−1 · q

)−1 · qT ·C−1 · z (2.1.20)

and weights for residuals by:

λT
0 = cT

0 ·C−1 (2.1.21)

and substituting these in RK formula (Eq.2.1.4) gives:

= qT
0 · β̂GLS + λT

0 · (z− q · β̂GLS)

=

�
qT

0 ·
�
qT ·C−1 · q

�−1

· qT ·C−1 + cT
0 ·C−1 − cT

0 ·C−1 · q ·
�
qT ·C−1q

�−1

· qT ·C−1

�
· z

= C−1 ·
�
cT
0 + qT

0 ·
�
qT ·C−1 · q

�−1

· qT − cT
0 ·C−1 · q ·

�
qT ·C−1q

�−1

· qT

�
· z

= C−1 ·
�
c0 + q ·

�
qT ·C−1 · q

�−1

·
�
q0 − qT ·C−1c0

��
· z

(2.1.22)

The left part of the equation is equal to Eq.(2.1.19), which proves that KED will
give the same predictions as RK if same inputs are used. A detailed comparison of RK
and KED using a small dataset in MS Excel is also available as supplementary material.

Although the KED seems, at first glance, to be computationally more straightforward
than RK, the variogram parameters for KED must also be estimated from regression
residuals, thus requiring a separate regression modelling step. This regression should be
GLS because of the likely spatial correlation between residuals. Note that many analyst
use instead the OLS residuals, which may not be too different from the GLS residuals
(Hengl et al., 2007b; Minasny and McBratney, 2007). However, they are not optimal
if there is any spatial correlation, and indeed they may be quite different for clustered
sample points or if the number of samples is relatively small (�200).

A limitation of KED is the instability of the extended matrix in the case that the
covariate does not vary smoothly in space (Goovaerts, 1997, p.195). RK has the advan-
tage that it explicitly separates trend estimation from spatial prediction of residuals,
allowing the use of arbitrarily-complex forms of regression, rather than the simple linear
techniques that can be used with KED (Kanevski et al., 1997). In addition, it allows the
separate interpretation of the two interpolated components. For these reasons the use
of the term regression-kriging over universal kriging has been often advocated (Hengl
et al., 2007b). The emphasis on regression is important also because fitting of the de-
terministic part of variation (regression) is often more beneficial for the quality of final
maps than fitting of the stochastic part (residuals).

http://spatial-analyst.net/regkriging.php
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2.1.3 A simple example of regression-kriging

The next section illustrates how regression-kriging computations work and compares it
to ordinary kriging using the textbook example from Burrough and McDonnell (1998,
p.139-141), in which five measurements are used to predict a value of the target variable
(z) at an unvisited location (s0) (Fig. 2.4a). We extend this example by adding a
hypothetical auxiliary data source: a raster image (10Ö10 pixels) (Fig. 2.4b), which has
been constructed to show a strong negative correlation with the target variable at the
sample points.

Fig. 2.4: Comparison of ordinary kriging and regression-kriging using a simple example with 5
points (Burrough and McDonnell, 1998, p.139–141): (a) location of the points and unvisited site;
(b) values of the covariate q; (c) variogram for target and residuals, (d) OLS and GLS estimates
of the regression model and results of prediction for a 10Ö10 grid using ordinary kriging (e) and
regression-kriging (f). Note how the RK maps reflects the pattern of the covariate.

The RK predictions are computed as follows:

(1.) Determine a linear model of the variable as predicted by the auxiliary map q.
In this case the correlation is high and negative with OLS coefficients b0=6.64 and
b1=-0.195 (Fig. 2.4d).

(2.) Derive the OLS residuals at all sample locations as:

e∗(si) = z(si)− [b0 + b1 · q(si)] (2.1.23)

For example, the point at (x=9, y=9) with z=2 has a prediction of 6.64−0.195·23 =
1.836, resulting in an OLS residual of e∗ = −0.164.

(3.) Model the covariance structure of the OLS residuals. In this example
the number of points is far too small to estimate the autocorrelation function, so
we follow the original text in using a hypothetical variogram of the target vari-
able (spherical model, nugget C0=2.5, sill C1=7.5 and range R=10) and residuals
(spherical model, C0=2, C1=4.5, R=5). The residual model is derived from the
target variable model of the text by assuming that the residual variogram has
approximately the same form and nugget but a somewhat smaller sill and range
(Fig. 2.4c), which is often found in practice (Hengl et al., 2004a).
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(4.) Estimate the GLS coefficients using Eq. 2.1.3. In this case we get just slightly
different coefficients b0=6.68 and b1=-0.199. The GLS coefficients will not differ
much from the OLS coefficients as long there is no significant clustering of the
sampling locations (Fig. 2.4d) as in this case.

(5.) Derive the GLS residuals at all sample locations:

e∗∗(si) = z(si)− [b0 + b1 · q(si)] (2.1.24)

Note that the b now refer to the GLS coefficients.

(6.) Model the covariance structure of the GLS residuals as a variogram. In
practice this will hardly differ from the covariance structure of the OLS residuals.

(7.) Interpolate the GLS residuals using simple kriging (SK) with known ex-
pected mean of the residuals (by definition 0) and the modelled variogram. In this
case at the unvisited point location (5, 5) the interpolated residual is −0.081.

(8.) Add the GLS surface to the interpolated GLS residuals at each prediction
point. At the unvisited point location (5, 5) the auxiliary variable has a value 12,
so that the prediction is then:

ẑ(5, 5) = b0 + b1 · qi +
n∑

i=1

λi(s0)·e(si)

= 6.68− 0.199 · 12− 0.081 = 4.21

(2.1.25)

which is, in this specific case, a slightly different result than that derived by OK
with the hypothetical variogram of the target variable (ẑ=4.30).

The results of OK (Fig. 2.4e) and RK (Fig. 2.4f) over the entire spatial field are
quite different in this case, because of the strong relation between the covariate and
the samples. In the case of RK, most of variation in the target variable (82%) has
been accounted for by the predictor. Unfortunately, this version of RK has not been
implemented in any software package yet3, which might change in the near future (see
further §3.7.3).

2.2 Local versus localized models

In many geostatistical packages, a user can opt to limit the selection of points to de-
termine the kriging weights by setting up a maximum distance and/or minimum and
maximum number of point pairs (e.g. take only the closest 50 points). This way, the
calculation of the new map can be significantly speed up. In fact, kriging in global
neighbourhood where n �1000 becomes cumbersome because of computation of C−1

(Eq.1.3.5). Recall from §1.3.1 that the importance of points (in the case of ordinary
kriging and assuming a standard initial variogram model) exponentially decreases with
their distance from the point of interest. Typically, geostatisticians suggest that already
first 30–60 closest points will be good enough to obtain stable predictions.

3Almost all geostatistical packages implement the KED algorithm because it is mathematically more

elegant and hence easier to program.
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Fig. 2.5: Local variogram modelling and local ordinary kriging using a moving window algorithm
in Vesper: a user can visually observe how the variograms change locally. Courtesy of Budiman
Minasny.

A prediction model where the search radius for derivation of kriging weights (Eq.1.3.4)
is limited to a local neighbourhood can be termed localized prediction model. There
is a significant difference between localized and local prediction model, which often con-
fuses inexperienced users. For example, if we set a search radius to re-estimate the
variogram model, then we speak about a local prediction model, also known as the
moving window kriging (Walter et al., 2001). The local prediction model assumes
that the variograms (and regression models) are non-stationary, i.e. that they need to
be estimated locally (Haas, 1990).

While localized prediction models are usually just a computational trick to speed up
the calculations, local prediction models are computationally much more demanding.
Typically, they need to allow automated variogram modelling and filtering of improbable
models to prevent artefacts in the final outputs. A result of local prediction model (e.g.
moving window variogram modelling) are not only maps of predictions, but also spatial
distribution of the fitted variogram parameters (Fig. 2.6). This way we can observe
how does the nugget variation changes locally, which parts of the area are smooth and
which are noisy etc. Typically, local variogram modelling and prediction make sense
only when we work with large point datasets (e.g. � 103 of field observations), which
is still not easy to find. In addition, local variogram modelling is not implemented in
many packages. In fact, the author is only aware of one: Vesper (Fig. 2.5).

In the case of regression-kriging, we could also run both localized and local models.
This way we will not only produce maps of variogram parameters but we would also be
able to map the regression coefficients. In the case of kriging with external drift, some

http://www.usyd.edu.au/su/agric/acpa/vesper/vesper.html
http://www.usyd.edu.au/su/agric/acpa/people/budi/budiman.htm
http://www.usyd.edu.au/su/agric/acpa/people/budi/budiman.htm
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Fig. 2.6: Local regression-kriging is a further sophistication of regression-kriging. It will largely
depend on the availability of auxiliary and field data.

users often make a mistake4 and limit the search window to speed up the calculations.
This is obviously a simplification, because in the case of KED both regression and kriging
part of predictions are solved at the same time. Hence, if we limit the search window, but
keep a constant variogram model, we could obtain very different predictions then if we
use a global (regression-kriging) model. Only if the variogram of residuals if absolutely
stationary, then we can limit the search window to fit the KED weights. In practice,
only either global (constant variogram) or local prediction models (locally estimated
regression models and variograms of residuals) should be used for KED fitting.

2.3 Spatial prediction of categorical variables

Although geostatistics is primarily intended for use with continuous environmental vari-
ables, it is also fit for use with various types of categorical or class-type variables.
Geostatistical analysis of categorical variables is by many referred to as the indica-
tor geostatistics (Bierkens and Burrough, 1993). In practice, indicator kriging leads
to many computational problems, which probably explains why there are not many
operational applications of geostatistical mapping of categorical variables in the world
(Hession et al., 2006). For example, it will typically be difficult to fit variogram for less
frequent classes that occur at isolated classes (Fig. 2.7d).

Let us denote the field observations of a class-type variable as zc(s1), zc(s2), ..., zc(sn),
where c1, c2,..., ck are discrete categories (or states) and k is the total number of classes.
A technique that estimates the soil-classes at new unvisited location ẑc(s0), given the
input point dataset (zc(s1), zc(s2), ..., zc(sn)), can then be named a class-type interpola-
tor. If spatially exhaustive predictors q1, q2, ..., qp (where p is the number of predictors)
are available, they can be used to map each category over the area of interest. So far,
there is a limited number of techniques that can achieve this:

Multi-indicator co-kriging — The simple multi-indicator kriging can also be ex-
tended to a case where several covariates are used to improve the predictions.
This technique is known by the name indicator (soft) co-kriging (Journel, 1986).
Although the mathematical theory is well explained (Bierkens and Burrough, 1993;

4This is probably a mistake of the software that allows it.
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Fig. 2.7: Difficulties of predicting point-class data (b) and (d), as compared to quantitative vari-
ables (a) and (c), is that the class-interpolators are typically more complex and computationally
more time-consuming.

Goovaerts, 1997; Pardo-Iguzquiza and Dowd, 2005), the application is cumbersome
because of the need to fit a very large number of cross-covariance functions.

Multinomial Log-linear regression — This a generalization of logistic regression for
situations when there are multiple classes of a target variable. Each class gets a
separate set of regression coefficients (βc). Because the observed values equal
either 0 or 1, the regression coefficients need to be solved through a maximum
likelihood iterative algorithm (Bailey et al., 2003), which makes the whole method
somewhat more computationally demanding than simple multiple regression.

Regression-kriging of indicators — One approach to interpolate soil categorical
variables is to first assign memberships to point observations and then to inter-
polate each membership separately. This approach was first elaborated by de
Gruijter et al. (1997) and then applied by Bragato (2004) and Triantafilis et al.
(2001). An alternative is to first map cheap, yet descriptive, diagnostic distances
and then classify these per pixel in a GIS (Carré and Girard, 2002).

In the case of logistic regression, the odds to observe a class (c) at new locations are
computed as:

ẑ+
c (s0) =

[
1 + exp

(
−βc

T · q0

)]−1
; c = 1, 2, .., k (2.3.1)

where ẑ+
c (s0) are the estimated odds for class (c) at new location s0 and k is the number

of classes. The multinomial logistic regression can also be extended to regression-kriging
(for a complete derivation see Hengl et al. (2007c)). This means that the regression
modelling is supplemented with the modelling of variograms for regression residuals,
which can then be interpolated and added back to the regression estimate. So the
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predictions are obtained using:

ẑ+
c (s0) =

[
1 + exp

(
−βc

T · q0

)]−1
+ ê+

c (s0) (2.3.2)

where ê+
c are the interpolated residuals. The extension from multinomial regression to

regression-kriging is not as simple as it seems. This is because the estimated values at
new locations in Eq.(2.3.2) are constrained within the indicator range, which means that
interpolation of residuals might lead to values outside the physical range (< 0 or > 1).
A solution to this problem is to, instead of using the (crisp) indicator values, work with
(continuous) memberships (µc). Memberships are more suitable both for regression and
geostatistical modelling, which has been confirmed by several authors (McBratney et al.,
1992; de Gruijter et al., 1997; Triantafilis et al., 2001). Memberships can be directly
linearized using the logit transformation:

µ+
c = ln

(
µc

1− µc

)
; 0 < µc < 1 (2.3.3)

where µc are the membership values used as input to interpolation. Then, all fitted
values will be within the physical range (0–1). The predictions of memberships for class
c at new locations are then obtained using the standard regression-kriging model:

µ̂+
c (s0) = qT

0 · β̂c,GLS + λT
c,0 ·

(
µ+

c − q · β̂c,GLS

)
(2.3.4)

The interpolated values can then be back-transformed to the membership range using
(Neter et al., 1996):

µ̂c(s0) =
eµ̂+

c (s0)

1 + eµ̂+
c (s0)

(2.3.5)

In the case of regression-kriging of memberships, both spatial dependence and corre-
lation with the predictors are modelled in a statistically sophisticated way. In addition,
regression-kriging of memberships allows fitting of each class separately, which facilitates
the understanding of the distribution of soil variables and the identification of problem-
atic classes, i.e. classes which are not correlated with the predictors or do not show any
spatial autocorrelation.

Spatial prediction of memberships can be excessive in computation time. Another
problem is that, if the interpolated classes (odds, memberships) are fitted only by using
the sampled data, the predictions of the odds/memberships will commonly not sum to
unity at new locations. In this case, we needed to standardized values for each grid node
by diving the original values by the sum of odds/memberships to ensure that they sum
to unity, which is a short-cut solution. Obviously, an algorithm, such as compositional
regression-kriging5 will need to be developed.

A number of alternative hybrid class-interpolators exists, e.g. the Bayesian Maximum
Entropy (BME) approach by D’Or and Bogaert (2005). Another option is to use Markov-
chain algorithms (Li et al., 2004, 2005). However, note that although use of the BME
and Markov-chain type of algorithms is a promising development, its computational
complexity makes it still far from use in operational mapping.

5Walvoort and de Gruijter (2001), for example, already developed a compositional solution for ordi-

nary kriging that will enforce estimated values to sum to unity at all locations.
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2.4 Geostatistical simulations

Regression-kriging can also be used to generate simulations of a target variable using
the same inputs as in the case of spatial prediction system. An equiprobable realisation
of an environmental variable can be generated by using the sampled values and their
variogram model:

Z(SIM)(s0) = E {Z|z(sj), γ(h)} (2.4.1)

where Z(SIM) is the simulated value at the new location. The most common technique in
geostatistics that can be used to generate equiprobable realisations is the Sequential
Gaussian Simulation (Goovaerts, 1997, p.380-392). It starts by defining a random
path for visiting each node of the grid once. At first node, kriging is used to determine the
location-specific mean and variance of the conditional cumulative distribution function.
A simulated value can then be drawn by using the inverse normal distribution (Banks,
1998):

zSIMi = ẑi + σ̂i ·
√
−2 · ln(1−A) · cos(2 · π ·B) (2.4.2)

where zSIMi is the simulated value of the target variable with induced error, A and B

are the independent random numbers within the 0− 0.99. . . range, ẑi is the estimated
value at ith location, and σ̂i is the regression-kriging error. The simulated value is then
added to the original dataset and the procedure is repeated until all nodes have been
visited. Geostatistical simulations are used in many different fields to generate multiple
realisations of the same feature (Heuvelink, 1998; Kyriakidis et al., 1999), or to generate
realistic visualizations of a natural phenomena (Hengl and Toomanian, 2006; Pebesma
et al., 2007).

2.5 Spatio-temporal regression-kriging

The 2D space models can be extended to the time domain, which leads to spatio-
temporal geostatistics (Kyriakidis and Journel, 1999). The universal kriging model
(Eq.2.1.1) then modifies to:

Z(s, t) = m(s, t) + ε′(s, t) + ε′′ (2.5.1)

where ε′(s, t) is the spatio-temporally autocorrelated residual.
In practice, spatio-temporal interpolation follows the geostastical interpolation prin-

ciple as explained in Eq.(1.1.2), except that here the variograms are estimated in three
dimensions (two-dimensional position x and y and ‘position’ in time). From the math-
ematical aspect, the extension from the static 2D interpolation to the 3D interpolation
is then rather simple. Regression modelling can be simply extended to a space-time
model by adding time as a predictor. For example, a spatio-temporal regression model
for interpolation of mean-daily land surface temperature (see further §2.7.2) would look
like this:

LST (s0, t0) = b0 + b1 ·DEM (s0) + b2 · LAT (s0) + b3 ·DISTC (s0)

+ b4 · SOLAR(s0, t0) + b5 · cos
(
[t0 − φ] · π

180

)
; ∆t = 1 day

(2.5.2)

where DEM is the elevation map, LAT is the map showing distance from the equator,
DISTC is the distance from the coast line, SOLAR is the direct solar insolation for
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a given cumulative Julian day t ∈ (0,+∞), cos(t) is a generic function to account
for seasonal variation of values and φ is the phase angle6. DEM , LAT , DISTC are
temporally-constant predictors, while solar insolation maps need to be provided for
each time interval used for data fitting. The residuals from this regression model can
then be analysed for (spatio-temporal) auto-correlation. In gstat, extension from 2D to
3D variograms is possible by extending the variogram parameters: for 3D space-time
variograms five values should be given in the form anis = c(p,q,r,s,t), where p is
the angle for the principal direction of continuity (measured in degrees, clockwise
from y, in direction of x), q is the dip angle for the principal direction of continuity
(measured in positive degrees up from horizontal), r is the third rotation angle to rotate
the two minor directions around the principal direction defined by p and q. A positive
angle acts counter-clockwise while looking in the principal direction.

Once we have fitted the space-time variogram, we can then run regression-kriging to
estimate the values at 3D locations. In practice, we only wish to produce maps for a
given time interval (t0=constant), i.e. to produce 2D-slices of values in time (Fig. 2.8).

Fig. 2.8: Extension of a 2D prediction model to the space-time domain. Note that in the space-
time cube, the amount of pixels in play exponentially increases as a function of: width Ö height
Ö number of predictors Ö number of time intervals.

Note that, in order to yield accurate predictions using spatio-temporal techniques,
dense sampling in both space and time is required. This means that existing natural
resource surveys that have little to no repetition in time (�10 repetitions in time) cannot
be adopted. Not to mention the computational complexity as the maps of predictors now
multiply by the amount of time intervals. In addition, estimation of the spatio-temporal
variograms will often be a cumbersome because we need to fit space-time models, for
which we might not have enough space-time observations.

6A time delay from the coldest day.

http://www.gstat.org/manual/node20.html
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A specific extension of the general model from Eq.(2.5.1) is to estimate the deter-
ministic part of variation by using process-based (simulation) models. In this case an
environmental variable is predicted from a set of environmental predictors incorporated
in a dynamic model (Eq.1.3.12):

Z(s, t) = fs,c,r,p,a(t) + ε′(s, t) + ε′′ (2.5.3)

where s, c, r, p, a are the input (zero-stage) environmental conditions and f is a mathe-
matical deterministic function that can be used to predict the values for a given space-
time position. This can be connected with the Einstein’s assumption that the Universe
is in fact a trivial system that can be modelled and analysed using a one–dimensional
differential equation — in which everything is a function of time7. Some examples of
operational soil-landscape process-based models are given by Minasny and McBratney
(2001) and Schoorl et al. (2002). In vegetation science, for example, global modelling has
proven to be very efficient for explanation of the actual distribution of vegetation and of
global changes (Bonan et al., 2003). Integration of environmental process-based models
will soon lead to development of a global dynamic model of environmental systems that
would then ‘feed ’ different applications/national systems.

2.6 Sampling strategies and optimisation algorithms

Understanding the concepts of regression-kriging is not only important to know how
to generate maps, but also to know how to prepare a sampling plan and eventually
minimize the survey costs. Because the costs of the field survey are usually the biggest
part of the survey budget, this issue will become more and more important in the coming
years.

So far, two main groups of sampling strategies have been commonly utilized for the
purpose of environmental mapping:

Regular sampling — This has the advantage that it systematically covers the
area of interest (maximized mean shortest distance), so that the overall prediction
variance is usually minimized8. The disadvantage of this technique is that it
misrepresents distances smaller than the grid size (short range variation).

Randomized sampling — This has the advantage that it represents all distances
between the points, which is beneficial for the variogram estimation. The disad-
vantage is that the spreading of the points in geographic space is lower than in the
case of regular sampling, so that the overall precision of the final maps will often
be lower.

None of two strategies is universally applicable so that often their combination is rec-
ommended: e.g. put half of the points using regular and half using a randomized strat-
egy. Both sampling strategies belong to the group of design-based sampling. A difference
between a design-based sampling (e.g. simple random sampling) and the model-based
design is that, in the case of the model-based design, the model is defined and commonly
a single optimal design that maximizes/minimizes some criteria can be produced.

In the case of regression-kriging, there are much more possibilities to improve sam-
pling than by using design-based sampling. First, in the case of preparing a sampling

7James Peebles, Princeton, 1990; published in “God’s Equation: Einstein, Relativity, and the Ex-

panding Universe” by Amir D. Aczel.
8If ordinary kriging is used to generate predictions.
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Fig. 2.9: Principle of the two-phase model-based sampling based on the regression-kriging model:
(a) in the first phase, sampling aims at estimating the regression-kriging model; (b) if the
correlation with predictors is low, the additional sampling will probably lead to higher spreading
in the geographical space; (c) if the correlation with predictors is high, then the sampling will
probably only follow the extremes of the features space.

design for new survey, the samples can be more objectively located by using some re-
sponse surface design (Hengl et al., 2004b), including the Latin hypercube sam-
pling (Minasny and McBratney, 2006). The Latin hypercube sampling will ensure that
all points are well-placed in the feature space defined by the environmental factors —
these will later be used as predictors — and that the extrapolation in feature space is
minimized. Second, once we have collected samples and estimated the regression-kriging
model, we can now optimize sampling and derive (1) number of required additional ob-
servations and (2) their optimal location in both respective spaces. This leads to a
principle of the two-phase9 model-based sampling (Fig. 2.9).

The two-phase sampling is a guarantee of minimization of the survey costs. In
the first phase, the surveyors will produce a sampling plan with minimum survey costs
— just to have enough points to get a ‘rough’ estimate of the regression-kriging model.
Once the model is approximated (correlation and variogram model), and depending on
the prescribed accuracy (overall prediction variance), the second (additional) sampling

9Ideally, already one iteration of additional sampling should guarantee map of required accuracy/qual-

ity. In practice, also the estimation of model will need to be updated with additional predictors, so that

one might need to run several sampling iterations.
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plan can be generated. Now we can re-estimate the regression-kriging model and update
the predictions so that they fit exactly our prescribed precision requirements. Brus
and Heuvelink (2007) recently tested the use of simulated annealing to produce optimal
designs based on the regression-kriging model and concluded that the resulting sampling
plans will lead to hybrid patterns, well spread in both feature and geographical space.
Such algorithms are unfortunately still not available to a wider community (see also
§2.8.3).

Smarter allocation of the points in the feature and geographic space often proves
that equally precise maps could have been produced with much less points than actually
collected (see further §4.7.2). This might surprise you, but it has a strong theoretical
background. Especially if the predictors are highly correlated with the target variable
and if this correlation is close to linear, there is really no need to collect many samples
in the study area (see e.g. Fig. 2.11). In order to produce precise maps, it would be
enough if we spread them around extremes10 of the feature space and possibly maximized
their spreading in the area of interest. Of course, number of sampling points is mainly
dictated by our precision requirements, so that more accurate (low overall precision
variance) and detailed (fine cell size) maps of environmental variables will often require
denser sampling densities.

2.7 Fields of application

With the rapid development of remote sensing and geoinformation science, natural re-
sources survey teams are now increasingly creating their products (geoinformation) using
ancillary data sources and computer programs — the so-called direct-to-digital approach.
For example, sampled concentrations of heavy metals can be mapped with higher ac-
curacy/detail if information about the sources of pollution (distance to industrial areas
and traffic or map showing the flooding potential) is used. In the following sections, a
short review of the groups of application where regression-kriging has shown its potential
will be given.

2.7.1 Soil mapping applications

In digital soil mapping, soil variables such as pH, clay content or concentration of a heavy
metal, are increasingly mapped using the regression-kriging framework: the determinis-
tic part of variation is dealt with maps of soil forming factors (climatic, relief-based and
geological factors) and the residuals are dealt with kriging (McBratney et al., 2003). The
same techniques is now used to map categorical variables (Hengl et al., 2007c). A typical
soil mapping project based on geostatistics will also be demonstrated in the following
chapter of this handbook. This follows the generic framework for spatial prediction
set in Hengl et al. (2004a) and applicable also to other environmental and geosciences
(Fig. 2.10).

In geomorphometry, auxiliary maps, such as maps of drainage patterns, land cover
and remote sensing-based indices, are increasingly used for geostatistical modelling of
topography together with point datasets. Auxiliary maps can help explain spatial dis-
tribution of errors in DEMs and regression-kriging can be used to generate equiprobable
realisations of topography or map the errors in the area of interest (Hengl et al., 2007a).
Such hybrid geostatistical techniques will be more and more attractive for handling rich
LiDAR and radar-based topographic data, both to analyse their inherent geostatistical

10In statistics, these are referred to as the D-designs. For more info see Hengl et al. (2004b).
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Fig. 2.10: A generic framework for digital soil mapping based on regression-kriging.

properties and generate DEMs fit-for-use in various environmental and earth science
applications.

2.7.2 Interpolation of climatic and meteorological data

Regression-kriging of climatic variables, especially the ones derived from DEMs, is
now favoured in many climatologic applications (Jarvis and Stuart, 2001; Lloyd, 2005).
DEMs are most commonly used to adjust measurements at meteorological stations to
local topographic conditions. Other auxiliary predictors used range from distance to sea,
meteorological images of land surface temperature, water vapor, short-wave radiation
flux, surface albedo, snow Cover, fraction of vegetation cover (Table 3.2). In many cases,
real deterministic models can be used to make predictions, so that regression-kriging is
only used to calibrate the values using the real observations (D’Agostino and Zelenka,
1992, see also Fig. 2.3). An example in Fig. 2.11 demonstrates the benefits of using the
auxiliary predictors to map climatic variables. In this case the predictors explained over
90% of variation in the land surface temperatures measured at 152 stations11. Such high
R-square allows us to extrapolate the values much further from the original sampling
locations, which would be completely inappropriate to do by using ordinary kriging.
Note also that the range of values is now considerably larger than in the original data
— temperatures range from -1 to 15°C, compared to 7–14°C range. The increase of the
predictive capabilities using the auxiliary information and regression-kriging has been
also reported by several participants of the recent Conference on spatial interpolation

11Meteorological and Hydrological service of Croatia: 1961–1990 climate normals.
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in climatology and meteorology (Szalai et al., 2007).
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Fig. 2.11: The long-term mean monthly temperature for April interpolated using OK (left) and
RK (right) at 1 km grid. Predictions (above) and prediction variances (below) in this case differ
significantly. In this case, auxiliary predictors (elevation, latitude, direct annual solar insolation,
distance from the coast line) explain 95.2% of variation in the original data (152 meteorological
stations), hence the mapping precision is considerably higher for RK.

Interpolation of climatic and meteorological data is also interesting because the aux-
iliary (meteorological images) data are today increasingly collected in shorter time in-
tervals so that time-series of images are available and can be used to develop spatio-
temporal regression-kriging models. Note also that many meteorological prediction mod-
els can generate maps of forecasted conditions in the close-future time, which could then
again be calibrated using the actual measurements and RK framework (Fig. 2.3).

2.7.3 Mapping plant and animal species

As mentioned previously in §1.1.1, geostatistical modelling of plant and animal data
is somewhat more complicated because we commonly deal with dynamic and discrete
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features. Nevertheless, RK and auxiliary environmental predictors can also be used
to map such features over the area of interest. This is more a question of using an
appropriate prediction models, such as the logistic regression-kriging model (Latimer
et al., 2004). Pebesma et al. (2005), for example, used RK to interpolate bird densities
over the North Sea, while Shamoun et al. (2005) produced 3D maps (slices) of bird
densities over the land.

In summary, there is a distinct difference between field observation of animal and
plant species and measurements of soil or meteorological variables. Especially the ob-
servations of animal species asks for high sampling densities in temporal dimension.
However, if biological species are represented with quantitative composite measures
(density, occurrence, biomass, habitat category), such measures are fit for use with
standard spatio-temporal geostatistical tools.

2.8 Final notes about regression-kriging

At the moment, there are not many contra-arguments not to replace the existing tra-
ditional soil, vegetation, climatic, geological and similar maps with the maps produced
using analytical techniques. Note that this does not mean that we should abandon the
traditional concepts of field survey and that surveyors are becoming obsolete. On the
contrary, surveyors continue to be needed to prepare and collect the input data and to
assess the results of spatial prediction. On the other hand, they are less and less involved
in the actual delineation of features or derivation of predictions, which is increasingly
the role of the predictive models.

One such linear prediction techniques that is especially promoted in this handbook is
regression-kriging (RK). It can be used to interpolate sampled environmental variables
(both continuous and categorical) from large point sets. However, in spite of this and
other attractive properties of RK, it is not as widely used in geosciences as might be
expected. The barriers to widespread routine use of RK in environmental modelling
and mapping are as follows. First, the statistical analysis in the case of RK is more
sophisticated than for simple mechanistic or kriging techniques. Second, RK is compu-
tationally demanding12 and often can not be run on standard PCs. The third problem is
that many users are confused by the quantity of spatial prediction options, so that they
are never sure which one is the most appropriate. In addition, there is a lack of user-
friendly GIS environments to run RK. This is because, for many years GIS technologies
and geostatistical techniques have been developing independently. Today, a border line
between statistical and geographical computing is definitively fading away (as you will
be more convinced in the last chapter of this guide).

2.8.1 Alternatives to RK

The competitors to RK include completely different methods that may fit certain sit-
uations better. If the auxiliary data is of different origin and reliability, the Bayesian
Maximum Entropy approach might be a better alternative (D’Or, 2003). There are also
machine learning techniques that combine neural network algorithms and robust pre-
diction techniques (Kanevski et al., 1997). Henderson et al. (2005) used decision trees
to predict various soil parameters from large quantity of soil profile data and with the
help of land surface and remote sensing attributes. This technique is flexible, optimizes

12Why does RK takes so much time? The most enduring computations are connected with derivation

of distances from the new point to all sampled points. This can be speed up by setting up a smaller

search radius.
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local fits and can be used within a GIS. However, it is statistically suboptimal because it
ignores spatial location of points during the derivation of classification trees. The same
authors (Henderson et al., 2005, pp.394–396) further reported that, although there is
still some spatial correlation in the residuals, it is not clear how to employ it.

Regression-kriging must also be compared with alternative kriging techniques, such
as collocated co-kriging, which also makes use of the auxiliary information. However,
collocated co-kriging is developed for situations in which the auxiliary information is not
spatially exhaustive (Knotters et al., 1995). CK also requires simultaneous modelling
of both direct and cross-variograms, which can be time-consuming for large number of
covariates13. In the case where the covariates are available as complete maps, RK will
generally be preferred over CK, although CK may in some circumstances give superior
results (D’Agostino and Zelenka, 1992; Goovaerts, 1999; Rossiter, 2007b). In the case
auxiliary point samples of covariates, in addition to auxiliary raster maps, are available,
regression-kriging can be combined with co-kriging: first the deterministic part can be
dealt with the regression, then the residuals can be interpolated using co-kriging (aux-
iliary point samples) and added back to the estimated deterministic part of variation.

2.8.2 Limitations of RK

RK have shown a potential to become the most popular mapping technique used by
environmental scientists because it is (a) easy to use, and (b) it outperforms plain
geostatistical techniques. However, success of RK largely depends on characteristics of
the case study i.e. quality of the input data. These are some main consideration one
should have in mind when using RK:

(1.) Data quality : RK relies completely on the quality of data. If the data comes from
different sources and have been sampled using biased or unrepresentative design,
the predictions might be even worse than with simple mechanistic prediction tech-
niques. Even a single bad data point can make any regression arbitrarily bad,
which affects the RK prediction over the whole area.

(2.) Under-sampling : For regression modelling, the multivariate feature space must be
well-represented in all dimensions. For variogram modelling, an adequate number
of point-pairs must be available at various spacings. Webster and Oliver (2001,
p.85) recommend at least 50 and preferably 300 points for variogram estimation.
Neter et al. (1996) recommends at least 10 observations per predictor for multiple
regression. We strongly recommend using RK only for data sets with more than 50
total observations and at least 10 observations per predictor to prevent over-fitting.

(3.) Reliable estimation of the covariance/regression model : The major dissatisfaction
of using KED or RK is that both the regression model parameters and covariance
function parameters need to be estimated simultaneously. However, in order to
estimate coefficients we need to know covariance function of residuals, which can
only be estimated after the coefficients (the chicken-egg problem). Here, we have
assumed that a single iteration is a satisfactory solution, although someone might
also look for other iterative solutions (Kitanidis, 1994). Lark et al. (2005) recently
suggested that an iterative Restricted Maximum Likelihood (REML) approach
should be used to provide an unbiased estimate of the variogram and regression

13Co-kriging requires estimation of p + 1 variograms, plus [p · (p + 1)] /2 cross-variograms, where the

p is the number of predictors (Knotters et al., 1995).
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coefficients. However, this approach is rather demanding for � 103 point data
sets because for each iteration, an n× n matrix is inverted.

(4.) Extrapolation outside the sampled feature space: If the points do not represent
feature space or represent only the central part of it, this will often lead to poor
estimation of the model and poor spatial prediction. For this reason, it is important
that the points be well spread at the edges of the feature space and that they be
symmetrically spread around the center of the feature space (Hengl et al., 2004b).
Assessing the extrapolation in feature space is also interesting to allocate additional
point samples that can be used to improve the existing prediction models. This also
justifies use of multiple predictors to fit the target variable, instead of using only
the most significant predictor or first principal component, which if, for example,
advocated by the Isatis development team (Bleines et al., 2004).

(5.) Predictors with uneven relation to the target variable: Auxiliary maps should have
a constant physical relationship with the target variable in all parts of the study
area, otherwise artefacts will be produced. An example is a single NDVI as a
predictor of topsoil organic matter. If an agricultural field has just been harvested
(low NDVI), the prediction map will (incorrectly) show very low organic matter
content within the crop field.

(6.) Intermediate-scale modelling : RK has not been adapted to fit data locally, with
arbitrary neighbourhoods for the regression as can be done with kriging with
moving window (Walter et al., 2001). Many practitioners would like to adjust the
neighbourhood to fit their concepts of the scale of processes that are not truly
global (across the whole study area) but not fully local either.

(7.) Data over-fitting problems: Care needs to be taken when fitting the statistical
models — today, complex models and large quantities of predictors can be used so
that the model can fit the data almost 100%. But there is a distinction between
the goodness of fit and true success of prediction that can not really be assessed
without independent validation (Rykiel, 1996).

If any of these problems occur, RK can give even worse results than even non-
statistical, empirical spatial predictors such as inverse distance interpolation or expert
systems. The difficulties listed above might also be considered as challenges for the
geostatisticians.

2.8.3 Beyond RK

Although the bibliometric research of Zhou et al. (2007) indicates that the field of
geostatistics has already reached its peak in 1996–1998, the development of regression-
kriging and similar hybrid techniques is certainly not over and the methods will continue
to evolve both from theoretical and practical aspect. What you can certainly anticipate
in the near future are the following five developments:

More sophisticated prediction models: Typically, regression-kriging is sensitive to
blunders in data, local outliers and small size datasets. To avoid such problems,
we will experience an evolution of methods that are more generic and more robust
to be used to any type of dataset. Recently, several authors suggested ways to
make more sophisticated, more universally applicable BLUPs (Lark et al., 2005;
Minasny and McBratney, 2007). We can anticipate a further development of
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intelligent, iterative data fitting algorithms that can account for problems of local
hot-spots, mixed data and poor sampling strategies.

Local regression-kriging : As mentioned previously in §2.2, local regression-kriging
algorithms are yet to be developed. Integration of the local prediction algorithms
(Haas, 1990; Walter et al., 2001) would open many new data analysis possibilities.
For example, with local estimation of the regression coefficients and variogram
parameters, a user will be able to analyse which predictors are more dominant in
different parts of the study area, and how much these parameters vary in space.
The output of the interpolation with not be only a map of predictions, but also
the maps of (local) regression coefficients, R-square, variogram parameters and
similar.

User-friendly sampling optimisation packages: Although methodologies both to
plan a new sampling design and to optimize additional sampling designs have al-
ready been proposed (Minasny and McBratney, 2006; Brus and Heuvelink, 2007),
neither simulated annealing neither Latin hypercube sampling are available for op-
erational mapping. Development of user-friendly sampling design packages would
make possible to generate (smart) sampling schemes at the click of button.

Intelligent data analysis reports generation: The next generation of geostatistical
packages will be intelligent. It will not only generate the predictions and prediction
variances, but will also provide interpretation of the fitted models and analysis of
the intrinsic properties of the input data sets. This will include detection of pos-
sible outliers and hot-spots, robust estimation of the non-linear regression model,
assessment of the quality of the input data sets and final maps. I imagine that
the system will need to be organized in a step-by-step processing wizards, which
means that the algorithm will iteratively question the user about the reliability of
specific points until the most suitable prediction model is applied.

Multi-temporal, multi-variate prediction models: At the moment, most of the geo-
statistical mapping projects in environmental sciences focus on mapping a single
variable sampled in a short(er) period of time and for a local area of interest. It
will not take too long until we will have a global repository of (multi-temporal)
predictors (see e.g. Table 3.2) and point data sets that could then be interpo-
lated all at once (to employ all possible relationships and cross-correlations). The
future data sets will definitively be multi-temporal and multi-variate, and it will
certainly ask for more powerful computers and more sophisticated spatio-temporal
3D mapping tools. Consequently, outputs of the spatial prediction models will be
animations and multimedia, rather then simple and static 2D maps.

Although we can observe that with the more sophisticated methods (e.g. REML
approach), we are able to produce more realistic models, the quality of the output
maps depends much more on the quality of input data (Minasny and McBratney, 2007).
Hence, we can also anticipate that evolution of technology such as hyperspectral remote
sensing and LiDAR will contribute to the field of geostatistical mapping even more than
the development of the more sophisticated algorithms.

Finally, we can conclude that an unavoidable trend in the evolution of spatial pre-
diction models will be a development and use of fully-automated, robust, in-
telligent mapping systems (see further §3.7.3). Systems that will be able to detect
possible problems in the data, iteratively estimate the most reasonable model parame-
ters, employ all possible auxiliary and empirical data, and assist the user in generating
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the survey reports. Certainly, in the near future, a prediction model will be able to run
more analysis and offer more information. This might overload the inexperience users,
so that practical guides even thicker than this one can be anticipated.
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Hands-on software

3.1 Overview and installation of software

This chapter will introduce you to the four packages that we will use to run the processing
and display the results: ILWIS, SAGA, R+gstat and Google Earth. All these are available
as open source or as freeware and no licenses are needed to use them. By combining
the capabilities of the four packages we get the best out of each package and optimize
both preparation, processing and the visualization of the maps. In this case, ILWIS GIS
will be primarily used to process and prepare vector and raster maps and run simple
analysis; SAGA GIS will be used to run analysis on DEMs, but also for geostatistical
interpolations; R+gstat will be used for various types of statistical and geostatistical
analysis, but also for data processing automation; Google Earth will be used only to
visualize the results and prepare the final layouts. Follow the instructions down-below
to install these packages and make first steps in them.

3.1.1 ILWIS

ILWIS (Integrated Land and Water Information System) is a stand-alone integrated GIS
package developed at the International Institute of Geoinformation Science and Earth
Observations (ITC), Enschede, Netherlands. ILWIS was originally built for educational
purposes and low-cost applications in developing countries. Its development started in
1984 and the first version (DOS version 1.0) was released in 1988. ILWIS 2.0 for Windows
was released at the end of 1996, and a more compact and stable version 3.0 (WIN 95)
was released by mid 2001. From 2004, ILWIS was distributed solely by ITC as shareware
at a nominal price, and from July 2007, ILWIS shifted to open source. ILWIS is now
freely available (‘as-is’ and free of charge) as open source software (binaries and source
code) under the 52°North initiative).

The most recent version of ILWIS (3.4) offers a range of image processing, vector,
raster, geostatistical, statistical, database and similar operations (Unit Geo Software
Development, 2001). In addition, a user can create new scripts, adjust the operation
menus and even build Visual Basic, Delphi, or C++ applications that will run at top
of ILWIS and use its internal functions. In principle, the biggest advantage of ILWIS is
that it is a compact package with a diverse vector and raster-based GIS functionality
and the biggest disadvantages are bugs and instabilities and necessity to import data to
ILWIS format from other more popular GIS packages.
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Fig. 3.1: The ILWIS main window (above) and map window (below).

The ILWIS binaries are very simple to install. Download the zipped binaries and
unpack them to a local folder e.g. C:\Program Files\ILWIS\. In this folder, you will
find the Ilwis30.exe file, which is the main executable for ILWIS. Double click this file
to start ILWIS. You will first see the main program window, which can be compared to
the ArcGIS catalog (Fig. 3.1). The main program window is, in fact, a file browser which
lists all ILWIS operations, objects and supplementary files within a working directory.
The ILWIS Main window consists of a Menu bar, a Standard toolbar, an Object selection
toolbar, a Command line, a Catalog, a Status bar and an Operations/Navigator pane
with an Operation-tree, an Operation-list and a Navigator. The left pane (Operations/-
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Navigator) is used to browse available operations and directories and the right menu
shows available spatial objects and supplementary files (Fig. 3.1). GIS layers in different
formats will not be visible in the catalog until we define the external file extension.

An advantage of ILWIS is that, every time a user runs an command from the menu
bar or operation tree, ILWIS will record the operation in ILWIS command language.
For example, you can interpolate a point map using inverse distance interpolation by
selecting Operations 7→ Interpolation 7→ Point interpolation 7→ Moving average, which
will be shown as:

ev idw.mpr = MapMovingAverage(ev, mapgrid.grf, InvDist(1,5000), plane)

where ev idw.mpr is the output map, MapMovingAverage is the interpolation function,
mapgrid is the grid definition (georeference) and InvDist is the method. This means
that you can now edit this command and run it directly from the command line, instead
of manually selecting the operations from the menu bar. In addition, you can copy such
commands into an ILWIS script to enable automation of data analysis. ILWIS script can
use up to nine script parameters, which can be either spatial objects, values or textual
strings.

3.1.2 SAGA

SAGA (System for Automated Geoscientific Analyses) is an open source GIS that has
been developed since 2001 at the University of Göttingen1, Germany, with the aim to
simplify the implementation of new algorithms for spatial data analysis (Conrad, 2006).
It is a full-fledged GIS with support for raster and vector data, which includes a large
set of geoscientific algorithms, being especially powerful for the analysis of DEMs. With
the release of version 2.0 in 2005, SAGA works under both Windows and Linux oper-
ating systems. In addition, SAGA is an open-source package, which makes it especially
attractive to users that would like extend or improve its existing functionality.

SAGA handles tables, vector and raster data and natively supports at least one file
format for each data type. Currently SAGA provides about 42 free module libraries with
234 modules, most of them published under the GPL. The modules cover geo–statistics,
geomorphometric analysis, image processing, cartographic projections, and various tools
for vector and raster data manipulation. Modules can be executed directly by using their
associated Parameters window. After you have imported all maps to SAGA, you can
also save the whole project so that all associated maps and visualisation settings are
memorized. The most comprehensive modules in SAGA are connected with hydrologic,
morphometric and climatic analysis of DEMs.

To install SAGA, download and unzip the files to a local directory e.g. C:\Program
Files\SAGA2\. Then run the saga gui.exe and you will get a GUI as shown in Fig. 3.2.
In addition to the GUI, a second user front end, the SAGA command line interpreter
can be used to execute modules.

3.1.3 R

R is the open source version of the S language for statistical computing. Apparently,
the name “R” was selected for two reasons: (1) prestige — “R” is a letter before “S”,
and (2) coincidence — both of the creators’ names start with a letter “R”. R provides
a wide variety of statistical (linear and nonlinear modelling, classical statistical tests,

1The group recently collectively moved to the Institut für Geographie, University of Hamburg.

http://saga-gis.org
http://www.r-project.org
http://www.geowiss.uni-hamburg.de
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Fig. 3.2: The SAGA GUI elements and displays.

time-series analysis, classification, clustering,. . . ) and graphical techniques, and is highly
extensible (Chambers and Hastie, 1992; Venables and Ripley, 2002). The S language has
often been the vehicle of choice for research in statistical methodology, and R provides
an Open Source route to participation in that activity. It takes a lot of time for the
beginners to get use the R syntax, but the benefits are worth the time investment.

To install R under Windows, download and run an installation exe from the R-
project homepage. This will install R for window with a GUI. After you start R, you
will first need to set-up the working directory and install additional packages. To run
geostatistical analysis in R, you will need to add the following R packages: gstat (gtat
in R), rgdal (GDAL import of GIS layers in R), sp (operations on maps in R), foreign,
spatstat (spatial statistics in R) and maptools.

To install these packages you should do the following. First start the R GUI, then
select the Packages 7→ Load package from the main menu. Note that, if you wish to
install a package on the fly, you will need to select a suitable CRAN mirror from where
it will download and unpack a package. Another important issue is that, although a
package is installed, you will still need to load it into your workspace (every time you
start R) before you can use its functionality. A package is commonly loaded using e.g.:

> library(gstat)

R is today identified as one of the fastest growing and most comprehensive statistical
computing tools/communities. It practically offers statistical analysis and visualisation
of unlimited sophistication. A user is not restricted to a small set of procedures or
options, and because of the contributed packages, users are not limited to one method of

http://www.r-project.org
http://www.r-project.org
http://www.gstat.org
http://rgdal.sourceforge.net/
http://r-spatial.sourceforge.net
http://www.spatstat.org
http://cran.r-project.org/src/contrib/Descriptions/maptools.html
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Fig. 3.3: The GUI of R under Windows and typical plot produced using the sp package.

accomplishing a given computation or graphical presentation (Rossiter, 2007a; Murrell,
2006). As we will see later on, R became attractive for geostatistical mapping mainly
due to the recent integration of the geostatistical tools (gstat) and tools that allow R

computations with spatial data layers (sp, maptools, rgdal).

3.1.4 Gstat

Gstat is a stand-alone package for geostatistical analysis developed by Edzer Pebesma
from the University of Utrecht in the Netherlands in 1997. As of 2003, the gstat function-
ality is also available as an S extension, either as R package or S-Plus library. Current
development mainly focuses on the R/S extensions, although the stand alone version
can still be used for many applications.

To install gstat (the stand-alone version) under Windows, download the gstat.exe

and gstatw.exe (variogram modelling with GUI) files from the www.gstat.org website
and put them in your \Windows\system32\ directory. Then, you can always run gstat

from the Windows start menu. The gstat.exe runs as a DOS application, which means
that there is no GUI. A user controls the processing by editing the command files.

3.1.5 Google Earth

Google Earth is the Google’s geographical browser that is increasingly popular in the
research community. Google Earth was developed by Keyhole, Inc., a company acquired
by Google in 2004. The product was renamed Google Earth in 2005 and is currently

http://www.gstat.org
www.gstat.org
http://earth.google.com
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available for use on personal computers running Microsoft Windows 2000 or XP, Mac
OS X.

All displays in Google Earth are controlled by the KML files, which are written in the
Keyhole Markup Language developed by Keyhole, Inc. KML is an XML-based language
for managing the display of three-dimensional geospatial data and is, in fact, used in
several geographical browsers (Google Maps, Google Mobile, ArcGIS Explorer and World
Wind). The KML file specifies a set of standard features (placemarks, images, polygons,
3D models, textual descriptions, etc.) for display in Google Earth. Each place always
has a longitude and a latitude. Other data can make the view more specific, such as
tilt, heading, altitude, which together define a camera view. The KML datasets can be
edited using an ASCII editor (as with HTML), but they can be edited also directly in
Google Earth. KML files are very often distributed as KMZ files, which are zipped KML
files with a .kmz extension.

To install Google Earth, run the GoogleEarthWin.exe that you can obtain from the
Google’s website. To start a KML file, just double-click it and the map will be displayed
using the default settings. Other standard Google’s background layers, such as roads,
borders, places and similar geographic features, can be turned on of off using the Layers
panel. There is also a commercial Plus and Pro versions of Google Earth, but for purpose
of exercises in this guide, the free version is more than enough.

3.2 Geostatistics in ILWIS

ILWIS has a number of built-in statistical and geostatistical functions. Considering the
interpolation possibilities, it can be used to analyse prepare a variogram, analyse the
anisotropy in the data (including the variogram surface), run ordinary kriging and co-
kriging (with one covariable), universal kriging with coordinates2 as predictors and linear
regression. ILWIS has also a number of original geostatistical algorithms that can often
be handy for use.

Fig. 3.4: Overlay between points and rasters: table
calculation in ILWIS.

For example, it offers direct krig-
ing from raster that can be used to
filter the missing values in a raster
map, and a direct calculation of var-
iograms from raster data. ILWIS is
also very handy to run some basic
statistical analysis on multiple raster
layers (map lists): it offers principal
component analysis on rasters, cor-
relation analysis between rasters and
multi-layer map statistics (min, max,
average and standard deviation).

Although ILWIS can not be used
to run regression-kriging as defined in
§2.1.3, it can be used to run a similar
type of analysis. For example, a table
can be imported and converted to a
point map using the Table to PointMap operation. The point map can then be overlaid
over raster maps to analyze if the two variables are correlated. This can be done by

2In ILWIS, the term Universal kriging is used exclusively for interpolation of point data without any

auxiliary maps.

http://earth.google.com/kml/kml_tut.html
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using a table calculation and MapValue function (Fig. 3.4):

TWI=mapvalue(TWI, coord(X,Y,germany3))

where mapvalue is the overlay function that obtains values of a map TWI by using
coordinates X, Y of the points and the germany3 coordinates system. In the same table,
you can then derive a simple linear regression model e.g. SAND = b0 + b1 * TWI. By
fitting a least square fit using a polynomial, you will get: b0=67.985 and b1=-4.429.
This means that the sand content decreases with an increase of TWI — Topographic
Wetness Index (Fig. 3.5). Note that, in ILWIS, you can not derive the Generalized
Least Squares (GLS) regression coefficients (Eq.2.1.3) but only the OLS coefficients,
which is statistically suboptimal because the residuals are possibly auto-correlated (see
§2.1). In fact, regression modelling in ILWIS is so limited that I can only advise you to
always export the table data to R and then run statistical analysis. After you estimate
the regression coefficients, you produce a map of SAND content (deterministic part of
variation) by running a map calculation:

SAND lm=67.985-4.429*TWI

Now you can estimate the residuals at sampled locations using a table calculation
as in Fig. 3.4:

SAND res=SAND-MapValue(SAND lm, coord(X,Y,germany3))

Fig. 3.5: Correlation plot TWI vs SAND.

You can create a point map for
residuals and derive a variogram of
residuals by using operations Statis-
tics 7→ Spatial correlation from the
main menu. If you use a lag spac-
ing of 800 m, you will get a var-
iogram that can be fitted3 with a
spherical variogram model (C0=180,
C1=220, R=1800). The residuals can
now be interpolated using ordinary
kriging, which gives typical kriging
pattern. The fitted trend and residu-
als can then be added back together
using:

SAND RK=SAND lm+SAND res OK

which gives regression-kriging predic-
tions. Note that, in this case, we will
produce negative values for SAND in the areas where the TWI is high (Fig. 3.5). Also
note that, because a complete RK algorithm with GLS estimation of regression is not
implemented in ILWIS (§2.1.3), we are not able to derive a map of the prediction variance
(Eq.2.1.5).

Raster maps from ILWIS can be exported to other packages. You can always use
export them to the Arc/Info ASCII (.ASC) format. If the georeference in ILWIS has
been set as center of the corner pixels, then you might need to manually edit the *.asc

header4. Otherwise, you will not be able to import such maps to ArcGIS (8 or higher)
or Idrisi.

3ILWIS does not support automated variogram fitting.
4Simply replace in the header of the file xllcenter and yllcenter to xllcorner and yllcorner.

http://docs.codehaus.org/display/GEOTOOLS/ArcInfo+ASCII+Grid+format
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3.2.1 Visualization of uncertainty using whitening

As mentioned previously, an advantage of ILWIS is that it is a script-based package so
that various scripts can be developed that allow data processing automation. One such
script that will be used later on in the exercise is the script to visualize uncertainty of
the map together with the actual predictions — VIS error. This script produces colour
maps that should be associated with the special 2D legends.

Fig. 3.6: Design of the special 2D legend used to visualize the prediction variance using whitening:
(a) the HSI colour model, (b) the 2D legend and (c) the common types of Hues.

This visualization methods is based on the Hue-Saturation-Intensity (HSI) colour
model (Fig. 3.6a) and calculations with colours using the colour mixture (CM) concept.
The HSI is a psychologically appealing colour model – hue is used to visualise values
or taxonomic space and whiteness (paleness) is used to visualise the uncertainty (Doo-
ley and Lavin, 2007). For this purpose, a 2D legend was designed to accompany the
visualisations. Unlike standard legends for continuous variables, this legend has two
axis (Fig. 3.6b): (1) vertical axis (hues) is used to visualise the predicted values and
(2) horizontal axis (whiteness) is used to visualise the prediction error. Fig. 3.7 shows
some examples of visualizing the mapping precision for different variables using the same
input data. Note how different can be the precision of spatial prediction.

To visualize the uncertainty for your own case study using this technique, you should
follow these steps:

(1.) Download the VIS error script for visualization of prediction error and unzip it
to the default directory (C:\Program Files\ILWIS\Scripts\).

(2.) Derive the predictions and prediction variance for some target variable. Import
both maps to ILWIS. The prediction variance needs to be then converted to nor-
malized prediction variance by using Eq.(4.6.4), so you will also need to determine
the global variance of your target variable.

(3.) Start ILWIS and run the script from the left menu (operations list) or from the

http://spatial-analyst.net/visualization.php
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main menu 7→ Operations 7→ Scripts 7→ VIS error. Use the help button to find
more information about the algorithm.

(4.) To prepare final layouts, you will need to use the legend hsi.bmp legend file5.
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Fig. 3.7: Success of spatial predictions for various soil variables: sand (SAND), silt (SILT) and
clay (CLAY) content in %, Electric conductivity (EC) and organic matter (OM) content in
%. On the left are the predicted values and on the right are the predictions visualized using
whitening. After Hengl and Toomanian (2006).

You can manually change the lower and upper values for both prediction and error
maps depending on your mapping requirements. By default, thresholds of 0.4 and 0.8
(max 1.0) are used for the normalized prediction error values. This assumes that a
satisfactory prediction is when the model explains more than 85% of the total variation
(normalized error = 40%). Otherwise, if the values of the normalized error gets above

5This legend is a Hue-whitening legend: in the vertical direction only Hue values change, while in

the horizontal direction amount of white colour is linearly increased from 0.5 up to 1.0.

http://spatial-analyst.net/VMM/legend_hsi.bmp
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80%, the model accounted for less than 50% of variability at the validation points and
the prediction is unsatisfactory (Fig. 3.7).

3.3 Geostatistics in SAGA GIS

SAGA offers limited capabilities for geostatistical analysis, but in a very user-friendly
environment. Note that many commands in SAGA are available only by right-clicking
the specific data layers.

Fig. 3.8: Correlation plot for grids: TWI vs DEM.

For example, you make a correla-
tion plot between two grids by right-
clicking a map of interest, then select
Show Scatterplot and you will receive
a module execution window where
you can select the second grid (or a
shape file) that you would like to cor-
relate with your grid of interest. This
will plot all grid-pairs and display the
regression model and its significance
(R-square) as shown in Fig. 3.8. The
setting of the Scatterplot options can
be modified by selecting Scatterplot
from the main menu. Here you can
adjust the regression formula, obtain
the regression details, and adjust the
graphical settings of the scatterplot.

Under the module Geostatistics,
three groups of operations can be
found: (a) Grid (various operations
on grids); (b) Points (derivation of semivariances) and (c) Kriging (ordinary and uni-
versal kriging). Under the group Grid, several modules can be run: Multiple Regression
Analysis (relates point data with rasters), Radius of Variance (detects a minimum ra-
dius to reach a particular variance value in a given neighbourhood), Representativeness
(derives variance in a local neighbourhood), Residual Analysis (derives local mean value,
local difference from mean, local variance, range and percentile), Statistics for Grids (de-
rives mean, range and standard deviation for a list of rasters) and Zonal Grid Statistics
(derives statistical measures for various zones and based on multiple grids). For the
purpose of geostatistical mapping, we are especially interested to correlate points with
rasters (§1.3.2), which can be done via the Multiple Regression Analysis module. By
starting this module you will get a parameter setting window (Fig. 3.9).

By running the Multiple Regression Analysis module, SAGA will estimate the values
of points at grids, run the regression analysis and predict the values at each location
(Fig. 3.10). You will also get a textual output (message window) that will show the
regression model, and a list of the predictors according to their importance:

Regression:
Y = 84.783626 -4.692293*[TWI] -128.368154*[GSI] -8.050256*[SLOPE]
-0.004243*[DEM]

Correlation:
1: R2 = 14.418404% [14.418404%] -> TWI
2: R2 = 15.719900% [1.301496%] -> GSI
3: R2 = 16.595425% [0.875525%] -> SLOPE
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4: R2 = 16.600508% [0.005082%] -> DEM

in this case the most significant predictor is TWI and the least significant predictor is
DEM. The model finally explains 16.6% of the total variation.

Fig. 3.9: Running predictions by using regression analysis in SAGA GIS
.

When selecting the multiple regression analysis options, you can also opt to derive the
residuals and fit the variogram of residuals. These will be written as a shape file that can
then be used to derive semivariances. Select Geostatistics 7→ Points 7→ Semivariogram
and specify the distance increment (lag) and maximum distance. The variogram can be
displayed by again right clicking a table and selecting Show Scatterplot option (Fig. 3.10).
At the moment, the regression models in SAGA are limited to linear, exponential and
logarithmic models, which is a problem if you need to fit a variogram. You can at
least use the logarithmic model which will estimate something close to the exponential
variogram model (Eq.1.3.8).

Fig. 3.10: Output of mapping SAND content using TWI, SLOPE, GSI and DEM (left) and the
resulting variogram of residuals (right).

Once the regression model and the variogram of the residuals have been estimated,
a user can also run regression-kriging, which is available in SAGA under the module
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Geostatistics 7→ Universal kriging. The users can select global and local (search radius)
version of the Universal kriging. In this case, I do not recommend the use of local
Universal kriging with a small search radius (�100 points) because it over-simplifies
the technique and can lead to artefacts6. Note also that, in SAGA, you can select as
many predictors as you wish, as long as they are all in the same grid system. The final
results can be visualized in both 2D and 3D spaces.

Another advantage of SAGA is the ability to use script files for the automation of
complex work-flows, which can then be applied to different data projects. Scripting of
SAGA modules is now possible in two ways:

(1.) Using the command line interpreter (saga cmd.exe) with DOS batch scripts. Some
instructions on how to generate batch files can be found in Conrad (2006).

(2.) A much more flexible way of scripting provides the Python interface to the SAGA

Application Programming Interface (SAGA-API).

In addition to scripting possibilities, SAGA allows you to save SAGA parameter files
(*.sprm) that contain all inputs and output parameters set using the module execution
window. These parameter files can be edited in an ASCII editor, which can be quite
handy to automate processing.

In summary, SAGA GIS has many attractive features for geostatistical mapping: (1)
it has a large library of modules, especially to parameterize geomorphometric features
of a terrain, (2) it can generate maps from points and rasters by using multiple linear
regression and regression-kriging, and (3) it is an open source GIS with a popular GUI.
If compared to gstat, SAGA is not able to run geostatistical simulations, GLS estima-
tion nor stratified or co-kriging, however, it is capable of running regression-kriging in
a statistically sound way (unlike in ILWIS that can only run OLS predictions). The
advantage of SAGA over R is that it can load and calculate with relatively large maps
(not recommended in R for example) and that it can be used to visualize the input and
output maps in 2D and 3D (map drapes). To get additional support, visit the official
website or obtain the SAGA users’ manual (Olaya, 2004).

3.4 Geostatistics with gstat

Gstat is possibly the most complete and certainly the most accessible geostatistical
package in the World. It can be used to calculate sample variograms, fit valid mod-
els, plot variograms, calculate (pseudo) cross variograms, and calculate and fit direc-
tional variograms and variogram models (anisotropy coefficients are not fitted automat-
ically). Kriging and (sequential) conditional simulation can be done under (simplifi-
cations of) the universal co-kriging model. Any number of variables may be spatially
cross-correlated. Each variable may have its own number of trend functions specified
(being coordinates, or so-called external drift variables). Simplifications of this model
include ordinary and simple kriging, ordinary or simple co-kriging, universal kriging, ex-
ternal drift kriging, Gaussian conditional or unconditional simulation or cosimulation.
In addition, variables may share trend coefficients (e.g. for collocated co-kriging). To
learn about capabilities of gstat, a user is advised to read the gstat User’s manual, which
is still by far the most complete documentation about gstat package.

As mentioned previously, gstat can be run as a stand-alone application, or as a R

package. Gstat is also implemented in the most recent version of Idrisi GIS with a GIS
6Neither local variograms nor local regression models are estimated. See §2.2 for a detailed discussion.

http://www.saga-gis.org
http://www.gstat.org
http://gstat.org/manual/
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GUI. Although gstat is currently maintained as a S/R package primarily, it might be
advisable to compare different software options for real mapping projects.

3.4.1 The stand-alone version of gstat

In the stand-alone version of the gstat, everything is done via compact scripts or com-
mand files. The best approach to prepare the command files is to learn from the list
of example command files that can be found in the gstat User’s manual. Preparing the
command files for gstat is rather simple and fast. For example, to run inverse distance
interpolation the command file would look like this:

# Inverse distance interpolation on a mask map

data(ev): ’points.eas’, x=1, y=2, v=3;

mask: ’mapgrid.asc’; # the prediction locations

predictions(ev): ’ev idw.asc’; # result map

where the first line defines the input point dataset (points.eas7), the coordinate
columns (x, y) are the first and the second column in this table, and the variable
of interest is in the third column; the prediction locations are the grid nodes of the
map mapgrid.asc8 and the results of interpolation will be written to a raster map
ev idw.asc.

To extend the predictions to regression-kriging, the command file needs to include
the auxiliary maps and the variogram model for the residuals:

# Regression-kriging using two auxiliary maps

data(ev): ’points.eas’, x=1, y=2, v=3, X=4,5;

variogram(ev): 1 Nug(0) + 5 Exp(1000);

mask: ’q1.asc’, ’q2.asc’; # the predictors

predictions(ev): ’ev idw.asc’; # result map

where X defines the auxiliary predictors, 1 Nug(0) + 5 Exp(1000) is the variogram of
residuals and q1.asc and q2.asc are the auxiliary predictors. All auxiliary maps need
to have the same grid definition and need to be available also in the input table. The
program will also fail if the predictors are not sorted in the same order in both first and
the third line. Note that there are many optional arguments that can be included in the
command file: a search radius can be set using “max=50”; switching from predictions
to simulations can be done using “method: gs”; bloc kriging can be initiated using
“blocksize: dx=100” etc.

To run a command file start DOS prompt by typing: > cmd, then move to the active
directory by typing: e.g. > cd c:\gstat; to run spatial predictions or simulations run
the gstat programme together with a specific gstat command file from the DOS prompt
(Fig. 3.11):

> gstat.exe ev rk.cmd

Gstat can also automatically fit a variogram by using:

7An input table in the GeoEAS format.
8Typically ArcInfo ASCII format for raster maps.

http://gstat.org/manual/node30.html
http://www.epa.gov/ada/csmos/models/geoeas.html
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Fig. 3.11: Running interpolation using the gstat stand-alone: the DOS command prompt.

data(ev): ’points.eas’, x=1,y=2,v=3;

# set an initial variogram:

variogram(ev): 1 Nug(0) + 5 Exp(1000);

# fit the variogram using standard weights:

method: semivariogram;

set fit=7;

# write down the fitted variogram model and gnuplot

set output= ’vgm ev.cmd’;

set plotfile= ’vgm ev.plt’;

where set fit=7 defines the fitting method (weights=Nj/h2
j ), vgm ev.cmd is the text

file where the fitted parameters will be written. Once you fitted a variogram, you can
then view it using the wgnuplot application). Note that, for automated modelling of
variogram, you will need to define the fitting method and an initial variogram, which is
then iteratively fitted against the sampled values. Edzer Pebesma suggest use of initial
exponential variogram with nugget parameter = measurement error, sill parameter =
sampled variance, and range parameter = 10% of the spatial extent of the data (or two
times the mean distance to the nearest neighbour). This can be termed a standard
initial variogram model. Although the true variogram can be quite different, it is
important to have a good idea of how the variogram should look like.

There are many advantages of using the stand-alone version of gstat. The biggest
ones are that it takes little time to prepare a script and that it can work with large
maps (unlike R that often faces vector allocation problems). In addition, the results of
interpolation are directly saved in a GIS format and can be loaded to ILWIS or SAGA.
However, for regression-kriging, we need to estimate the regression model first, then
derive the residuals and estimate their variogram model, which can not be automated
in gstat so we anyway need to load the data to some statistical package before we can
prepare the command file. Hence, the stand-alone version of gstat, as SAGA, can be used
for geostatistical mapping, but only once all the regression-kriging parameters have been
estimated.

http://www.gnuplot.info
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3.4.2 Geostatistics in R

Although there are several packages in R to do geostatistical analysis and mapping,
many recognize R+gstat as the only complete and fully-operational package, especially
if you wish to run regression-kriging, multivariate analysis, geostatistical simulations
and block predictions (Hengl et al., 2007b; Rossiter, 2007b). To allow extension of R

functionalities to operations with spatial data, the developer of gstat, with a support
of colleagues, have develop a R package called sp (Pebesma and Bivand, 2005). Now
the users are able to load GIS layers directly into R, run geostatistical analysis on grid
and points and display spatial layers as in a standard GIS package. In addition to
sp, two important spatial data protocols have also been recently integrated in R: (1)
GIS data exchange protocols (GDAL — Geospatial Data Abstraction Library, and
OGR — OpenGIS Simple Features Reference Implementation), and (2) map projec-
tion protocols (PROJ.4 — Cartographic Projections Library). This allows R users to
import/export raster and vector maps, run raster/vector based operations and combine
them with statistical computing functionality of various packages. The development of
GIS and graphical functionalities within R has already caused a small revolution and
many GIS analysts are seriously thinking about completely shifting to R (Pebesma and
Bivand, 2005; Murrell, 2006).

A complete overview of gstat functions and example of R commands is given in
Pebesma (2004)9. The most used gstat functions in R include:

variogram — calculates sample (experimental) variograms;

plot.variogram — plots an experimental variogram with automatic detection of
lag spacing and maximum distance;

fit.variogram — iteratively fits an experimental variogram using reweighted
least squares estimation;

krige — a generic function to make predictions by inverse distance interpolation,
ordinary kriging, OLS regression, regression-kriging and co-kriging;

krige.cv — runs krige with cross-validation using the n-fold or leave-one-out
method;

Typically, a function in R (called method) consists of four elements — function name,
required arguments, optional arguments and output object name (see also page 30):

R offers much more flexibility than the stand-alone version of gstat, because users
can extend the optional arguments and combine them with outputs or functions derived
from other R packages. For example, instead of using a trend model with a constant
(intercept), one could use outputs of a linear model fitting, which allows even more
compact scripting.

9The Pebesma (2004) paper reached the TOP25 articles within the subject area Earth and Planetary

Sciences on science direct — find out why!

http://r-spatial.sourceforge.net
http://www.gdal.org
http://www.gdal.org/ogr/
http://proj.maptools.org/
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Note that in R, the user must type commands to enter data, do analyses, and plot
graphs. If a single argument in the command is incorrect, inappropriate or mistyped,
you will get an error message. If the error message is not helpful, then try receiving
more help about some operation by typing e.g. help(krige) or ?krige commands or
via the Html help files. R is also supported by comprehensive technical documenta-
tion and user-contributed tutorials. Visit the R website and look under Documentation
section for basic manuals in R. Many very useful introductory notes and books, includ-
ing translations of manuals into other languages than English, are available from the
Contributed documentation section. Another very useful source of information is the R
News10 newsletter, which often offers many practical examples of data processing. You
may also wish to register to the special interest groups such as R-sig-Geo or similar and
subscribe to their mailing lists. Gstat-info is the mailing list of the gstat package and
usually offers many interesting information.

Unfortunately, the help documentation for regression-kriging in R is limited to few
code examples only, often without any explanation what it does and how can it be used
for mapping of environmental variables. One of the main motives to produce this guide
was to diminish this gap.

3.5 Visualisation of maps in Google Earth

The rapid emergence and uptake of Google Earth may be considered evidence for a trend
towards a more visual approach to spatial data handling. Google Earth’s sophisticated
spatial indexing of very large datasets combined with an open architecture for integrat-
ing and customising new data is having a radical effect on many Geographic Information
Systems (Wood, 2007). One of its biggest impacts is that it has opened up the explo-
ration of spatial data to a much wider non-expert community of users (see further §4.8).
Google Earth is a winning software in at least five categories:

Availability — It is a free browser that is available to everyone. Likewise, users can
upload their own geographic data and share it with anybody (or with selected
users only).

High quality background maps — The background maps (remote sensing images,
roads, administrative units, topography) are constantly updated and improved. At
the moment, almost 20-30% of the World coverage is available in high resolution
(2 m IKONOS images). All these layers have been georeferenced at relatively high
quality and can always be used to validate spatial accuracy of maps you produce.

A single coordinate system — The geographic data in Google Earth is visualized
using a 3D model (central projection) rather than a projected 2D system. This
practically eliminates all the headaches you had with understanding projection
systems and merging maps from different projection systems. However, always
have in mind that the printed Google Earth displays although they might appear
to be 2D, will always show distortions due to Earth’s curvature (or due to the
relief displacements). At very detailed scales (blocks of the buildings), these dis-
tortions can be ignored so that the distances on the screen correspond closely to
the distances in the nature.

10Vol. 1/2 of R News, for example, is completely dedicated to spatial statistics in R; see also Pebesma

and Bivand (2005) for an overview of classes and methods for spatial data in R.

http://r-project.org/
http://cran.r-project.org/doc/Rnews/
http://cran.r-project.org/doc/Rnews/
https://stat.ethz.ch/mailman/listinfo/r-sig-geo
http://www.gstat.org/gstat-info/maillist.html
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Web-based data sharing — Google Earth data is located on internet servers so that
the users do not need to download or install any data locally.

Popular interface — Google Earth, as many other Google’s product, are completely
user-oriented. What makes Google Earth especially popular is the impression of
literarily flying over Earth’s surface and interactively exploring the content of
various spatial layers.

There are several competitors to Google Earth (NASA World Wind, ArcGIS Explorer,
3D Weather Globe), although none of them can be compared to Google Earth in any of the
above-listed aspects. On the other hand, Google Earth poses some copyright limitations,
so you should definitively read the Terms and Conditions before you decide to use it
for your own projects. For example, Google welcomes you to use any of the multimedia
produced using Google tools as long as you preserve the copyrights and attributions
including the Google logo attribution. However, you cannot sell these to others, provide
them as part of a service, or use them in a commercial product such as a book or TV
show without first getting a rights clearance from Google.

While at present, Google Earth is primarily used as a geo-browser for exploring spa-
tially referenced data, its functionality can be integrated with the geostatistical tools
and stimulate sharing of environmental data between international agencies and research
groups (Wood, 2007). Although Google Earth does not really offers much GIS function-
ality, it can be used also to add content, such as points or lines to the existing maps,
measure areas and distances, derive UTM coordinates and eventually load GPS data.
Still, the biggest use of Google Earth are its visualisation capabilities that can not be
compared to any GIS. The base maps in Google Earth are extensive and of high quality,
both considering the spatial accuracy and content. In that sense, Google Earth is a GIS
that exceeds any existing public GIS in the world.

To load your own GIS data to Google Earth, there are few possibilities. First, you
need to understand that there is a difference between loading the vector and raster maps
to Google Earth. Typically, it is relatively easy to load vector data such as points or
lines to Google Earth, and somewhat more complicated to do the same with raster maps.
Also note that, because Google Earth works exclusively only with Latitude/Longitude
projection system (WGS84 ellipsoid), all vector/raster maps need to be first reprojected
before they can be exported to KML format. More about importing the data to Google

Earth can be found via the Google Earth User Guide.

3.5.1 Exporting vector maps to KML

Vector maps can be loaded by using various plugins/scripts in packages such as ArcView,
MapWindow and R. Shape files can be directly transported to KML format by using the
ArcView’s SHAPE 2 KML script, courtesy of Domenico Ciavarella. To install this script,
download it, unzip it and copy the two files to your ArcView 3.2 program directory:

..\ARCVIEW\EXT32\shape2KML.avx

..\ARCVIEW\network\shp2kmlSource.apr

This will install an extension that can be easily started from the main program menu
(Fig. 3.12). Now you can open a layer that you wish to convert to KML and then click
on the button to enter some additional parameters. There is also a commercial plugin
for ArcGIS called Arc2Earth, which allows various export options.

http://worldwind.arc.nasa.gov/
http://www.esri.com/software/arcgis/explorer/
http://www.mackiev.com/3d_globe.html
http://earth.google.com/support/bin/answer.py?answer=25095
http://earth-info.nga.mil/GandG/wgs84/
http://earth.google.com/userguide/v4/ug_importdata.html
http://www.mapwindow.org
http://arcscripts.esri.com/details.asp?dbid=14254
http://www.arc2earth.com
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Fig. 3.12: Exporting ESRI shape files to KML using an ESRI script in ArcView 3.2. Note that
the vector maps need to be first reprojected to LatLon WGS84 system.
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An alternative to export the shape files to KML is the Shape2Earth plugin for
the open-source GIS MapWindow. Although MapWindow is an open-source GIS, the
Shape2Earth plugin is a shareware so you might need to purchase it. Export to KML
is possible also in R via the writeOGR command. This can be achieved in three steps:

# load the rgdal package for GIS data exchange:

require(rgdal)

# reproject the original map to the longlat system:

points.longlat = spTransform(points, CRS("+proj=longlat"))

# export the point map using the KML driver:

writeOGR(points.longlat, "points.kml", "Ebergotzen", driver = "KML")

3.5.2 Exporting raster maps (images) to KML

Rasters can not be exported that easy to KML. Google Earth does not allow import of
GIS raster formats, but only input of images that can then be draped over a terrain
(ground overlay). The images need to be exclusively in one of the following formats:
JPG, BMP, GIF, TIFF, TGA and PNG. Typically, export of raster maps to KML follows
these steps:

(1.) Determine the grid system of the map in the LatLonWGS84 system. You need to
determine five parameters: southern edge (south), northern edge (north), western
edge (west), eastern edge (east) and cellsize in arcdegrees (Fig. 3.13).

(2.) Reproject the original raster map using the new LatLonWGS84 grid.

(3.) Export the raster map using a graphical format (e.g. TIFF), and optionally the
corresponding legend.

(4.) Prepare a KML file that includes a JPG of the map (Ground Overlay), legend of
the map (Screen Overlay) and description of how the map was produced. The
JPG images you can locate on some server and then refer to an URL.

The bounding coordinates and the cell size in the LatLonWGS84 coordinate system
can be estimated by using the following table calculation in ILWIS. First determine the
minimum and maximum corners of your map and convert them to the LatLonWGS84

system:

minX=mincrdx(SAND_rk)
minY=mincrdy(SAND_rk)
maxX=maxcrdx(SAND_rk)
maxY=maxcrdy(SAND_rk)

west1{dom=Value, vr=-180.00000:180.00000:0.00001}=crdx(transform(coord(minX,
minY, germany3), LatlonWGS84))
west2{dom=Value, vr=-180.00000:180.00000:0.00001}=crdx(transform(coord(minX,
maxY, germany3), LatlonWGS84))
east1{dom=Value, vr=-180.00000:180.00000:0.00001}=crdx(transform(coord(maxX,
minY, germany3), LatlonWGS84))
east2{dom=Value, vr=-180.00000:180.00000:0.00001}=crdx(transform(coord(maxX,
maxY, germany3), LatlonWGS84))

http://www.mapwindow.org/download.php?show_details=29
http://www.mapwindow.org
http://code.google.com/apis/kml/documentation/kml_tut.html#ground_overlays
http://code.google.com/apis/kml/documentation/kml_tut.html#screen_overlays
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south1{dom=Value, vr=-90.00000:90.00000:0.00001}=crdy(transform(coord(minX,
minY, germany3), LatlonWGS84))
south2{dom=Value, vr=-90.00000:90.00000:0.00001}=crdy(transform(coord(maxX,
minY, germany3), LatlonWGS84))
north1{dom=Value, vr=-90.00000:90.00000:0.00001}=crdy(transform(coord(minX,
maxY, germany3), LatlonWGS84))
north2{dom=Value, vr=-90.00000:90.00000:0.00001}=crdy(transform(coord(maxX,
maxY, germany3), LatlonWGS84))

west=min(west1,west2)
east=max(east1,east2)
south=min(south1,south2)
north=max(north1,north2)
latm=abs((south+north)/2)

The cell size and nrows and ncols for the new map can be determined using
(Fig. 3.13):

gpix{dom=Value, vr=0.00000:20.00000:0.00001}=abs(pixsize(%1)/
(111319*cos(degrad(latm))))

nrows{dom=Value, vr=0:10000:1}=(north-south)/gpix
ncols{dom=Value, vr=0:10000:1}=(east-west)/gpix

You can also use an ILWIS script to automatically estimate the bounding coordinates
and produce a new grid definition that matches the borders of your area. Once you have
resampled the map, then export it as an image and copy to some server. A KML file
that can be used to visualize a result of geostatistical mapping would look like this:

Fig. 3.13: Determination of the bounding coordinates and cell size in the LatLonWGS84 geographic
projection system using an existing Cartesian system. For large areas (continens), it is advisable
to visually validate the estimated values.

http://geomorphometry.org/data/geocoord.zip
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Fig. 3.14: Preparation of the image ground overlays using the Google Earth menu.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.1">
<Document>

<name>Raster map example</name>
<GroundOverlay>

<name>Map name</name>
<description>Description of how was map produced.</description>
<Icon>

<href>http://pedometrics.org/geostat/sand_rk.jpg</href>
</Icon>
<LatLonBox>

<north>51.591667</north>
<south>51.504167</south>
<east>10.151389</east>
<west>10.010972</west>

</LatLonBox>
</GroundOverlay>
<ScreenOverlay>

<name>Legend</name>
<Icon>

<href>http://pedometrics.org/geostat/sand_rk_legend.jpg</href>
</Icon>
<overlayXY x="0" y="1" xunits="fraction" yunits="fraction"/>
<screenXY x="0" y="1" xunits="fraction" yunits="fraction"/>
<rotationXY x="0" y="0" xunits="fraction" yunits="fraction"/>
<size x="0" y="0" xunits="fraction" yunits="fraction"/>

</ScreenOverlay>
</Document>
</kml>

In this case the output map (sand rk.jpg) and the associated legend are both placed
directly on a server. The resulting map can be seen further in the §4.8. Once you open
this map in Google Earth, you can edit it, modify the transparency, change the icons
used and combine it with other vector layers. Ground Overlays can also be added
directly in Google Earth by using commands Add 7→ Image Overlay, then enter the
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correct bounding coordinates and location of the image file (Fig. 3.14). Because the
image is located on some server, it can also be automatically refreshed and/or linked to
a Web Mapping Service (WMS). For a more sophisticated use of Google interfaces see
the Mike Williams’ Google Maps API tutorial.

3.6 Other software options

3.6.1 Isatis

Isatis11 is probably the most expensive geostatistical package (>10K e) available in the
market today, but is definitively also one of the most professional packages for environ-
mental sciences. Isatis was originally built for Unix, but there are MS Windows and
Linux versions also. From the launch of the package in 1993, >1000 licences have been
purchased worldwide. Standard Isatis clients are Oil and Gas companies, consultancy
teams, mining corporations and environmental agencies.

Isatis offers a wide range of geostatistical functions ranging from 2D/3D isotropic
and directional variogram modelling, univariate and multivariate kriging, punctual and
block estimation, drift estimation, universal kriging, collocated co-kriging, kriging with
external drift, kriging with inequalities (introduce localized constraints to bound the
model), factorial kriging, disjunctive kriging etc. From all these, especially, interactivity
of exploratory analysis, variogram modelling, detection of local outliers and anisotropy
is brought in Isatis to perfection (Fig. 3.15).

Fig. 3.15: Exploratory data analysis possibilities in Isatis.

Regression-kriging in Isatis can be run by selecting Interpolation 7→ Estimation 7→
External Drift (Co)-kriging (Fig. 3.16). Here you will need to select the target variable
(point map), predictors and the variogram model for residuals. You can import the
point and raster maps as shape files and raster maps as ArcView ASCII grids (import-
ing/exporting options are limited to standard GIS formats). Note that, before you can
do any analysis, you first need to define the project name and working directory using

11The name is not an abbreviation. Apparently, the creators of Isatis were passionate climbers so they

name their package after one climbing site in France.

http://www.econym.demon.co.uk/googlemaps/
http://www.geovariances.com
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the data file manager. After you imported the two maps, you can visualize them using
the display launcher.

Note that KED in Isatis is limited to only one (three when scripts are used) auxiliary
raster map (called background variable in Isatis). Isatis justifies limitation of number
of auxiliary predictors by computational efficiency. In any case, a user can first run
factor analysis on multiple predictors and then select the most significant component,
or simply use the regression estimates as the auxiliary map.

Fig. 3.16: Setting the options for Kriging with External Drift in Isatis.

Isatis offers a variety of options for the automated fitting of variograms. You can also
edit the Model Parameter File where the characteristics of the model you wish to apply
for kriging are stored. The user manual does not give insight into the algorithm used
(except for the mathematical proofs), so I could not tell how exactly are the KED weights
estimated and is there any regression modelling involved prior to the interpolation of
data.

3.6.2 GRASS GIS

GRASS (Geographic Resources Analysis Support System) is a general-purpose Geo-
graphic Information System (GIS) for the management, processing, analysis, modelling
and visualisation of many types of georeferenced data. It is Open Source software re-
leased under GNU General Public License. The main component of the development
and software maintenance is built on top of highly automated web-based infrastructure
sponsored by ITC-irst (Centre for Scientific and Technological Research) in Trento, Italy
with numerous worldwide mirror sites. GRASS includes functions to process raster maps,
including derivation of descriptive statistics for maps, histograms, but also to generate
statistics for time series. There are also several unique interpolation techniques. One
should definitively consider using the Regularized spline with tension (RST) interpo-
lation, which has been quoted as one of the most sophisticated methods to generate

http://grass.itc.it
http://grass.itc.it
http://grass.itc.it/grass63/manuals/html63_user/rasterintro.html
http://grass.itc.it/grass63/manuals/html63_user/r.series.html
http://grass.itc.it/grass63/manuals/html63_user/v.surf.rst.html
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smooth surfaces from point data (Mitasova et al., 2005).
The geostatistical functionality in GRASS is achieved mainly via a link to R, actually

through an R package called spgrass6 (Bivand, 2005). In the version v5.0 of GRASS, sev-
eral basic geostatistical functionalities existed including ordinary kriging and variogram
plotting, however, the developer of GRASS finally concluded that there is no need to
build geostatistical functionality from scratch when a complete open source package al-
ready exist. The current philosophy focuses on making GRASS functions also available
in R, so that both GIS and statistical operations can be integrated in a single command
line. A complete overview of the Geostatistics and spatial data analysis functionality can
be found via the GRASS website. Certainly, if you are an Linux user and already familiar
with GRASS, you will probably not have many problems to implement the procedures
described in chapter §4 and currently adjusted to ILWIS/SAGA GIS.

3.6.3 Idrisi

Idrisi is one of the medium-cost GIS packages but possibly with largest numbers of raster
and vector operations. The price per a single licence is about e500, but you can always
order a 7-day evaluation version to test it. Idrisi provides statistical tools for spatial
analysis of raster images, including simple regression, autocorrelation analysis, pattern
analysis, trend analysis, logistical regression, and many more. In Idrisi, gstat code has
been also adjusted and integrated within the GUI, which practically means that you can
use Idrisi as a graphical user interface to gstat. Additional integration of statistical and
GIS functionality can be achieved through a link to S-Plus.

Fig. 3.17: The spatial dependence modeller in Idrisi.

To run regression-kriging in Idrisi, first import all point and raster maps using Import
7→ Software-specific-formats 7→ ESRI formats 7→ ARCRASTER (Arcinfo ASCII format
to raster); or SHAPEIDR (Shape file to Idrisi. First run multiple regression analysis
using the points and rasters and then derive the residuals (at sampling locations). You
can now model a variogram of residuals by using the Spatial dependence modeller, which
also allows modelling of the anisotropy (Fig. 3.17).

http://cran.r-project.org/src/contrib/Descriptions/spgrass6.html
http://grass.itc.it/statsgrass/
http://www.clarklabs.org
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Derive the semivariances using a point map, save them and load them in the vari-
ogram model fitting environment, where you can (interactively) estimate the variogram
model parameters. After you finished fitting the variogram, you can save the vari-
ogram parameters and load them later to do kriging or simulations. Once you fitted the
variogram model, you can run regression-kriging by selecting GIS analysis 7→ Surface
analysis 7→ Interpolation 7→ Kriging and simulations. You will then get an user-friendly
kriging dialog window (Fig. 3.18) where you can input: variogram model, variable to
predict, auxiliary maps and several other optional arguments.

Fig. 3.18: Universal kriging input window in Idrisi.

In Idrisi, only raster input files are allowed for input maps. The first input file contains
the sample data, the second, third etc input file is a fully sampled surface that has
attribute values for all prediction locations. This means that, before running regression-
kriging in Idrisi, you need to convert the point map (*.vct) to a raster image using the
RASTERVECTOR operation. Note that a local neighborhood must be specified for each
input file. Unfortunately, Idrisi help warns that the Spatial Dependence Modeler can not
calculate generalized least squares residuals, although this was originally implemented
in gstat. Also note that Idrisi uses term residuals with somewhat different meaning —
unlike in R, Idrisi will not derive residuals for you but you will have to do it yourself.
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3.7 Summary points

3.7.1 Strengths and limitations of geostatistical software

A full integration of GIS and geostatistics has still many obstacles to tackle. At the
moment, a large gap exists between what is possible for some (researchers) and what
is available to many (users). No GIS package includes all of generalized linear models,
variogram fitting, iterative estimation of residual variograms, and kriging, let alone
their seamless integration. Likewise, no statistical package can compete with pure GIS
packages specialized to process, edit and display vector and/or raster maps.

A comparison of different aspects of geostatistical packages listed by the AI-Geostats
group and several well-known GIS packages can be seen in Table 3.1. Although the
universal kriging (using coordinates) is available in most geostatistical packages, kriging
with external drift with multiple auxiliary maps can be run in only a limited number of
packages. From all software in the world, only Isatis, SAGA, and gstat (as stand-alone
application or integrated into R, GRASS or Idrisi) offer a possibility to interpolate a
variable using (multiple) auxiliary maps (Hengl et al., 2007b). We have tested regression-
kriging in all these packages to discover that RK in Isatis is limited to a use of a single
(three in script mode) auxiliary maps (Bleines et al., 2004). In Idrisi, GLS regression
coefficients can not be estimated and the system is rather unstable. In gstat, both
RK predictions and simulations (predictors as base maps) at both point and block
support can be run by defining short scripts, which can help automatize interpolation of
large amounts of data. However, gstat implements the algorithm with extended matrix
(KED), which means that both the values of predictors and of target variable are used to
estimate the values at each new location, which for large datasets can by time-consuming
or can lead to computational problems (Leopold et al., 2005).

Setting RK in gstat or SAGA to a smaller window search can lead to termination of the
program due to the singular matrix problems. In fact, local RK with a global variogram
model is not valid because the regression model will differ locally, hence the algorithm
should also estimate the variogram model for residuals for each local neighbourhood
(as mentioned previously in §2.2). The singular matrix problem will happen especially
when indicator variables are used as predictors or if the two predictor maps are highly
correlated. Another issue is the computational effort. Interpolation of� 103 points over
1M of pixels can last up to several hours on a standard PC. To run simulations in R+gstat

with the same settings will take even more time. This clearly proves that, although KED
procedure is mathematically elegant, it might be more effective for real-life applications
to fit the trend and residuals separately (the regression-kriging approach) instead of
through use of an extended matrix (the KED approach). A limitation of gstat.exe

is that it is a stand-alone application and the algorithms can not be adjusted easily.
Unlike the gstat package in R that can be extended and then uploaded by anybody. A
limitation of R, however, is that it can reach memory use problems if larger rasters or
larger quantity of rasters are loaded into R. Visualisation of large maps in R is also not
recommended.

So in summary, if you wish to fit your data in a statistically most optimal way and
with no limitations on the number of predictors and statistical operations, then you
should definitely do it directly in R. If you do not feel confident about using software
environment without an interface, then you should try running global Universal kriging
in SAGA. However, SAGA does not provide professional variogram modelling options,
so a combination of R and SAGA is probably the best idea. In fact, the computation
is a bit faster in SAGA than in R and there are no memory limit problems. However,

http://ai-geostats.org
http://ai-geostats.org
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Table 3.1: Comparison of computing capabilities of some popular statistical and GIS packages
(versions in year 2007): F — full capability, ? — possible but with many limitations, − — not
possible in this package. Commercial price category: I — > 1000 EUR; II — 500-1000 EUR;
III — < 500 EUR; IV — open source or freeware. Main application: A — statistical analysis
and data mining; B — interpolation of point data; C — processing of auxiliary maps; E —
preparation and visualization of final maps. After Hengl et al. (2007b).
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− ? ? − − − F ? F F F F
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F F − F ? ? ? − F F F ?

Image processing
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(orthorectification,
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surface analysis)

− − − − − − ? − F F ? F
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(regression trees,
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F F − ? − − − − − ? − −
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− F − F − ? − − − F F −
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maps

− F − ? − − F ? ? F − F

Dynamic modelling
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in SAGA you will not be able to objectively estimate the variogram of residuals or GLS
model for deterministic part of variation.

3.7.2 Getting addicted to R

From the above-listed packages, one package needs to be especially emphasized and
that is R. Many R users believe that there is not much in statistics that R can not do12.
Certainly, the number of packages is increasing everyday, and so is the community. There
are at least five good (objective) reasons why you should get deeper into R (Rossiter,
2007a):

It is of high quality — It is a non-commercial product of international collaboration
between top statisticians.

It helps you think critically — It stimulates critical thinking about problem-solving
rather than a push the button mentality.

It is an open source software — Source code is published, so you can see the exact
algorithms being used; expert statisticians can make sure the code is correct.

It allows automation — Repetitive procedures can easily be automated by user-
written scripts or functions.

It can handle and generate maps — R now also provides rich facilities for interpo-
lation and statistical analysis of spatial data, including export to GIS packages
and Google Earth.

The main problem with R is that each step must be run via a command line, which
means that the analyst must really be an R expert. Although one can criticize R for a
lack of an user-friendly interface, in fact, the most power users in statistics never use
GUIs (there is the same issue with the SAS procedures). GUI’s are fine for baby-steps
and getting started, not for a real production work. The whole point is that one can
develop a script or program that, once it is right, it can be re-run and it will produce
exactly the same results (excluding simulations of course).

Another import aspect we need to consider is R’s fitness to work with large dataset.
Currently, many pharmaceutical organizations and financial institutions that use R as
their main engine, crunching huge amounts of data, so it is an operational tool that
can be used for large projects. However, when it comes to GIS data, R still has serious
limitations, both to load, display and process large raster maps (�1M pixels13). This
problem, as mentioned previously, can be solved by combining R with other (preferably
open-source) GIS packages. Colleagues from the Centre for e-Science in Lancaster have
been recently developing an R package called MultiR that should be able to significantly
speed up R calculations by employing the grid computing facilities (Grose et al., 2006).

Here are some useful tips on how to get addicted to R. First, you should note that you
can edit the R scripts in an user-friendly script editors such as Tinn-R or use the package
R commander (Rcmdr), which has an user-friendly graphical interface. Second, you
should take small steps before you can get into really sophisticated script development.

12This is probably somewhat biased statement. For example, R is definitively not (yet) fit for image

processing (filter analysis, map iterations etc.) and interactive visual exploration of spatial data.
13One solution is to manually set the memory limits e.g. --min-vsize=10M --max-vsize=3G

--min-nsize=500k --max-nsize=100M where Windows starts the Rgui.exe (right-click the R shortcut

on your desktop and add this line at the end of the Rgui.exe address).

http://e-science.lancs.ac.uk
http://www.ogf.org
http://www.sciviews.org/Tinn-R/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
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Start with some simple examples and then try to do the same exercises with your own
data. The best way to learn R is to look at the existing scripts. For example, a French
colleague, Romain François, has been maintaining a gallery of R scripts that is dedicated
to the nobel goal of getting you addicted to R. Third, if your R script does not work, do
not break your head, try to get the book of Chambers and Hastie (1992), Venables and
Ripley (2002) and Murrell (2006) or search internet for people with similar problems.
Web-resources on R are quite extensive and often you will find all that you need. If
nothing from the above helps, try to contact some of the R gurus. However, keep in
mind that these are extremely busy people and that they prefer to communicate with
you about your problems via some of the R mailing lists14.

3.7.3 Further software developments

There are still many geostatistical operations that we are aware off, but have not been
implemented and are not available to broader public (§2.8.3). What the programmers
definitively might consider for future is the refinement of (local) RK in a moving window.
This will allow not only better data fitting, but will also allow users to visualize varia-
tion in regression (maps of R-square and regression coefficients) and variogram models
(maps of variogram parameters). Note that the RK with moving window would need
to be fully automated, which might not be an easy task considering the computational
complexity. Also, unlike the OK with moving window (Walter et al., 2001), RK has
much higher requirements considering the minimum number of observations (at least 10
per predictor, at least 50 to model variogram). In general, our impression is that much
of the procedures (regression and variogram modelling) in RK can be automatized and
amount of data modelling definitions expanded (local or global modelling, transforma-
tions, selection of predictors, type of GLMs etc.), as long as the point data set is large
and of high quality. Ideally, user should be able to easily test various combinations of
input parameters and then (in real-time) select the one that produces most satisfactory
predictions.

The open-source packages open the door to analyses of unlimited sophistication.
However, they were not designed with graphical user interface, wizards, nor interactivity
typical for commercial GIS packages. Because of this, they are not easily used by non-
experts. There is thus opportunity both for commercial GIS to incorporate RK ideas,
or for open-source software to become more user-friendly. Because many statistical
techniques can be automated, integration of GIS and statistical algorithms, in the near
future, should open the possibility to easily and quickly interpolate dozens of variables
by using dozens of predictors.

3.7.4 Towards a system for automated mapping

Geostatistics provides a set of mathematical tools that have been used now over 50 years
to generate maps from point observations and to model the associated uncertainty. It
has proven to be an effective tool for large quantity of applications ranging from mining
and soil and vegetation mapping to environmental monitoring and climatic modelling.
Several years ago, geostatistical analysis was considered to be impossible without inter-
vention of a spatial analyst, who would manually fit variograms, decide on the support

14Think about it — R developers are not employees of R.com! They are not responsible to provide

ANY support. If you really want to get some useful feedback then try to ask SMART questions that

contribute to the progress of the whole community, and not only to your personal goals. Before posting

any questions, make sure you read the R posting guide.

http://www.math.csi.cuny.edu/Statistics/R/simpleR/
http://addictedtor.free.fr
http://www.r-project.org/mail.html
http://www.r-project.org/posting-guide.html
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size and elaborate on selection of the interpolation technique. Today, the heart of a
mapping project can be the computer program that implements (geo)statistical algo-
rithm that has shown itself to be successful in predicting target values. This leads to a
principle of automated mapping where the analyst focuses his work only on prepar-
ing the inputs and supervising the data processing15. This way, the time and resources
required to go from field data to the final GIS product (geoinformation) are used in an
economical manner.

Automated mapping is still utopia for many mapping agencies. At the moment,
each group in the world involved with environmental monitoring runs analysis separately,
often without using the right technique, frequently without making the right conclusion,
and almost always without considering data/results of adjacent mapping groups. On
one side, the amount of field and remote sensing data in the world is rapidly increasing
(Table 3.2); on the other side, we are not able to provide reliable information to decision
makers in near real-time. It is increasingly necessary that we automate the production
of maps (and models) that depict environmental information. In addition, there is an
increasing need to bring international groups together and start “piecing together a
global jigsaw puzzle”16. All this proves that automated mapping is an emerging research
field and will receive a significant attention in geography and Earth sciences in general
(Hiemstra et al., 2007).

Spatial 
inference 
system

AUTO-MAP.ORGAUTO-MAP.ORG

Load field-data (points, 
areas) to AUTO-MAP

Select method: interpolation/
simulations, sampling 
optimisation, error assessment

Convert outputs to 
KML format (ASP script)
including the machine 
readable meta-data

Repository of auxiliary data:
- DEM parameters
- RS images
- thematic maps Select optional parameters: 

target area (grid size), targeted 
precision, maximum iterations 

Share outputs to users’ groups:
(a) registered groups
(b) Google Earth community

(1)

(2)

(3)

(5)

OUTPUTS:
- raster maps (GIS data)
- full analysis report (HTML)
- visualisations (JPG)

Evaluate results and approve 
their publication/dissemination(4)

PROCESSING STEPS:

Fig. 3.19: The flow of procedures in auto-map.org: a web-based system for automated predictive
mapping using geostatistics. The initial fitting of the models is completely automated, the user
then evaluates the results and makes eventual revisions.

The author of this guide with a group of collaborators have already started some
preliminary work to design, develop and test a web-based automated mapping system
called auto-map.org. This web-portal should allow the users to upload their point data
and then: (a) produce the best linear predictions, (b) interpret the result of analysis
through an intelligent report generation system, (c) allow interactive exploration of the
uncertainty, and (d) suggest collection of additional samples — all at click of button.

15See for example outputs of the INTAMAP project.
16Ian Jackson of the British Geological Survey; see also the OneGeology project.

http://www.intamap.org
http://www.onegeology.org
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Table 3.2: Some popular sources of (global) auxiliary data sets available at no cost or under an
academic licence (e.g. for use in research, environmental protection or for educational uses).

Data set Description

SRTM DEM

A global Digital Elevation Model produced by the Shuttle Radar Topography

Mission (SRTM). The area covered is between 60° North and 58° South. It

was recorded by X-Band Radar (NASA and MIL, covering 100% of the total

global area) and C-Band Radar (DLR and ASI, covering 40%). The non-public

DLR-ASI data is available with a resolution of approximately 30 m (1 arcsec).

MODIS images

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instru-

ment aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. The images

include the surface reflectance measures, land surface temperatures and emis-

sivity, vegetation indices, thermal anomalies, Leaf Area Index and similar, all

at resolution of 250 m. Both satellites are viewing the entire Earth’s surface

every 1 to 2 days, acquiring data in 36 spectral bands.

SPOT vegetation

images

SPOT offers a relatively coarse vegetation-based 10–day images of the whole

Earth collected in the period from 1998 until today. Only two bands are

available at the moment: NDVI and radiometry images. More detailed multi-

spectral images and DEMs can be order from SPOT at a commercial price.

GeoCover

LANDSAT scenes

High resolution (15 m) Landsat images for nearly all of the world (years 1990

and 2000) can be downloaded from the NASA’s website. The color composites

consists from three bands: band 7 (mid-infrared), band 4 (near-infrared) and

band 2 (visible green). The images are in the MrSID format and projected in

the UTM coordinate system.

ENVISAT images

The ENVISAT satellite is a platform for several instruments adjusted for mon-

itoring of the environmental resources: ASAR, MERIS, AATSR, MWR and

similar. The MEdium Resolution Image Spectrometer (MERIS) is used to

obtain images of the Earth’s surface at temporal resolution of 3–days. The

images comprise of 15 bands, all at resolution of 300 m, and can be best com-

pared to the MODIS Terra images. A registration is needed before the data

can be ordered/downloaded.

SEVIRI

meteorological

images

The Meteosat Second Generation (MSG) satellites (from Meteosat-8 onwards)

produce SEVIRI 15–minutes images at resolution of 1 km. For environmental

applications, the most attractive data set is the High Rate SEVIRI, which

consists of 12 spectral channels including: visible and near infrared light, water

vapour band, carbon dioxide and ozone bands.

Global Land

Cover Facility

maps

GLCF is a center for land cover science located at the University of Maryland.

Their most known/used product are the Land cover map of the World (14

classes) derived from the AVHRR satellite imagery acquired between 1981

and 1994, Landsat mosaics for large areas and various vegetation maps.

The DMSP lights

at night images

Available via the Defense Meteorological Satellite Program (DMSP), which

measures night-time light emanating from the earth’s surface at 1 km reso-

lution. The lights at night map contains the lights from cities, towns, and

other sites with persistent lighting, including gas flares. The filtered annual

composites are available from 1992 until today.

Global

Administrative

Areas

GADM is a database of the location of the world’s administrative areas

(boundaries). Administrative areas in this database are countries and lower

level subdivisions such as provinces and counties. GADM has data for more

than 100,000 areas.

Global Climate

layers

WorldClim contains grids of interpolated climatic variables for period 1950-

2000 using the measurements from >15,000 weather stations: mean, minimum

and maximum temperatures, monthly precipitation and bioclimatic variables.

All at ground resolution of 1 km. The maps were produced at the University

of California, Berkeley.

The One Geology

project maps

This is an on-going project with a purpose to produce dynamic digital 1:1

million geological map of the World that will be distributed via a web portal.

The first results have been scheduled for the International Geological Congress

in Oslo in 2008.

http://srtm.csi.cgiar.org
http://edcdaac.usgs.gov/modis/dataproducts.asp
http://www.spot-vegetation.com
https://zulu.ssc.nasa.gov/mrsid/
https://zulu.ssc.nasa.gov/mrsid/
http://envisat.esa.int
http://www.eumetsat.int
http://www.eumetsat.int
http://www.landcover.org
http://www.landcover.org
http://www.ngdc.noaa.gov/dmsp/
http://www.ngdc.noaa.gov/dmsp/
http://biogeo.berkeley.edu/gadm/
http://biogeo.berkeley.edu/gadm/
http://biogeo.berkeley.edu/gadm/
http://www.worldclim.org
http://www.worldclim.org
http://www.onegeology.org
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The analysis will be possible via a web-interface and a plugin (e.g. Google Earth), so that
various users can access/employ outputs from various mapping projects. All outputs
will be coded using the HTML and Google Earth (KML) language. The registered users
will be able to update the existing inputs and re-run analysis or assess the quality of
maps (Fig. 3.19). A protocol to convert and synchronize environmental variables coming
from various countries/themes will be developed in parallel (based on GML/GeoSciML).

There would be many benefits of having a robust, near-realtime automated mapping
tool with a friendly web-interface. These are the some important ones:

the time spent on data-processing would be seriously reduced; the spatial predic-
tions would be available in near real time;

through a browsable GIS, such as Google Earth, various thematic groups learn how
to exchange their data and jointly organize sampling and interpolation17;

the cost-effectiveness of the mapping would increase:

– budget of the new survey projects can be reduced by optimising the sampling
designs;

– a lower amount of samples is needed to achieve equally good predictions;

It is logical to assume that the software for automated mapping will need to be
intelligent. It will not only be able to detect anomalies, but also to communicate this
information to the users, autonomously make choices on whether to mask out parts
of the data sets, use different weights to fit the models or run comparison for various
alternatives. This also means that a development of such system will not be possible
without a collaboration between geostatisticians, computer scientists and environmental
engineers.

Many geostatisticians believe that map production should never be based on a black-
box system. Author of this guide agrees with these views. Although data processing
automation would be beneficial to all, analysts should at any moment have the final
control to adjust the automated mapping system if needed. To do this, they should
have full insight into algorithms used and be able to explore input datasets at any
moment.

Important sources:

F Conrad, O. 2007. SAGA — program structure and current state of implementa-
tion. In: Böhner, J., Raymond, K., Strobl, J., (eds.) “SAGA - Analysis and mod-
elling applications”, Göttinger Geographische abhandlungen, Göttingen, pp. 39-
52.

F Rossiter, D.G., 2007. Introduction to the R Project for Statistical Computing for
use at ITC. International Institute for Geo-information Science & Earth Observa-
tion (ITC), Enschede, Netherlands, 136 pp.

F Murrell, P., 2006. R Graphics. Chapman & Hall/CRC, Boca Raton, FL, 328 pp.

F Venables, W. N. and Ripley, B. D., 2002. Modern applied statistics with S. Statis-
tics and computing. Springer, New York, 481 pp.

17The “profit from your neighbour” concept.

http://www.cgi-iugs.org
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
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F http://www.52north.org — 52° North initiative where ILWIS GIS can be ob-
tained.

F http://www.saga-gis.org — homepage of the SAGA GIS project.

F http://www.gstat.org — homepage of the gstat program.

F Gstat-info mailing list.

F AI-Geostats’ list of software used for statistical spatial data analysis.

http://www.52north.org
http://www.saga-gis.org
http://www.gstat.org
http://www.gstat.org/gstat-info/maillist.html
http://www.ai-geostats.org
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4

A geostatistical mapping exercise

4.1 Case study: Ebergötzen

Ebergötzen is 10Ö10 km study area in the vicinity of the city of Göttingen in Central
Germany (51°30’03.16”–51°35’31.45”N; 10°00’28.67”–10°09’15.21”E). This area has been
extensively surveyed over the years, mainly for the purposes of developing operational
digital soil mapping techniques (Gehrt and Böhner, 2001). The dataset has also been
frequently used by the SAGA development team and the SciLands GmbH in many of
their demonstrations and documents.

The dataset consists of four groups of GIS layers (Fig. 4.1):

(1.) Point observations — the point dataset consists of lab measurements four vari-
ables are available: SAND, SILT and CLAY (all expressed as % of mass measured
for the 0-30 cm layer of soil) and SOILTYPE (type of soil based on the German
classification system). Point observations are allocated in three tables:

POINTS (300 observations) — the original dataset used to generate predic-
tions;

CONTROL (300 observations) — a validation dataset used to assess the accuracy
of predictions;

POINTSAL (2937 observations) — the complete dataset with all original ob-
servations;

(2.) Digital Elevation Models:

DEM25 — 25 m DEM derived from the topo-maps;

DEM100 — 100 m DEM from the SRTM mission;

(3.) LANDSAT image bands obtained from the Image 2000 & Corine Land Cover
2000 Project. The image consists of seven bands and one panchromatic band:

LANDIMG — 25 m bands: Band 1 (B, 0.45-0.52), Band 2 (G, 0.53-0.61), Band
3 (R, 0.63-0.69), Band 4 (NIR, 0.78-0.90), Band 5 (MIR, 1.55-1.75), Band 6
(T, 10.40-12.50), Band 7 (MIR2, 2.09-2.35);

PANIMG — 12.5 m panchromatic image;

(4.) Geological map — from 1:50.000 geological map of Germany:

87

http://www.saga-gis.org
http://www.scilands.de
http://srtm.usgs.gov
http://image2000.jrc.it
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ZONES: Z1 — Clay and loess, Z2 — Clayey materials, Z3 — Sandy material,
Z4 — Silt and sand;

Fig. 4.1: The Ebergötzen dataset.
Courtesy of Gehrt Ernst, the State Au-
thority for Mining, Energy and Geol-
ogy, Hannover, Germany.

All input raster maps are in ArcInfo *.asc for-
mat, and the point data (tables) are in a *.dbf

format. All coordinates are in the official Ger-
man coordinate system, zone 3 (germany3): Trans-
verse Mercator Projection, central meridian is 9°,
false easting 3500000, Bessel 1841 ellipsoid with
Potsdam datum. The bounding coordinates of
the study area are: XMIN=3570000, YMIN=5708000,
XMAX=3580000, YMAX=5718000. The input raster
maps are available in two grid resolutions: 25 m
(fine) and 100 m (coarse). These datasets can be
accessed from the course homepage. To navigate to
the area and get some impression about the type of
terrain, you can use the zones.kml (borders of ge-
ological units) and points.kml (location of points
dataset) Google Earth layers.

Purpose of this exercise is to interpolate four
variables (SAND, SILT and CLAY and SOILTYPE), as-
sess the accuracy of produced maps using an inde-
pendent validation dataset and prepare final lay-
outs. We will start by running some exploratory
data analysis, including descriptive statistics and
analysis of the point geometry; then we will prepare the auxiliary predictors — various
DEM-parameters, satellite-based soil indices and geological strata — and convert them
to soil predictive components; we will finally run predictions and simulations in R and
export the results to ILWIS, where the final layouts for Google Earth will be prepared.
In §4.7, some further testing and analysis is demonstrated using different detail of pre-
dictors (25 m vs 100 m DEMs), different density of points (POINTS vs POINTSAL), and
different types of predictors (remote sensing bands vs DEM-parameters).

We will work parallel in all four packages. In many cases, the same operations are
available in both SAGA, ILWIS and R, which will be indicated in the text. We will
always opt for a package that is most suited for specific analysis. For example, SAGA

will be used for processing of DEMs and extraction of land-surface parameters; ILWIS

will be used for processing of remote sensing data, principal component analysis and
preparation of final layouts; and R will be used for geostatistical analysis.

In most cases, the instructions will be command-based rather than point-and-click
operations. The advantage of using scripts in R, ILWIS or SAGA is that every compu-
tational step is recorded, and this history can be saved for later use or documentation.
Because many steps are automatic, we can also achieve a fully-automated geostatistical
mapping where no intervention of analyst is needed.

The computational steps basically follow the generic framework for digital soil map-
ping described in detail in Hengl et al. (2004a). This typically consists of five steps (see
also Fig. 2.10):

(1.) Preparation of the auxiliary maps and target variables.

(2.) Regression modelling.

mailto:Ernst.Gehrt@niedersachsen.de
http://geostat.pedometrics.org
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(3.) Variogram modelling of residuals.

(4.) Spatial prediction/simulations.

(5.) Production of final map layouts.

4.2 Data import and preparation of maps

We start by importing the point and raster data to various packages and processing
them. First download the ebergotzen.zip file that contains all rasters and tables used
in the exercise. Extract the files to some working directory e.g. d:\geostat\. You will
see all datasets listed in §4.1. In SAGA, ArcInfo ASCII files can be loaded directly using
Modules 7→ File 7→ Grid 7→ Import 7→ Import Arc/Info ASCII . This will only load the
maps in the working memory. All the changes and derivatives you will need to save to
the native SAGA grid format *.sgrd. Note that you can also do all processing and then
export your maps using Modules 7→ File 7→ Grid 7→ Export 7→ Export Arc/Info ASCII.
Tables (*.dbf) can be read directly in SAGA by selecting File 7→ Table 7→ Load table.
To generate a point map from a table, use Modules 7→ Shapes 7→ Points 7→ Convert a
Table to Points.

In ILWIS, you will need to import both the rasters and tables to the ILWIS for-
mat. To avoid mixing the datasets, I advise you to prepare an additional folder e.g.
d:\geostat\ilwismaps\ where you can keep all ILWIS maps. Note that, once you im-
port a raster map, ILWIS will create three files: (1) a header or object definition file
(*.mpr), (2) a binary data file that contains all data coded based on the domain type
(*.mp#), and (3) a georeference file that contains the definition of the grid system. The
grid definition file will not have the correct projection system, so you can use the coor-
dinate system available in the zip file. You might also replace the georefence definitions
by right-clicking a raster layer and selecting Properties 7→ Georeference 7→ change the
georeference to grid25m (or grid100m for the 100 m DEM).

4.2.1 The target variables

To import the point data (*.dbf table) to R use:

library(foreign)

points = read.dbf("points.dbf")

where foreign is the library for by Minitab, S, SAS, SPSS, Stata, Systat, dBase and
similar software packages. This will create an R data object called points. The first
thing you will probably wish to do is to open this dataset or at least look at it. There
are several basic R commands that allow you to get more insight into any datasets, in
the case you need to debug a code problem or extend computations:

structure and/or str — present the structure of an object, including class, num-
ber of elements, variables imbedded etc.

class — informs us about the type of object we are working with;

names — useful to obtain the names of variables and objects within an object;

summary — provides a summary (statistics) view of the data;

Let us first take a look at the structure of this dataset:

http://www.pedometrics.org/geostat/ebergotzen.zip
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> str(points)

’data.frame’: 300 obs. of 7 variables:
$ ID : Factor w/ 300 levels "id0003","id0009",..: 1 2 3 4 5 6 7 8 9 10 ...
$ X : num 3580837 3573361 3580379 3580438 3569344 ...
$ Y : num 5717700 5708477 5717719 5717685 5715447 ...
$ SAND : num 18.5 20 18.5 18.5 20 20 15.9 20 15.9 20 ...
$ SILT : num 67.3 40 67.3 67.3 40 40 63.9 40 63.9 40 ...
$ CLAY : num 14.1 40 14.1 14.1 40 40 20.2 40 20.2 40 ...
$ SOILTYPE: Factor w/ 13 levels "A","B","D","G",..: 7 2 7 7 9 9 9 9 6 9 ...
- attr(*, "data_types")= chr "C" "N" "N" "N" ...

this means that this a data.frame type of an object; it contains 300 observations and
7 variables: ID, X, Y, SAND, SILT, CLAY and SOILTYPE. The first and the last variable
are of type Factor1 (13 classes) and all other are numeric variables. Note that R has
automatically detected which are numerical, which factor-type variables and how many
soil types have been observed in total.

Fig. 4.2: Histogram for SAND (left) and the logit transformation plot (right).

Now we can also look at some summary statistical measures for our target variables.
First, let us look at the histogram:

hist(points$SAND, col="grey")

this will produce a plot as shown in Fig. 4.2. Note that the histogram shows that values
between 10-20% are the most frequent. Another useful display is the boxplot graph,
which will automatically determine the min/max range, 75% quantile range, mean value
and depict the outliers. The boxplot for SAND definitively shows that the distribution
is skewed toward lower values. To see if there are differences between various soil types
considering SAND, we can invoke a factor-based boxplot by (Fig. 4.3):

boxplot(points$SAND∼points$SOILTYPE, col="yellow", main="SAND %:

boxplot()s for different soil types")

1A factor is a numeric variable that acts as a categorical variable, i.e. you can do comparisons but

you can’t do computations with it.
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This boxplot should show that the interquantile ranges2 do not overlap seriously,
which means that all soil types differ in their properties.

A B D G Ha K L N NA Q R S Z
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40
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80

SAND %: boxplot()s for different soil types

Fig. 4.3: Using the standard boxplot display to assess a thematic overlap between different soil
types.

To solve the problem of skewness of distributions of target variables SAND, SILT and
CLAY, we can use the logit transformation (Hengl et al., 2004a):

z++ = ln
(

z+

1− z+

)
; 0 < z+ < 1 (4.2.1)

where z+ is the target variable standardised to the 0 to 1 range:

z+ =
z − zmin

zmax − zmin
; zmin < z < zmax (4.2.2)

and zmin and zmax are the physical minimum and maximum of z (in this case zmin=0
and zmax=100%). This means that all new predicted values will also be in-between these
two limits, which will save us from the problem of generating negative values. The logit
transformation in R can be achieved using:

points$SANDt = log((points$SAND/100)/(1-(points$SAND/100)))

After the transformation, the values of SANDt range from -3 to 3, and the predictions
can be within the [−∞,+∞] range (Fig. 4.2). The histogram of the transformed variable
is now closer to normality, and the boxplot shows better symmetry. The normality of
the target variable is important because it is a standard requirement for both regression
analysis and kriging. If the values of a target variable are skewed around the regression
line, this means that the model can lead to over- or under-estimation. Also note that, if
you plan to use the logit transformation with your own data, zero measurements need to
be replaced with an arbitrary small number — for example the precision3 of measuring a
variable in the laboratory or in the field. Otherwise, if a value of target variable equals

2The range between the one quarter largest values and the one quarter smallest values.
3In analytical chemistry, this value is known as the detection limit.
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zmin or zmax, logit transformation will generate NA’s and the final predictions will be
corrupted.

Now we can convert the table to point maps so we can run some geostatistical
analysis with them. This can be achieved using:

library(maptools)

coordinates(points)=∼X+Y

The coordinates function attaches the X and Y columns as coordinates. Although it
seems that nothing drastic has changed with the dataset, our data frame has converted
to a spatial points data frame, which has much more complex structure:

> summary(points)

Object of class SpatialPointsDataFrame
Coordinates:

min max
X 3569344 3580980
Y 5707618 5718820
Is projected: NA
proj4string : [NA]
Number of points: 300
Data attributes:

ID SAND SILT CLAY SOILTYPE
id0003 : 1 Min. : 6.10 Min. : 5.00 Min. : 2.50 L :78
id0009 : 1 1st Qu.:18.50 1st Qu.:34.30 1st Qu.:14.10 B :60
id0052 : 1 Median :20.00 Median :45.00 Median :20.20 S :35
id0055 : 1 Mean :30.24 Mean :48.16 Mean :21.57 Q :33
id0094 : 1 3rd Qu.:45.50 3rd Qu.:67.30 3rd Qu.:22.10 NA :24
id0112 : 1 Max. :92.50 Max. :74.60 Max. :50.00 Z :17
(Other):294 (Other):53

Note that the coordinate system is currently set as NA, which might give us problems
if we wish to export it to KML or similar GIS format. To attach the correct coordinate
system we use:

proj4string(points) = CRS("+init=epsg:31467")

which will set the coordinate system using the European Petroleum Survey Group
(EPSG) Geodetic Parameter database. The complete coordinate system is defined by
an unique ID "31467". For your own area, you can determine the EPSG ID by down-
loading the MS Access 97 database file (EPSG v6 12.mdb). Open this database and
follow the link to Forms for browsing or data entry/editing, then select Coordinate Ref-
erence System and click on the find button. You can browse the coordinate systems
in use by search for a country name (e.g. Germany) in the Coordinate Reference Sys-
tem form. An example of the complete EPSG Geoderic Parameter entry for coordinate
system germany3.crd can be seen in Fig. 4.4. If you can not find your coordinate
system in this database, you can always set the specific parameters manually, e.g. the
germany3.crd system can also be defined as:

proj4string(points)=CRS("+proj=tmerc +lat_0=0 +lon_0=9 +k=1.000

+x_0=3500000 +y_0=0 +ellps=bessel +towgs84=580.0,80.9,395.3 +units=m")

http://www.epsg.org
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Fig. 4.4: A complete definition of the coordinate system used in the case study Ebergötzen.
Obtained from the EPSG Geodetic Parameter database.

http://www.epsg.org
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where +proj is the type of projection, +lat 0, +lon 0 are the latitude and longitude of
natural origin, +x 0, +y 0 are false easting and northing, +ellps is the name of ellipsoid
and +towgs84 are the datum x, y, z shifts from the WGS84 system.

One you have converted the table to a spatial (point) data frame, you can display it
using the sp package and the bubble plot command:

bubble(points["SAND"], scales = list(draw = TRUE), pch=19, col="blue")

which will produce a map shown in Fig. 1.7a.
At this stage, there are few more things that we would like to explore prior to

regression and variogram modelling. First, we would like to detect the variances of the
target variables:

var(points[c("SAND", "SILT", "CLAY")])

which will produce:

SAND SILT CLAY

SAND 422.7256 -310.95110 -111.48449

SILT -310.9511 337.11190 -26.62895

CLAY -111.4845 -26.62895 138.29338

This actually produced variances for all combinations of variables. We are interested
in the diagonal values: SAND=422, SILT=337 and CLAY=138. Do the same for the
transformed variables and you will get the following variances: SAND=0.989, SILT=0.682
and CLAY=0.591.

Second, we can also observe how much are our target variables correlated between
each other:

cor(points[c("SAND", "SILT", "CLAY")])

this will produce:

SAND SILT CLAY

SAND 1.0000000 -0.8237127 -0.4610887

SILT -0.8237127 1.0000000 -0.1233293

CLAY -0.4610887 -0.1233293 1.0000000

as expected, all three variables are negatively correlated4. The highest correlation is
between SAND and SILT (r=-0.82). This does not represent a problem for geostatistical
mapping, but is an important measure to validate if also the output maps show a similar
correlation.

We can also run a principal component analysis on the three variables using:

pc.text = princomp(∼SANDt+SILTt+CLAYt, cor=T, data=points)

which will generate three components and summary statistics. In this case, the first
component explains 69.2% of variation, second 30.0% and the last component only
0.7%. The results of principal component analysis can be visualized using:

4These are compositional variables — the values are connected by definition. In the case of the

three texture fractions, a value of any variable equals 100 less sum of the other two.

http://www.remotesensing.org/geotiff/proj_list/
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Fig. 4.5: The biplot graph for principal component analysis of SANDt, SILTt, CLAYt.

biplot(pc.text)

which will produce a standard biplot graph that displays the first two components,
original variables represented with arrows and transformed observations. Again, the
biplot graph (Fig. 4.5) confirms that all variables are negatively correlated and equally
important to explain the overall variability in the data.

From the biplot display, we can also observe that many numbers are in fact over-
lapping, which makes them hard to read. It seems that there are only 19 clusters of
observations in the two dimensional space, although we know that there are 300 observa-
tions in this dataset (see also the groupings in the variogram cloud in Fig. 1.7b). Going
back to the origin of this dataset we need to note that the sand, silt and clay values have
been determined by using the so-called texture by hand method5. The literature (Skaggs
et al., 2001) reports that the this technique can be used to determine the content of soil
earth fractions only to an accuracy of ±5–10%. This means that we should not plan
to map any of the texture fractions to a precision better than ±5%, because it would
exceed the measurement error.

4.2.2 Auxiliary maps — predictors

We will use the auxiliary predictors from three sources of data: (a) remote sensing-based
indices, (2) DEM-based parameters and (3) geological units (strata or polygons). Note
that, because we wish to use the Landsat bands to map soil texture and distribution of
soil types, we need to use some relative indices that have shown to be related with soil
properties. We derive three soil-related indices6 based on the Landsat TM imagery:

5A surveyor distinguishes to which of the 32 texture classes a soil samples belongs to, and then

estimates the content of fractions. E.g. texture class St2 has 10% clay, 25% silt and 65% sand.
6You can derive these by using the map calculation syntax in ILWIS. Follow the ILWIS script available

in the zip file for complete details.
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(1.) Grain Size Index (GSI) (Xiao et al., 2006):

GSI =
R− B

R + G + B
(4.2.3)

(2.) Clay Index (CI):

CI =
MIR

MIR2
(4.2.4)

(3.) and Normalized Difference Vegetation Index (NDVI):

NDVI =
NIR− R

NIR + R
(4.2.5)

From the DEM, we can derive the following five parameters:

(1.) Slope gradient in % (SLOPE);

(2.) SAGA Wetness index (TWI);

(3.) Incoming solar radiation (SOLAR);

(4.) Plan curvature (PLANC);

(5.) Profile curvature (PROFC);

SLOPE and TWI reflect the erosion/deposition potential of a terrain and can be derived
in SAGA. The SAGA TWI is based on the modified catchment area that is estimated
iteratively to better represent large floodplains. Incoming solar radiation [kWh/m2] you
can derive also in SAGA for a period of one year using the default settings. It represents
the climatic conditions important for soil formation. Plan and profile curvature you can
derive in ILWIS using the scripts available at http://spatial-analyst.net. These
two measures of local morphometry can be used to represent hydrological factors of soil
formation.

The final group of predictors are the four indicator maps (Z1, Z2, Z3, Z4) showing
geological zones. These maps were produced by rasterizing a polygon map (ZONES) and
then converting it to indicators7, which can be done in ILWIS by using:

Z1{dom=value.dom;vr=0:1:1}=iff(ZONES="Z1",1,0)

which makes a raster map with a value domain (numeric variable) showing value 1 at
the location of Z1 and showing 0 for all other locations.

4.2.3 Assessment of the point geometry and sampling quality

As noted in the preface of this handbook, no geostatistician can promise high quality
products without quality input point samples. To assess how representative and con-
sistent is our input data, we can run some basic analysis of the point geometry and
then overlap the points with predictors to see how well are the environmental features
represented.

7As we will see later on, in R, there is no need for this manual conversion because R automatically

generates indicators from factor variables.

http://spatial-analyst.net
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Fig. 4.6: Results of point pattern anal-
ysis for the points data set.

Start with point pattern analysis in ILWIS by
selecting Operations 7→ Statistics 7→ Points 7→ Pat-
tern analysis. This will calculate a probability of
finding the 1-6 points and probability of finding all
points at certain distance (Boots and Getis, 1988).
The output graph can be seen in Fig. 4.6. From the
output of this analysis, we are interested in three
numbers: (1) 0.5 probability distance of finding one
neighbour8, (2) 1.0 probability distance of finding
one neighbour, and (3) 1.0 probability distance of
finding all neighbours. The last measure can be
use used to represent the extent of the area, i.e. to
input parameters for the definition of the standard
initial variogram (see page 3.4.1).

In the case of the points data set, we can see
that the 0.5 probability distance of finding one
neighbour is at about 250 m, 1.0 probability distance of finding one neighbour is at
950 m and the 1.0 probability distance of finding all neighbours is at 13.6 km. To ensure
that in less than 5% of grid cells points do not fall into the same grid cell, we should
select a grid cell size of at least (Hengl, 2006):

∆s ≤ 0.25 ·
√

A

n
= 0.25 ·

√
108

300
≈ 150 m (4.2.6)

Following the cartographic rule, used in soil mapping, that there should be at least
one (ideally four) observation per 1 cm2 of the map gives us the approximate effective
scale number for this dataset:

SN =

√
4 · A

n
· 102 . . . SN =

√
A

n
· 102 (4.2.7)

and in the case of the points data set, there are 222 points9 spread over an area of
100 km2, which shows that the effective scale of these maps will be between 1:125k and
1:75k. We can also estimate the suitable grid cell size using (Fig. 4.7):

∆s = 0.0791 ·
√

A

n
≈ 50 m (4.2.8)

Note that our original predictors are available in somewhat finer resolution (25 m),
so we will try to produce maps using regression-kriging which are at two times better
scale10 than our inspection density.

Next we want to evaluate the quality of the point sample considering how well does
it represent the study area. We consider two aspects of sampling quality: (a) point
density and (b) representation of feature space. The point density can be run in ILWIS

by using:

density=MapRasterizePointCount(points.mpp,grid2km.grf,1)

8This is a more objective measure of clustering than the Mean Shortest Distance.
9Some of the 300 points fall outside the sampling area, which can be nicely seen by using the SAGA

GIS.
10In geoinformation science this is referred to as downscaling or disaggregation (Hengl, 2006).
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Fig. 4.7: Possible cell sizes for the Ebergötzen case study.

where MapRasterizePointCount is the ILWIS function that will count number of points
within a grid node (grid2km). Assuming that there should be at least nmin=10 points
within an equal size sub-area (cluster), we have derive the cell size of the clusters to
assess the inspection density as:

∆S =

√
A

n
· nmin (4.2.9)

which gives approximately 2-kilometer grid. The ILWIS density map for these clusters
is shown in Fig. 4.8, left. Note that, to derive the actual values per km2 we had to
divide the density per grid with the area of each grid. You could generate several
random designs and then compare if the actual design is significantly different from the
completely random design.

Fig. 4.8: Density of points on a 2Ö2 km grid (left) and a Boxplot comparison of distances for
random point pattern and the points data set (right).

A more sophisticated point pattern analysis can be achieved by using the R package
spatstat. This has an extensive collection of methods to generate sampling designs, run
analysis on distances and analyze spatial autocorrelation structure in the data (Baddeley
and Turner, 2005). Just for a comparison, we can generate a random point pattern,

http://www.spatstat.org
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derive distances between the nearest neighbours and then compare the distributions of
the distances:

library(spatstat)

rand.points=rpoint(300, win=as.owin(c(points@bbox[1],

points@bbox[3],points@bbox[2],points@bbox[4])))

plot(rand.points)

dist.rpoints=nndist(rand.points$x, rand.points$y)

dist.points=nndist(points@coords[,1], points@coords[,2])

where rpoint is a spatstat method to generate a random point pattern, win defines the
bounding coordinates, and nndist will calculate a matrix of nearest neighbour distances
in a point pattern.

We can display the summary statistics for distances derived for a random point
pattern and our input points by putting two boxplots next to each other11 (Fig. 4.8,
right):

boxplot(nndist.rpoints, at = 1:1 -0.25, col="grey",

main="Distances random vs points")

boxplot(nndist.points, at = 1:1 +0.25, col="blue", add=TRUE)

In the case of the points data set, we can observe that the average spacing to the
nearest neighbour is in the range [155, 354], which is somewhat less then for the simulated
random design [196, 457]. Although the boxplot comparison shows that the points data
set is somewhat more clustered, it seems that our data set has a very similar distribution
of distances as the random design.

Next, we want to assess spreading of the points in the feature space, for which we
need to import the rasters in R. This can be using the rgdal package:

library(rgdal)

predictors = readGDAL("ilwis/DEM25.mpr")

which will do:

ilwis/DEM25.mpr has GDAL driver \textsf{ILWIS}

and has 400 rows and 400 columns

Closing GDAL dataset handle 0x00242b80... destroyed ... done.

which means that R has recognized the ILWIS GIS format and imported a dataset of size
400Ö400 grids. Other grid layers we can import using:

predictors$SLOPE = readGDAL("ilwis/SLOPE.mpr")$band1
predictors$PLANC = readGDAL("ilwis/PLANC.mpr")$band1
predictors$PROFC = readGDAL("ilwis/PROFC.mpr")$band1
predictors$SOLAR = readGDAL("ilwis/SOLAR.mpr")$band1
predictors$TWI = readGDAL("ilwis/TWI.mpr")$band1
predictors$GSI = readGDAL("ilwis/GSI.mpr")$band1
predictors$CI = readGDAL("ilwis/CI.mpr")$band1
predictors$NDVI = readGDAL("ilwis/NDVI.mpr")$band1
predictors$Z1 = readGDAL("ilwis/Z1.mpr")$band1
predictors$Z2 = readGDAL("ilwis/Z2.mpr")$band1
predictors$Z3 = readGDAL("ilwis/Z3.mpr")$band1
predictors$Z4 = readGDAL("ilwis/Z4.mpr")$band1

11In this case, by adding an argument add=TRUE, the second boxplot will be added to the current plot,

shifted for -0.25 of the bar width to the right.
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In this case, we need to specify that we wish to import only the first band ($band1)
of the ILWIS raster map, otherwise the command would overwrite the whole predictors
data set. Note that it can take time until R imports huge rasters so have this on your
mind. We can now look at the structure of the data set predictors:

> str(predictors)
Formal class ’SpatialGridDataFrame’ [package "sp"] with 6 slots
..@ data :’data.frame’: 160000 obs. of 13 variables:
.. ..$ SLOPE: num [1:160000] 6.1 18.0 32.5 40.8 38.2 ...
.. ..$ PLANC: num [1:160000] -0.440 -0.499 -0.841 -1.588 -2.391 ...
.. ..$ PROFC: num [1:160000] 0.467 0.427 0.211 -0.076 -0.393 ...
.. ..$ SOLAR: num [1:160000] 1299 1285 1249 1148 806 ...
.. ..$ TWI : num [1:160000] 9.05 9.12 9.76 9.28 10.76 ...
.. ..$ GSI : num [1:160000] -0.137 -0.128 -0.121 -0.129 -0.136 ...
.. ..$ CI : num [1:160000] 2.32 2.27 2.27 2.29 2.27 ...
.. ..$ NDVI : num [1:160000] 0.608 0.602 0.602 0.597 0.586 0.58 0.589 ...
.. ..$ Z1 : num [1:160000] 1 1 1 1 1 1 1 1 1 1 ...
.. ..$ Z2 : num [1:160000] 0 0 0 0 0 0 0 0 0 0 ...
.. ..$ Z3 : num [1:160000] 0 0 0 0 0 0 0 0 0 0 ...
.. ..$ Z4 : num [1:160000] 0 0 0 0 0 0 0 0 0 0 ...
.. ..$ DEM25: num [1:160000] 383 380 374 363 351 ...
..@ grid :Formal class ’GridTopology’ [package "sp"] with 3 slots
.. .. ..@ cellcentre.offset: Named num [1:2] 3570013 5708013
.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"
.. .. ..@ cellsize : num [1:2] 25 25
.. .. ..@ cells.dim : int [1:2] 400 400
..@ grid.index : int(0)
..@ coords : num [1:2, 1:2] 3570013 3579988 5708013 5717988
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:2] "x" "y"
..@ bbox : num [1:2, 1:2] 3570000 5708000 3580000 5718000
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "x" "y"
.. .. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class ’CRS’ [package "sp"] with 1 slots
.. .. ..@ projargs: chr " +proj=stere +lat_0=0 +lon_0=9 +k=1.000000
+x_0=3500000 +y_0=0 +ellps=bessel +datum=potsdam +units=m

which shows that predictors are a grid data frame with 13 bands. By typing:

>object.size(predictors)

you will notice that this data set occupies almost 17MB of the memory for the 25 m
resolution maps (160,000 grid nodes per band). For practical reasons, we will pack the
indicators and prepare a single spatial layer with factors:

predictors$ZONES = as.factor(apply(as.data.frame(predictors)[c("Z1",

"Z2", "Z3", "Z4")],+ 1, function(x) which(x == 1)))

which will produce a new factor-type band with classes "1", "2", "3" and "4". We can
also copy the name of the first band so that its name in the grid pack is DEM25, and
then delete it from the memory:

predictors$DEM25 = predictors$band1

predictors$band1 = NULL
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We also need to attach the correct coordinate system by using:

proj4string(predictors) = CRS("+init=epsg:31467")

Now, we can overlay the points over grids and to obtain the values of predictors at
point locations:

predictors.ov = overlay(predictors, points)

which will create a new point data frame with the same coordinates as points but with
attached attributes of the predictors grids. We need to copy the values of predictors
to our target data set by:

points$DEM25 = predictors.ov$DEM25

points$TWI = predictors.ov$TWI

points$GSI = predictors.ov$GSI

points$ZONES = predictors.ov$ZONES

and now we can do some preliminary analysis to investigate how well are the environ-
mental features represented with our point samples. For example, we can compare the
histograms of the maps versus the histograms of values at point locations, e.g. by using
a back to back histogram12:

library(Hmisc)

options(digits=1)

DEM25.histbb=histbackback(points$DEM25, predictors$DEM25, prob=TRUE)

This will produce two histograms next to each other so that we can visually compare
how well do the samples represent the original feature space of the raster maps (Fig. 4.9).
In the case of the points data set, we can see that the samples are misrepresenting (a)
higher elevations, (b) tops of hills/ridges and (c) areas of low GSI (forests).
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Fig. 4.9: Histogram for sampled values of DEM (300) versus the histogram of the raster map (all
raster nodes).

This is no surprise if we know that the surveyors have focused on sampling only
agricultural soils and have purposely omitted forest areas. We can actually test if the
histograms of sampled variables are significantly different from the histograms of original
raster maps e.g. by using a non-parametric test such as the Kolmogorov-Smirnov test:

12This requires installation of the package Hmisc.
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ks.test(DEM25.histbb$left, DEM25.histbb$right)

which shows that the two histograms have significantly different distributions (D=0.4,
p-value=0.1813). The same discrepancy can be observed for TWI (p-value=0.4676) and
GSI (p-value=0.2154). Another test that you might do to compare the histograms is to
run the correlation test13:

cor.test(DEM25.histbb$left, DEM25.histbb$right)

which shows that the two distributions are in fact significantly correlated for DEM (r=0.91)
and TWI (r=0.821), while the correlation for the GSI is insignificant (r=0.302).

In the last test we will assess whether the sampling density within different geological
units (ZONES) is consistent. First, we look at how many points fall into each zone:

>summary(points$ZONES)

1 2 3 4 NA’s

4 43 34 141 78

then we look at the size of the zones in pixels (each 25 m2):

>summary(predictors$ZONES)

1 2 3 4

36182 28872 22004 72942

so now we can derive the observed inspection density using:

inspdens.obs=summary(points$ZONES)[1:4]/(summary(predictors$ZONES)[1:4]*0.025^2)
inspdens.exp=rep(2.22,4)

which finally gives us the following table:

1 2 3 4

obs: 0.177 2.383 2.472 3.093

exp: 2.22 2.22 2.22 2.22

which can also be compared by using the Kolmogorov-Smirnov test:

ks.test(inspdens.obs, inspdens.exp)

In this case, we see that inspection density is also significantly inconsistent consid-
ering the map of ZONES, which is not by chance (D=0.75, p-value=0.2106). We could
also run similar analysis for land cover types or any other polygon-based predictors.

So in summary, we can conclude for the points dataset that:

the average distance to the nearest neighbour is 240 m and the extent of the area
is 13.6 km;

this point dataset is suitable for digital soil mapping at scales between 1:115k and
1:60k;

the sampling intensity is 3 points per km2, which corresponds to a grid cell size of
about 50 m;

13Also known as the test of no correlation because it computes t-value for correlation coefficient being

equal to zero.
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the sampling density varies in geographical space — at least 8% of the area has
been ignored and over 30% of the area is sampled with a much lower inspection
density;

the sampling is unrepresentative considering the maps of TWI and GSI — especially
the forest areas and hilltops have been systematically omitted;

the inspection density misrepresents zone Z1 and somewhat over-represented zone
Z4;

These result do not mean that this data set is not suitable to generate maps, but they
indicate that it has several limitations considering the representativeness, independency
and consistency requirements. These limitations will reflect on the prediction variance,
as we will see later on in §4.5.

4.2.4 Pre-processing of the predictors

Now that we have finished screening the target variables and assessing the quality of
the sampling plan, we can focus on preparing the predictors — raster maps that will be
used to explain the deterministic part of variation in our variables. There are 13 maps
in total that will be used to interpolate our soil variables: DEM25, SLOPE, PLANC, PROFC,
TWI, SOLAR, GSI, CI, NDVI, Z1, Z2, Z3 and Z4.

Before we can use these 13 maps to run regression analysis, we need to account for
one problem that might influence our further analysis — the multicolinearity effect
or overlap of information in the predictors. Typically, the assumption of multiple linear
regression is that the predictors are independent variables (Neter et al., 1996). We can
easily see that the predictors we plan to use to map soil variables are not independent.
In ILWIS, you can combine all maps to a map list and then select Operations 7→ Statistics
7→ Maplist 7→ Correlation Matrix and this will give you a p× p matrix with correlation
coefficients. As you can see from Fig. 4.10, several predictors are highly correlated —
especially CI and NDVI (0.96), GSI and DEM (-0.58), TWI and SLOPE (-0.64), but also DEM

and ZONES and GSI and ZONES.
An advisable thing to do to reduce the multicolinearity effect is to run a principal

component analysis and then, instead of using the original predictors, use the trans-
formed components that are absolutely independent. Although the principal component
analysis is possible in R (see also page 94), for large maps it might be computationally
more efficient to run this analysis in ILWIS. Before deriving the predictive components
in ILWIS, it is advisable to convert all input rasters to the same binary scale (0-255
values). This can be achieved by using Operations 7→ Image processing 7→ Stretch 7→
Linear Stretch. Once you converted all 13 predictors to image domain, you can pack
them together in ILWIS by typing:

crmaplist predictors DEM25img.mpr SLOPEimg.mpr ... Z4img.mpr

Now that you have all predictors packed as a map-list, you can extract their principal
components by using:

SPC.mat = MatrixPrincComp(predictors, 13)

This will create a new map-list called SPC and a matrix object with the same name.
The matrix object carries the information about the PC coefficients and percentage
of variance explained by each SPC band. You will notice that SPC1 explains already
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Fig. 4.10: Cross-correlation plots in R derived using the values of predictors estimated at 222
point samples.

46.4%, SPC2 21.1%, SPC3 15.4% and so on. The first five components already explain
>95% of the total variance in the data, which proves that PCA is a powerful way
to reduce the number of predictors. You can also now visually explore the SPCs in
ILWIS to see which general features are represented by which component (Fig. 4.11).
For example, it seems that the SPC1, SPC2 and SPC3 jointly represent geomorphometric
stratification of the area (ZONES, DEM), SPC4 represents changes in reflectance values
(NDVI and CI), SPC5 represents hydrological nature of terrain (TWI) etc. In summary, the
original predictors have been converted to independent (mixed) environmental factors.
The final components shows less and less variation and often represent the noise in the
data. The last component shows no variation at all (due to the rounding effect in ILWIS),
so it is better to exclude it from future analysis.

The predictors are now ready to be used as auxiliary maps to improve spatial pre-
dictions. Now we can import the SPCs from ILWIS to R by using:

SPC = readGDAL("ilwis/SPC_1.mpr")

SPC$SPC2=readGDAL("ilwis/SPC_2.mpr")$band1

...

SPC$SPC12=readGDAL("ilwis/SPC_12.mpr")$band1

Note that you can also display the predictors in R using the spplot command,
however, this is not recommended for larger rasters (�106 pixels). You should instead
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Fig. 4.11: Soil Predictive Components used to predict soil variables (SPCs). Note that the
components now show both continuous and discrete changes.

use ILWIS or SAGA to visually explore rasters and R just for the analysis and generation
of graphs and variograms.

4.3 Regression modelling

4.3.1 Multiple linear regression

Now that we have imported the 12 SPCs in R, we can try to run some regression
analysis and see if the predictors can be used to explain the variation of target variables.
Before we can run any analysis, we need to estimate the values of predictors at sampling
locations. The original attribute table will then be extended by 12 columns, which will
allow us to run regression and variogram analysis and fit the spatial prediction model
(Fig. 4.12).

First we overlay the points and rasters by using the sp package:

points.ov = overlay(SPC, points)



106 A geostatistical mapping exercise

Build a 
statistical

model

SAMPLED
ENVIRONMENTAL 

VARIABLES

PREDICTORS

Matrix with 
environmental variables 

(targets) and various 
predictors

MAPPED
VARIABLE

Overlay EVs 
and grids

Model 
parameters

Predict 
values at all 

locations

Compare and evaluate
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this will produce a new point data frame with attributed values of predictors. To simplify
the analysis, we need to copy these values to our original points data set:

points$SPC1 = points.ov$SPC1

points$SPC2 = points.ov$SPC2

...

points$SPC12 = points.ov$SPC12

If you now look at the structure of the points data set, you will see that there the
initial number of attributes has been extended. You will also notice that some locations
are outside the bounding coordinates of the grids, so a NA value is attached to them.

Let us now fit a multiple linear regression model:

sand.lm = lm(SANDt∼SPC1+SPC2+SPC3+SPC4+SPC5+SPC6+SPC7+SPC8+SPC9+SPC10
+SPC11+SPC12, points)

where lm is the generic R method to fit a linear model and sand.lm is the output data
frame. If we look at its structure, we will notice that it consists of many elements:

> names(sand.lm)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "na.action" "xlevels" "call" "terms"

[13] "model"

each of this has a substructure and elements at the lowest level. For example, we can
look at the histogram of residuals by typing:

hist(sand.lm$residuals, col="grey")
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or plot the predicted values versus measured values using:

sel = !is.na(points$SPC1)

plot(points[sel,]$SANDt, sand.lm$fitted.values)

In practice, we are mostly interested is the summary output of the model:

> summary(sand.lm)

Call:
lm(formula = SANDt ~ SPC1 + SPC2 + SPC3 + SPC4 + SPC5 + SPC6 +

SPC7 + SPC8 + SPC9 + SPC10 + SPC11 + SPC12, data = points)

Residuals:
Min 1Q Median 3Q Max

-2.040 -0.443 -0.100 0.395 2.942

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.645556 1.142926 -1.44 0.15143
SPC1 0.000853 0.000757 1.13 0.26107
SPC2 0.003158 0.000942 3.35 0.00095 ***
SPC3 -0.007114 0.000592 -12.01 < 2e-16 ***
SPC4 -0.001721 0.000870 -1.98 0.04928 *
SPC5 0.007907 0.001190 6.64 2.6e-10 ***
SPC6 -0.000465 0.002129 -0.22 0.82745
SPC7 0.001544 0.002739 0.56 0.57365
SPC8 0.001371 0.003049 0.45 0.65341
SPC9 0.000849 0.003467 0.25 0.80665
SPC10 0.008015 0.003573 2.24 0.02595 *
SPC11 -0.008728 0.004918 -1.77 0.07743 .
SPC12 -0.002683 0.007137 -0.38 0.70741
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.739 on 209 degrees of freedom
(78 observations deleted due to missingness)

Multiple R-Squared: 0.534, Adjusted R-squared: 0.508
F-statistic: 20 on 12 and 209 DF, p-value: <2e-16

which shows that the model explains 51% of variability and is statistically significant. By
looking at the specific t-values of coefficients, we can also infer about which predictors are
the most significant. In this case, only SPC5, SPC3 and SPC2 are statistically significant
at <0.001 probability level.

4.3.2 Step-wise selection of predictors

A further useful step is to kick-out many insignificant predictors by using the step-wise
regression:

fsand = step(sand.lm)

If we now look at the summary output, we will notice that the initial model has been
reduced to 6 predictors:
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>summary(fsand)
Call:
lm(formula = SANDt ~ SPC2 + SPC3 + SPC4 + SPC5 + SPC10 + SPC11,

data = points)

Residuals:
Min 1Q Median 3Q Max

-2.108 -0.423 -0.103 0.368 2.974

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.511501 0.874569 -1.73 0.085 .
SPC2 0.002233 0.000538 4.15 4.7e-05 ***
SPC3 -0.006771 0.000506 -13.38 < 2e-16 ***
SPC4 -0.001117 0.000735 -1.52 0.130
SPC5 0.007879 0.001125 7.00 3.2e-11 ***
SPC10 0.007976 0.003494 2.28 0.023 *
SPC11 -0.008198 0.004661 -1.76 0.080 .
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.733 on 215 degrees of freedom
(78 observations deleted due to missingness)

Multiple R-Squared: 0.529, Adjusted R-squared: 0.516
F-statistic: 40.3 on 6 and 215 DF, p-value: <2e-16

The R-square is now slightly better and almost all coefficients are highly significant.
We can observe the individual correlation plots by:

par(mfrow=c(2, 2))

scatter.smooth(points$SPC3, points$SANDt, span=9/10)

scatter.smooth(points$SPC5, points$SANDt, span=9/10)

scatter.smooth(points$SPC2, points$SANDt, span=9/10)

scatter.smooth(points$SPC10, points$SANDt, span=9/10)

which will produce a plot as show in Fig. 4.13. At this stage, it might be advisable to
cross check if these correlation plots fit our empirical knowledge about the study area.
This is just to avoid some accidental correlations or artifacts. In this case, the value of
SAND obviously jumps if we get inside the Z3 (geological unit “sandy material”), and
if we are at relatively dry terrain positions (low TWI). It seems that the overall best
predictors of the distribution of texture fractions are Z3 and TWI. This, in general, fits
our expectations. Note also that the correlation plot (Fig. 4.13) between SPC2 and
SAND indicates a non-linear relationship. At this stage, the predictors have already been
transformed, so we will proceed with using a linear model and hope that the residuals
can be still fitted using kriging.

We can repeat the same operations also for SILTt and CLAYt and conclude:

for SANDt, the model explains 51% of variability, the best predictors are SPC3 and
SPC5, the residuals are normally distributed;

for SILTt, the model explains 50% of variability, the best predictors are SPC3 and
SPC5, the residuals are normally distributed;

for CLAYt, the model explains 48% of variability, the best predictors are SPC3 and
SPC1, the residuals are normally distributed;
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Fig. 4.13: Individual correlation plots fitted using a local polynomial. Such plots are useful to
determine if linear or non-linear regression models are appropriate for fitting.

4.3.3 Multinomial logistic regression

We can fit the multinomial logistic regression model (§2.3) for variable SOILTYPE using
the nnet package:

library(nnet)

soiltype.mnr <- multinom(SOILTYPE~SPC1+SPC2+SPC3+SPC4+SPC5+SPC6+SPC7+

SPC8+SPC9+SPC10+SPC11+SPC12, points)

this will fit regression coefficients for each soil type (12 predictors times 13 soil types) by
using the single-hidden-layer neural network fitting (Venables and Ripley, 2002). This
produces:

> summary(soiltype.mnr)

Call:
multinom(formula = SOILTYPE ~ SPC1 + SPC2 + SPC3 + SPC4 + SPC5 +

SPC6 + SPC7 + SPC8 + SPC9 + SPC10 + SPC11 + SPC12, data = points)

Coefficients:
(Intercept) SPC1 SPC2 ...

B -0.31896709 0.079545183 0.130273847 ...
D -0.03515756 0.011957201 0.045788656 ...
G -0.01827031 0.155334355 0.186910746 ...
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Ha -0.02908207 -0.008472696 0.002753135 ...
K 0.25693393 0.034774367 0.057760249 ...
L 0.43391738 -0.001124392 0.008077742 ...
N -0.01964908 -0.007922919 0.014177197 ...
NA -0.02320083 -0.018915250 -0.006591750 ...
Q -0.15163013 -0.009846705 0.012511021 ...
R -0.01137301 -0.025438786 0.005745228 ...
S 0.06100672 -0.007516569 0.012431058 ...
Z -0.10011658 -0.017814427 0.027012844 ...

Residual Deviance: 586.4614
AIC: 898.4614

which does not say much about which classes have been fitted less successfully. We only
get an overall AIC14 of 898.5, which does not say if the model is significant or not. Once
we fitted the model, we can predict the values for SOILTYPE at all grid nodes using:

SOILTYPE.reg = predict(soiltype.mnr, newdata=SPC)

# Copy the predicted values to a spatial grid dataframe:

predictors$SOILTYPE.reg = SOILTYPE.reg

spplot(predictors["SOILTYPE.reg"], col.regions=bpy.colors(),

scales=list(draw=TRUE), sp.layout = list("sp.points", pch=19,

col="black", fill=T, points))

The resulting map (Fig. 4.14) indicates that the distribution of soil types is controlled
by DEM parameters mainly (TWI and DEM25). Let us compare the frequencies of the
classes at observation points and in the output map:

> summary(points$SOILTYPE)
A B D G Ha K L N NA Q R S Z

10 60 15 6 1 15 78 3 24 33 3 35 17

> summary(SOILTYPE.reg)
A B D G Ha K L N NA Q R S Z

2730 24330 591 3186 612 2095 45888 1963 27027 19481 9640 3115 19342

which clearly shows that some classes, especially D and S, seem to be under-represented
(smoothed out) by the multinomial logistic regression. Still, the predictors seems to
be significant as many predicted classes show clear matching with the patterns of the
predictors.

Now we can compare how well have a specific classes has been fitted versus the
original observations:

points$SOILTYPE.L=ifelse(points$SOILTYPE=="L", 1, 0)
plot(points[sel,]$SOILTYPE.L, soiltype.mnr$fitted.values[,"L"], asp=1)

If you would explore each specific class, you will note that, in most cases, the fitted
values always tend to smooth the actual observed values (lower mean and standard
deviation), which can be easily seen by looking at the summary statistics. To export
the result of spatial prediction to a GIS you will need to convert factors to numeric
values:

14Akaike Information Criterion — the smaller the value, the better the model, but there is no statistical

significance associated with this number as with adjusted R-square.
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Fig. 4.14: A categorical variable (SOILTYPE) predicted using the multinomial logistic regression
as implemented in the nnet package.

predictors$SOILTYPE.regn=as.numeric(predictors$SOILTYPE.reg)
writeGDAL(predictors["SOILTYPE.regn"], "ilwis/SOILTYPE_regn.mpr", "ILWIS")

Another possibility is to fit each class separately using the General Linear Models
functionality of R. In this case, we only need to specify the link function (link=logit)
and R will fit a logistic regression model using the iteratively reweighted least squares:

soiltype.L.glm = glm(SOILTYPE.L∼SPC1+SPC2+SPC3+SPC4+SPC5+SPC6+SPC7+SPC8+SPC9
+SPC10+SPC11+SPC12, binomial(link=logit), points)

which gives a single logistic regression model:

> summary(soiltype.L.glm)

Call:
glm(formula = SOILTYPE.L ~ SPC1 + SPC2 + SPC3 + SPC4 + SPC5 +

SPC6 + SPC7 + SPC8 + SPC9 + SPC10 + SPC11 + SPC12,
family = binomial(link = logit), data = points)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5247 -0.8600 -0.3381 0.9268 2.3375

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.100e+02 4.207e+02 -1.450 0.147
SPC1 4.222e+00 2.903e+00 1.454 0.146
SPC2 5.383e+00 3.711e+00 1.450 0.147
SPC3 -1.812e+00 1.250e+00 -1.450 0.147
SPC4 -3.337e+00 2.300e+00 -1.451 0.147
SPC5 5.164e-01 3.629e-01 1.423 0.155
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SPC6 -1.332e+00 9.187e-01 -1.450 0.147
SPC7 1.999e+00 1.371e+00 1.458 0.145
SPC8 -2.416e-01 1.719e-01 -1.406 0.160
SPC9 1.261e+00 8.741e-01 1.442 0.149
SPC10 -1.294e-01 8.026e-02 -1.612 0.107
SPC11 -1.293e-01 1.033e-01 -1.252 0.211
SPC12 5.124e-04 3.336e-02 0.015 0.988

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 257.08 on 221 degrees of freedom
Residual deviance: 205.03 on 209 degrees of freedom
(78 observations deleted due to missingness)

AIC: 231.03

Number of Fisher Scoring iterations: 12
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Fig. 4.15: Soil type "L" fitted using the logistic regression. The line indicates the conversion
function (link=logit).

A result of fitting this soil type can be see in Fig. 4.15. Note that the fitted probability
values will rarely exceed value of 0.8, which means that the model has much less problems
to detect where the soil type does not appear rather to detect the 0 values. We can
proceed with other soil types and then compare their AIC’s. This would gives us much
better insight into the success of data fitting and will allow us to detect problematic
observations and classes.
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4.4 Variogram modelling

4.4.1 Interpretation of the variograms

Now that we have fitted a regression model, we can proceed with fitting the variograms
for the regression residuals. This can be done using the gstat package and its automated
variogram fitting options. Let us first see how does the variogram of the original variable
look like:

library(gstat)

plot(variogram(SAND∼1, points), plot.nu=T, pch="+")

which will produce the plot in Fig. 1.7c. We can further on fit the variogram by providing
an initial variogram:

sand.v = variogram(SAND∼1, points)

sand.ovgm = fit.variogram(sand.v, vgm(nugget=25, model="Exp", range=455,

sill=423))

Note that we have determined the initial variogram by using the mean distance to
nearest neighbour to estimate the range, measurement error to estimate the nugget and
global variance to estimate the sill parameter (less nugget). The fitted R model has the
following structure:

> str(sand.ovgm)
Classes ’variogramModel’ and ’data.frame’: 2 obs. of 9 variables:
$ model: Factor w/ 17 levels "Nug","Exp","Sph",..: 1 2
$ psill: num 26 440
$ range: num 0 478
$ kappa: num 0 0.5
$ ang1 : num 0 0
$ ang2 : num 0 0
$ ang3 : num 0 0
$ anis1: num 1 1
$ anis2: num 1 1
- attr(*, "singular")= logi FALSE
- attr(*, "SSErr")= num 2.61

where the anisotropy parameters are set to 1, which means that the model is isotropic.
Both the experimental variogram and the fitted model can be visualized using (Fig. 1.7d):

plot(sand.v, sand.ovgm, plot.nu=F)

From this plot we can see that our initial estimate of the variogram was, in fact,
quite accurate. The fitted nugget parameter is 26, sill parameter is 448 and the sill is at
440. We will actually work with the logit-transformed value of the target variable, which
will give us a nugget parameter of 0.084, a sill parameter of 1.012 and a range parameter
of 478 m. Recall from §4.2.1 that the global variance for the logit-transformed values of
the target variable (SANDt) is 0.99.
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4.4.2 Variograms of residuals

Next we need to estimate variograms of the residuals. To achieve this, we extend the
trend model using the (selected) SPCs:

sand.rv = variogram(SANDt∼SPC2+SPC3+SPC4+SPC5+SPC10+SPC11, points[sel,])

we have masked out15 the points which are outside the study area because gstat can not
calculate variograms with NAs. The same command can be written more elegantly as:

sand.rev = variogram(fsand$call$formula, points[sel,])

which means the we will automatically pass the output formula from the stepwise re-
gression (fsand$call$formula), so that we do not need to type it manually. Now we
fit the variogram of residuals by using the same values used for the standard initial
variogram, but we set the sill variance at half16:

sand.rvgm = fit.variogram(sand.rev, vgm(nugget=0.08, model="Exp",

range=228, sill=0.5))

which gives the following parameters: C0=0.080, C1=0.491, R=257 m. Again, our
estimate of the initial variogram has been quite accurate. The fitted variograms of the
target variable and residuals are shown in Fig. 4.16.
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Fig. 4.16: Fitted variograms for target variable SANDt (left) and residuals (right).

You might wonder why the variograms of the residuals and of the target variable are
different? In theory (Eq.1.1.1), the deterministic and the stochastic part of variation are
independent and add to each other. In practice, they are intermixed. If the predictors
are generally smooth, and if they are correlated with our target variables, then the
variogram will reflect the spatial structure of the predictors. Hence, the variogram of
the target variable will not only show spatial-autocorrelation of the stochastic part of
variation, but also of the deterministic part. You can see that indeed all predictors are
in fact very smooth by using:

15By using a subset of data: sel=!is.na(points$SPC1).
16This assumes that the regression model will only scale the variogram of the residuals — the nugget

variation and the range of spatial auto-correlation should remain the same.
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SPC1.v = variogram(SPC1∼1, points[sel,])

SPC1.ovgm = fit.variogram(SPC1.v, vgm(nugget=0, model="Exp", range=500,

sill=1000))

plot(SPC1.v, SPC1.ovgm, pch="+", plot.nu=T)

We continue fitting the variograms also for other texture fractions and get similar
models: C0=0.145, C1=0.240, R=350 m for SILTt and C0=0.150, C1=0.160, R=304 m
for CLAYt. In this case, we were relatively lucky with fitting the variogram automatically.
In other situations, you will notice that non-linear least square fitting is only guaranteed
to work when a good initial values are set. In any case, visual validation of the model fit
is often recommended, even though the fitting can be very successful (Pebesma, 2004).

The variograms for residuals of the logistic regression model for soil types can be
derived using:

plot(variogram(soiltype.L.glm$residuals∼1, soiltype.L.glm$data[sel,]))

this show a relatively high nugget variation, mainly because of one extremely high value
(ID=16). Try to produce similar variograms also for other soil types and plot them next
to each other.

4.5 Predictions and simulations

Now that we have fitted the parameters of the regression model (significant predictors
and their regression coefficients) and of the variograms (nugget, sill and range), we can
use this model to derive predictions at all locations. Regression-kriging can be run in
gstat by using:

SAND.rk = krige(fsand$call$formula, points[sel,], SPC, sand.rvgm)

where fsand$call$formula is the regression model fitted using the step-wise regression,
points is the input point dataset to be interpolated, SPC is the list of 12 rasters, and
sand.rvgm is the fitted variogram model of residuals. The computation might take even
several minutes, because the system needs to invert large matrices (222 points) and then
make predictions at 160,000 grid nodes.

Let us look at the structure of the output data set:

>str(SAND.rk)
Formal class ’SpatialPixelsDataFrame’ [package "sp"] with 7 slots
..@ data :’data.frame’: 160000 obs. of 2 variables:
.. ..$ var1.pred: num [1:160000] -1.078 -0.917 -0.944 -1.006 -1.400 ...
.. ..$ var1.var : num [1:160000] 0.597 0.603 0.598 0.593 0.607 ...
..@ coords.nrs : num(0)
..@ grid :Formal class ’GridTopology’ [package "sp"] with 3 slots
.. .. ..@ cellcentre.offset: Named num [1:2] 3570013 5708013
.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"
.. .. ..@ cellsize : Named num [1:2] 25 25
.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"
.. .. ..@ cells.dim : Named int [1:2] 400 400
.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"
..@ grid.index : int [1:160000] 1 2 3 4 5 6 7 8 9 10 ...
..@ coords : num [1:160000, 1:2] 3570013 3570038 3570063 3570088 3570113 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
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.. .. ..$ : chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 3570000 5708000 3580000 5718000

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "x" "y"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class ’CRS’ [package "sp"] with 1 slots

.. .. ..@ projargs: chr " +init=epsg:31467
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Fig. 4.17: SANDt interpolated using regression-kriging (at 100 m grid): predictions (left) and the
prediction variance (right).

This means that krige produced two maps: (1) "var1.pred" — predictions and (2)
"var1.var" — prediction variance or estimated error of mapping a variable. This data
frame has exactly the same grid definition as the input raster maps, however, the class
has changed to SpatialPixelsDataFrame (point support). We can plot the two maps
next to each other by using the spplot command (Fig. 4.17):

sand.rkpred1.plt = spplot(SAND.rk["var1.pred"], col.regions=bpy.colors(),
scales=list(draw=TRUE, cex=0.7), sp.layout = list("sp.points", pch="+",
col="black", fill=T, points))

sand.rkvar.plt = spplot(SAND.rk["var1.var"], col.regions=bpy.colors(),
scales=list(draw=TRUE, cex=0.7), at = seq(0.1,0.7,0.02), sp.layout =
list("sp.points", pch="+", col="black", fill=T, points))

print(sand.rkpred1.plt, split=c(1,1,2,1), more=TRUE)
print(sand.rkvar.plt, split=c(2,1,2,1), more=FALSE)

where argument col.regions defines the legend, scales will plot the coordinates and
sp.layout defines the overlays. You can now compare these results with the results of
spatial prediction using more trivial spatial prediction techniques shown in Fig. 1.11.
Note that the prediction variance map (Fig. 4.17, right) indicates the areas of extrap-
olation in both geographical and feature spaces. Recall from §4.7.2 that our sampling
design is under-representing some areas (especially Z1). The map in Fig. 4.17 confirms
that the biggest extrapolation is exactly in the areas that have been under-sampled:
geological zone Z1 and areas of high hydrological potential (stream bottoms).

In addition to predictions, we can opt to produce simulations using the same regression-
kriging model by adding an additional argument:

SAND.rksim = krige(fsand$call$formula, points[sel,], SPC,

sand.rvgm, nsim = 6)

http://r-spatial.sourceforge.net/gallery/
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Fig. 4.18: SANDt: six equiprobable realizations of the same regression-kriging model.

which will produce 6 equiprobable realizations of this model using the Sequential Gaus-
sian Simulation algorithm (see §2.4 for more details). Note that this algorithm can be
computationally extensive for large point and raster datasets, so that it is often advis-
able to limit the search size17 e.g. using nmax=100. The output of computation is now
a grid data set with five bands (Fig. 4.18). Such simulations are very useful to visually
explore uncertainty of mapping an environmental variable and can be used to assess the
propagated uncertainty of using such variables in decision making.

Visual exploration of such simulations can also be very useful to judge about the
importance of the predictors. For example, by looking closely at the Fig. 4.18, we can
see that the patterns of SAND are indeed controlled by unit Z3 and map of TWI, while
the other predictors seem to be less significant.

Before we can evaluate the results of spatial prediction, we need to back-transform
the predictions to the original scale by:

SAND.rk$pred = exp(SAND.rk$var1.pred)/(1+exp(SAND.rk$var1.pred))*100

which will create an additional spatial layer in the SAND.rk grid data frame. We can
produce the same predictions for both SILT and CLAY and then export the resulting
maps to ILWIS.

To map a specific soil type class, you can first predict the deterministic part of
variation using the logistic regression model, then interpolate the residuals using the
variogram model fitted previously:

SOILTYPE.Lt.reg = predict(soiltype.L.glm, newdata=SPC)
predictors$SOILTYPE.Lt.reg = SOILTYPE.Lt.reg

SOILTYPE.Lt.resok = krige(soiltype.L.glm$residuals~1, soiltype.L.glm$data[sel,],
SPC, soiltype.L.rvgm)

17Recall from §2.2 that this is not really a valid thing to do.
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Fig. 4.19: Soil type "L" interpolated using regression-kriging. Compare with Fig. 4.14.

Once you estimated both the deterministic part and the residuals, you can sum them
and back transform the logit values to the original 0–1 scale:

predictors$SOILTYPE.L.rk = exp(predictors$SOILTYPE.Lt.reg +
SOILTYPE.Lt.resok$var1.pred)/(1+exp(predictors$SOILTYPE.Lt.reg +
SOILTYPE.Lt.resok$var1.pred))

spplot(predictors["SOILTYPE.L.rk"], col.regions=bpy.colors(), at = seq(0,1,0.02),
sp.layout = list("sp.points", pch="+", cex=1.2, col="white", points))

The final map showing predicted odds of observing soil type "L" in the area is shown
in Fig. 4.19. Note that now all the values are within the 0–1 range and the distribution
of this soil class seems to closely follow specific landscape positions.

4.6 Assessing the quality of predictions

RK variance is the statistical estimate of the model uncertainty. Note that the ‘true’
prediction power can only be assessed by using the independent (control) data set. The
prediction error is therefore often referred to as the precision of prediction. The true
quality of a map can be best assessed by comparing estimated values (ẑ(sj)) with actual
observations at validation points (z∗(sj)). Commonly, two measures are most relevant
here — (1) the mean prediction error (ME ):

ME =
1
l
·

l∑
j=1

[ẑ(sj)− z∗(sj)]; E{ME} = 0 (4.6.1)

and (2) the root mean square prediction error (RMSE ):

RMSE =

√√√√1
l
·

l∑
j=1

[ẑ(sj)− z∗(sj)]
2; E{RMSE} = σ(h = 0) (4.6.2)
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where l is the number of validation points. We can also standardize the errors based on
the prediction variance estimated by the spatial prediction model:

RMNSE =

√√√√1
l
·

l∑
j=1

[
ẑ(sj)− z∗(sj)

σ̂j

]2

; E{RMNSE} = 1 (4.6.3)

In order to compare accuracy of prediction between variables of different type, the
RMSE can also be normalised by the total variation:

RMSE r =
RMSE

sz
(4.6.4)

which will show how much of the global variation budget has been explained by the
model. As a rule of thumb, a value of RMSE r that is close to 40% means a fairly
satisfactory accuracy of prediction (R-square=85%). Otherwise, if RMSE r >71%, this
means that the model accounted for less than 50% of variability at the validation points.
Note also that ME , RMSE and RMNSE estimated at validation points are also only a
sample from a population of values — if the validation points are poorly sampled, so
will our estimate of the map quality be poor.

To assess the accuracy of predicting the categorical variables we can use the kappa
statistics, which is a common measure of classification accuracy (Congalton and Green,
1999; Foody, 2004). Kappa statistics measures the difference between the actual agree-
ment between the predictions and ground truth and the agreement that could be ex-
pected by chance. In most remote sensing-based mapping projects, a kappa larger than
85% is considered to be a satisfactory result (Foody, 2004). The kappa is only a mea-
sure of the overall mapping accuracy. Specific classes were analyzed by examining the
percentage of correctly classified pixels per each class:

Pc =

m∑
j=1

(
Ĉ(sj) = C(sj)

)
m

(4.6.5)

where Pc is the percentage of correctly classified pixels, Ĉ(sj) is the estimated class at
validation locations (sj) and m is total number of observations of class c at validation
points.

We can now compare the quality of predictions for mapping soil texture fractions.
First we need to import the table with locations of validation points and the measured
values of target variables. For this, we will use the large set of points (l=2937):

pointsal = read.dbf("pointsal.dbf")

coordinates(pointsal)=~x+y

proj4string(pointsal) = CRS("+init=epsg:31467")

then, we overlay the validation points and the produced maps:

pointsalSANDrk.ov = overlay(SAND.rk, pointsal)

and we can derive ME , RMSE and RMNSE :

E.SAND.rk=pointsal$SAND - pointsalSANDrk.ov$pred

EN.SAND.rk=(pointsal$SANDt - pointsalSANDrk.ov$var1.pred)/

sqrt(pointsalSANDrk.ov$var1.var)

mean(na.omit(E.SAND.rk))

sqrt(mean(na.omit(E.SAND.rk)^2))

sqrt(mean(na.omit(EN.SAND.rk)^2))
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Now it might be interesting to plot the predicted values versus the measured val-
ues at control points and derive the correlation coefficient. As we can see in Fig. 4.20,
the models is somewhat biased in predicting lower and higher values. The correlation
coefficient shows that the predictions and measured values at validation points are sig-
nificantly correlated (r=0.76). What surprises us more is that the prediction variance
does not seems to be correlated with the true errors (Fig. 4.20, right). We can see
that the prediction errors will be in average higher in areas where the model is less
certain, still the two variables does not seem to be significantly correlated. Although
this allows you to criticise the usability of the prediction variance, you should not that
also these validation points have been sampled using the same sampling strategy. If we
have used more independent validation points, we would have probably detected better
match between the estimated and true prediction variance.

Fig. 4.20: Predicted versus measured values (left); estimated prediction error versus the mea-
sured/true error (right).

Fig. 4.21: Original and normalized errors for predicting SAND using RK technique (l=2937).
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Another useful thing to do is to examine the histogram of errors at validation points
and compare the errors estimated by the model (prediction variance) and the true map-
ping error at validation points. This can help us to detect ‘unusual ’ locations where the
errors are much higher than at other locations. According to the Chebyshev’s Inequality
theorem, proportion of normalized errors that exceed value of 3 should not be higher
than 1/9. In our case study (Fig. 4.21), histograms of RMNSE for RK show that these
maps satisfy the Chebyshev’s Inequality theorem.

We can repeat this procedure also for the OK predictions. After we have calculated
the validation measures, we might test the difference between the distributions of the
prediction errors for two methods by using:

> t.test(E.SAND.rk, E.SAND.ok)

Welch Two Sample t-test

data: E.SAND.rk and E.SAND.ok
t = 1.7762, df = 4408.031, p-value = 0.07576
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.07990234 1.62030858
sample estimates:
mean of x mean of y

0.05961023 -0.71059289

which shows that RK performs better, but this difference is not statistically significant at
the 0.05 probability level. Continue the same comparison for both SILT and CLAY and
you will see that RK significantly improves predictions of CLAY, marginally improves
predictions of SAND and does not make better prediction of SILT. Going back to the
properties of our input dataset, we see that the areas of high CLAY content have been
under-sampled (see further Fig. 4.26), hence a plain geostatistical spatial prediction
technique such as OK will perform poorer.

Table 4.1: Comparison of performance of regression-kriging versus ordinary kriging using 2937
validation points (pointsal).

Sampled (n=222) Regression-kriging Ordinary kriging
var mean s.d.

√
C0 ME RMSE RMNSE ME RMSE RMNSE

SAND 30.2 20.5 5.0 0.1 13.5 1.00 -0.7 15.6 1.00
SILT 48.2 18.4 2.1 0.5 12.9 0.99 0.4 14.3 1.15
CLAY 21.6 11.8 6.6 1.2 7.9 1.03 -0.1 8.3 1.05

A summary comparison of the performance of regression-kriging versus ordinary
kriging can be seen in Table 4.1. Note that RK outperforms OK in all cases18, however,
the difference is not always significant. Also note that there is still a significant amount
of variation that could be mapped until we would reach the measurement error19. The
question remains if we could achieve this by using higher quality predictors or we simply
need to collect more point data.

We proceed with comparing the accuracy of predictions for mapping variable SOILTYPE.
For this, we need to install a package for discriminant analysis (mda). First we need to
overlay the predicted classes and the validation dataset:

18Note that RK is making somewhat biased estimation of CLAY with ME=1.2.
19Recall that the precision of measuring the soil texture by hand is about ±5–10%, which corresponds

to the fitted nugget (
√

C0).

http://lib.stat.cmu.edu/R/CRAN/src/contrib/Descriptions/mda.html
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pointsalSOILTYPE.ov = overlay(predictors, pointsal)

then, we derive the confusion matrix for the two factors (true vs predicted):

> library(mda)

> confusion(pointsalSOILTYPE.ov$SOILTYPE.reg, pointsal$SOILTYPE)

true

object A B D G K L N NA Q R S Z Hw

A 10 4 0 4 5 10 0 9 1 0 2 0 1

B 3 278 56 3 19 71 9 19 61 1 62 56 0

D 0 2 3 0 0 0 0 0 0 0 0 1 0

G 8 4 0 19 10 8 0 10 1 0 6 0 0

K 0 3 0 1 5 2 0 1 1 0 2 0 0

L 13 131 6 23 74 287 3 13 79 0 176 2 0

N 0 4 1 0 0 0 0 0 1 0 1 0 0

NA 0 1 0 0 1 2 0 77 1 0 0 0 0

Q 0 66 2 6 0 21 1 3 86 1 77 1 0

R 0 5 2 0 0 0 0 0 0 9 1 2 0

S 0 17 10 0 2 7 0 2 8 1 12 10 0

Z 0 39 75 0 0 2 0 1 7 6 13 77 0

Ha 3 3 0 2 1 0 0 0 0 0 3 0 0

attr(,"error")

[1] 0.6143878

attr(,"mismatch")

[1] 0.005775211

true

ob
je

ct
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Fig. 4.22: Agreement plot for mapping variable SOILTYPE using multinomial logistic regression.
The size of the white rectangles indicate the portion of a class and the black rectangles indicate
the success of prediction.

This shows that several classes are completely poorly predicted (e.g. "D", "K" and
"S"). Another useful package for analysis and visualization of categorical data is the
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Visualizing Categorical Data (vcd) package. This can be used to visually explore the
agreement between the predicted and observed classes:

library(vcd)

agreementplot(confusion(pointsalSOILTYPE.ov$SOILTYPE.reg,

pointsal$SOILTYPE))

As you can see from Fig. 4.22 the most successfully mapped classes are "B", "L",
"R" and "Z". We finally derive the kappa statistics using:

> Kappa(confusion(pointsalSOILTYPE.ov$SOILTYPE.reg, pointsal$SOILTYPE))

value ASE

Unweighted 0.2629102 0.01225020

Weighted 0.2344687 0.02409146

which shows that the predictions are successful at only 25% of the validation points.
This might not be that bad, however, it shows that the map shown is Fig. 4.14 is far
from a quality product (although it visually seems to be fine). The kappa is a rather
strict measure of quality. We would obtain a more promising result if we would merge
some of the classes, or if we would instead consider calculating a weighted kappa.

4.7 Comparison of predictions using various inputs

4.7.1 Importance of the cell size

The focus of this exercise is to examine how much the cell size of the input maps has
influence on the accuracy of the final predictions. The cell size can be closely related to
the level of detail or spatial precision of a map, which, in cartography, is often related
to the concept of scale. Enlarging the cell size leads to aggregation or upscaling;
decreasing the cell size leads to disaggregation or downscaling. As the grid becomes
coarser, the overall information content in the map will progressively decrease, and vice
versa (McBratney, 1998; Kuo et al., 1999; Stein et al., 2001). On the other hand, to
do geostatistical mapping with very fine-resolution maps can be quite time-consuming.
Ideally, we look for such cell size of our GIS that is ‘good enough’ for mapping purposes.

Now we want to asses if the quality of predictions would decrease if we switch from
the 25 m to 100 m cell size. To do this, we have to resample all input maps (e.g. in
ILWIS) to the 100 m grid and then repeat all procedures as explained in §4.2.2 to derive
the same predictors. Then, we can again derive the SPCs and import them to R and
used them as predictions.

Fig. 4.23 shows a comparison of maps produced using the 100 m and 25 m predictors.
Obviously, the 25 m maps show much finer detail than the 100 m maps, especially
considering the hydrological features in the area. Note also that, at 100 m resolution,
the model will produce much lower values for SAND in the areas that have been poorly
sampled (Z1). Further comparison of errors at validation points shows that the RK at
finer resolution is always more accurate than if the 100 m maps are used. The t-test
shows that the two maps do not differ significantly in their accuracy for SAND (p=0.641)
and SILT (p=0.608), however the 25 m maps can be used to map CLAY at significantly
higher accuracy (p=0.044).

http://www.math.yorku.ca/SCS/vcd/
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Fig. 4.23: Predictions of SAND and SILT produced using the 100 m and 25 m resolution maps.

4.7.2 Importance of the sampling intensity

In the next exercise, we want to see if the accuracy of the maps will increase significantly
if we use the complete dataset (2251 points) versus the original sample that is about
ten times smaller in size (222 points). We consider four combinations of prediction
models: (1) OK using the large data set (pointsal), (2) OK using the small data set
(points), (3) RK using the large data set (pointsal), and (4) RK using the small data
set (points). We will compare the accuracy of mapping using the second control point
data set.

We can already note that if we use the large point data set the adjusted R-square for
the regression models will not change much: now the model explains 54% of variation
for SANDt, 47% for SILTt and 52% for CLAYt. This proves that the success of regression
modelling is not really dependent on the sampling density, but rather on how well are the
points sampled in the feature space and how significant is the correlation. We continue
with modelling the variograms for residuals and then run both RK and RK at grid
resolution of 25 m. The final comparison can be seen in Fig. 4.24. Note that the two
RK maps really do not differ so much visually. The OK maps, on the other hand, do
differ both in the level of detail and in the mapping accuracy. The final comparison
between the OK (2251) and RK (222) shows that investment in auxiliary predictors is
indeed worth the effort — in all cases RK performs better. This indicates that future
mapping projects will need to focus more on the quality of sampling and on quality of
auxiliary environmental predictors, rather than on making more observations.
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Fig. 4.24: SAND predicted using the large point data set (left) and 1/10 of the data set (right):
ordinary kriging versus regression-kriging.

4.8 Visualization of the outputs

Although there are many options to visualize the derived maps in R (e.g. by using the
spplot method), you might also want to export the maps to a GIS and then create
more professional layouts. The following sections will provide instructions on how to
prepare informative layouts in ILWIS and Google Earth.

4.8.1 Export to ILWIS

From R, you can at any time export produced maps to ILWIS by using the writeGDAL

command:

writeGDAL(SAND.rk["pred"], "ilwis/SAND_rk.mpr", "ILWIS")

writeGDAL(SAND.rk["var1.var"], "ilwis/SAND_rk.mpr", "ILWIS")

Alternatively, you can export a map to the Arc/Info ASCII format by using:

write.asciigrid(SAND.rk, "SAND_rk.asc")

Once both the predictions and the prediction variance have been exported to ILWIS,
they can be visualized jointly by using the visualization algorithm explained in §3.2.1.
For each texture fraction, we need to have the predicted values, map of the prediction
variance and know the estimated global variance. We can then run the ILWIS script
VIS error:
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run ’C:\Program Files\Ilwis3\Scripts\VIS_error’ SAND_rk 5 90
SAND_rkvar 0.4 1.0 0.989 SAND_rkvis
run ’C:\Program Files\Ilwis3\Scripts\VIS_error’ SILT_rk 6 80
SILT_rkvar 0.4 1.0 0.682 SILT_rkvis
run ’C:\Program Files\Ilwis3\Scripts\VIS_error’ CLAY_rk 2 70
CLAY_rkvar 0.4 1.0 0.591 CLAY_rkvis

80.000

65.211

50.423

35.634

20.846

6.057

90.000

73.000

56.000

39.000

22.000

5.000

70.000

56.440

42.880

29.320

15.760

2.200

SAND [%]

SILT [%]

CLAY [%]

Fig. 4.25: Predicted values for SAND, SILT and CLAY visualized (left) without the prediction
variance and (right) together with the prediction variance using the whitening technique.

The results of mapping the three texture fractions can be seen in Fig. 4.25. If you
compare the original maps on the left side of Fig. 4.25 and the same maps visualized by
including the mapping error, you can see that the predictions are in fact satisfactory: for
all three texture fractions we can be relatively confident that the predictions are precise
in >50% of the area. In the case of CLAY, the proportion of areas that are uncertain is
much higher.

Another possibility to visualize the three texture fractions is to use a colour compos-
ite. Because they are compositional variables, the SAND, SILT and CLAY can be coded
using the R, G, B bands. First, we need to convert the 0–100% values to the 0–255 image
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domain in ILWIS. Then the three texture fractions can be combined using (Fig. 4.26):

TEXTrgb.mpr = MapColorComp24Linear(mlist(SAND_rkimg, SILT_rkimg,

CLAY_rkimg), 0:255, 0:255, 0:255)

We can also calculate the average normalized prediction error by using (Fig. 4.26):

TEXT_rkerror = ( sqrt(SAND_rkvar)/sqrt(0.989) + sqrt(SILT_rkvar)/sqrt(0.682)
+ sqrt(CLAY_rkvar)/sqrt(0.591) )/3

Fig. 4.26: Texture fractions visualized using a colour composite (left) and the average normalized
prediction error for mapping texture fractions (right).

As expected, the highest prediction error is within the unit Z1. This average normal-
ized prediction error can be used to allocate 100 additional points by using a weighted
random sampling. First, convert the average normalized prediction error to penalty
points20:

TEXTE=((TEXT_rkerror-0.4)*100)^2

Now import this map of standardized prediction error to R and use it as the weight
map:

TEXTE = readGDAL("ilwis/TEXTE.mpr")

# Convert the raster map to an ’im’ object:

TEXTEim = as.im(as.image.SpatialGridDataFrame(TEXTE))

new.points = rpoint(100, TEXTEim)

plot(new.points, pch="+")

this will produce a weighted random design with the inspection density proportional
to the value of the standardized prediction error. Fig. 4.27 shows one realization of
a weighted random sampling design that can be used to improve the precision of the
map. A more sophisticated sampling optimization procedure can be found in Brus and
Heuvelink (2007).

20If the normalized prediction variance is close to 0.4 than there is no need for sampling new points.

See also Eq.1.3.19.
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Fig. 4.27: Existing 222 points and the additional 100 points generated by using inspection density
proportional to the value of the prediction variance.

4.8.2 Export to KML

Assuming that we have finished data analysis and generated all predictions, we can
proceed with preparing the data for web-sharing. The most suitable option to share
the results of a mapping project to a wider community is Google Earth. Before we can
prepare KML files, we need to reproject/resample our raster maps to the LatLonWGS84

coordinate system. We have first estimated the definition of the new geographical grid
by following the instructions in §3.5.2. This gives the following grid system for the
Ebergötzen case study:

Lines=315

Columns=505

MinX=10.011111

MinY=51.504167

MaxX=10.151389

MaxY=51.591667

Cell=0.0002777778

Once we have created a georeference for the LatLonWGS84 coordinate system, we can
resample and export from ILWIS any result of spatial prediction, e.g. by using:

TEXT_kml.mpr{dom=Color.dom} = MapResample(TEXT,geo1s.grf,bilinear)

export BMP(text_kml.mpr,text_kml)

where geo1s.grf is the 1 arsec grid definition with the parameters listed above and
MapResample is the ILWIS function to resample a raster map using bilinear method. We
can copy the exported image to a server and put its URL into the KML file. The final
layout can be seen in Fig. 4.28. This is now a complete visualization that shows both the
locations of sampled values, final results of spatial prediction and the associated legend.

In R, any point or line/polygon sp dataset can be exported to KML by using the
writeOGR method of the rgdal package. In the case of Ebergötzen, you can import the
points as a table, then make a sp layer and then do all the calculations with it even if
there is no geographic projection attached to it. However, if you want to reproject the
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Fig. 4.28: The final Google Earth layout showing predicted soil texture fractions in topsoil.

sp layers to another coordinate system, you need to consider giving the data the correct
projection string as demonstrated in §4.2.1. Once the correct coordinate system has
been attached, we can reproject any point or grid layer to the longlat system:

SAND.rklonglat = spTransform(SAND.rk["pred"], CRS("+proj=longlat"))

which might take some time to calculate. Note that sp package will convert the raster
map to a point map, which means that we need to convert this map again to a sp grid
dataframe before we can export it. First, we need to define the new geographic grid
system with the cell size of 0.000278:

geo1sec = spsample(SAND.rklonglat, type="regular",

cellsize=c(0.000278,0.000278))

gridded(geo1sec) = TRUE

We can see that sp created the following new grid definition:
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> gridparameters(geo1sec)

cellcentre.offset cellsize cells.dim

x1 10.00751 0.000278 524

x2 51.50106 0.000278 327

This is an empty grid without any topology (only grid nodes are defined) and co-
ordinate system definition. To create topology, we coerce a dummy variable (1s), then
specify that the layer has a full topology:

geo1sec$v = rep(1, geo1sec@grid@cells.dim["x1"]*

geo1sec@grid@cells.dim["x2"])

fullgrid(geo1sec)=TRUE

proj4string(geo1sec) = CRS("+proj=longlat")

and estimate the values of the reprojected map at new grid locations using the bilinear
resampling:

SAND.rklonglatg = krige(pred~1, SAND.rklonglat, geo1sec, nmax=4)

spplot(geo1sec["SAND"])

The final grid map can be exported to KML format using the maptools package and
kmlOverlay method:

SAND.rkkml = GE_SpatialGrid(SAND.rklonglatg)

writeGDAL(SAND.rklonglatg[1], "SANDrk.tif",

drivername="GTiff", type="Byte")

kmlOverlay(SAND.rkkml, kmlfile="SANDrk.kml",

imagefile="SANDrk.tif", name="SAND in %")

which will automatically generate a KML file with an ground overlay. In this case we
do not have much options to change the legend of the geotiffs. The whole process of
resampling the grids in R can be quite time consuming, so I can only advise you to
instead run the resampling in ILWIS and use R only to run statistical analysis and make
predictions/simulations.

Alternatively, you can also export a PNG of an R plot (Fig. 4.29). First create
a temporary file and paste an empty PNG image which is the same size as the GE
SpatialGrid:

tf <- tempfile()

png(file=paste(tf, ".png", sep=""), width=SAND.rkkml$width,

height=SAND.rkkml$height, bg="transparent")

now plot the output map as an image and (optional) overlay the location of the sampling
locations (points):

par(mar=c(0,0,0,0), xaxs="i", yaxs="i")

image(as.image.SpatialGridDataFrame(SAND.rklonglatg[1]), col=bpy.colors(),

xlim=SAND.rkkml$xlim, ylim=SAND.rkkml$ylim)

plot(points.longlat, pch="+", cex=1.2, add=TRUE, bg="transparent")

note that we need to define the margins (mar=c(0,0,0,0)) of the plotted image to
equal zero, this way the coordinates of the plotted image correspond to the geographic
coordinates of the map. Finally, we export the KML overlay using:
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Fig. 4.29: R plot exported to Google Earth. Compare with Fig. 4.23.

kmlOverlay(SGqk, paste(tf, ".kml", sep=""), paste(tf, ".png", sep=""))

dev.off()

The final KML file/PNG image might need some further manual editing, e.g. to
place the PNG file on some server or add more description about how was the map
produced and where to find the original data.

4.8.3 Alternative ways to geovisualization

The users of MatLab can explore possibilities of exporting the results of geostatistical
analysis to Google Earth by using the Google Earth Toolbox. This toolbox allows not
only export of raster maps (ground overlays) but also a friendly tool to export the
associated legends, generate 3D surfaces, contours from isometric maps, wind barbs and
3D vector objects. Once a map has produced using some spatial prediction technique,
it can converted to a KML format using e.g.:

examplemap = ge_groundoverlay(N,E,S,W,... ’imageURL’,’map.bmp’);

ge_output(’examplemap.kml’,kmlStr);

where N, E, S, W are the bounding coordinates that can be determined automatically
or set by the user.

Another sophisticated option to visualize the results of (spatio-temporal) geostatisti-
cal mapping is to use a small stand-alone visualization software called Aquila (Pebesma

http://www.mathworks.com/matlabcentral/fileexchange/
http://pcraster.geo.uu.nl/projects/aguila/
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et al., 2007). Aquila allows interactive exploration of the spatio-temporal Cumulative
Distribution Functions (CDFs) and allows decision makers to explore uncertainty
associated to attaching different threshold or its spatial distribution in the area of in-
terest. It is actually rather simple to use — one only needs to prepare a sample (e.g. 12
slices) of quantile estimates, which are then locally interpolated to produce CDFs.

Important sources:

F Minasny, B. and McBratney, A. B., 2007. Spatial prediction of soil properties
using EBLUP with Matérn covariance function. Geoderma, 140: 324–336.

F Hengl T., Toomanian N., Reuter H. I., Malakouti M. J. 2007. Methods to in-
terpolate soil categorical variables from profile observations: lessons from Iran.
Geoderma, 140(4): 417–427.

F Böhner, J., McCloy, K. R. and Strobl, J. (Eds), 2006. SAGA — Analysis and
Modelling Applications. Göttinger Geographische Abhandlungen, Heft 115. Ver-
lag Erich Goltze GmbH, Göttingen, 117 pp.

F Pebesma, E. J., 2006. The Role of External Variables and GIS Databases in
Geostatistical Analysis. Transactions in GIS, 10(4): 615–632.

F Hengl T., Toomanian N., 2006. Maps are not what they seem: representing un-
certainty in soil-property maps. In: Caetano, M., Painho, M., (eds) Proceedings
of the 7th International Symposium on Spatial Accuracy Assessment in Natural
Resources and Environmental Sciences (Accuracy 2006), 5-7 July 2006, Lisbon,
Portugal, pp. 805–813.

F http://math.uni-klu.ac.at/stat/ — Department of Statistics in Klagenfurt
regularly organizes international workshop/conference “Interfacing Geostatistics,
GIS and Spatial Databases” (statGIS).

http://math.uni-klu.ac.at/stat/
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Carré, F., Girard, M. C., 2002. Quantitative mapping of soil types based on regression kriging of taxo-

nomic distances with landform and land cover attributes. Geoderma 110 (3-4): 241–263.

Chambers, J. M., Hastie, T. J., 1992. Statistical Models in S. Wadsworth & Brooks/Cole, Pacific Grove,

California, p. 595.

Chiles, J. P., Delfiner, P., 1999. Geostatistics: modeling spatial uncertainty. John Wiley & Sons, New

York.

Christensen, R., 2001. Linear Models for Multivariate, Time Series, and Spatial Data, 2nd Edition.

Springer Verlag, New York, p. 393.

Congalton, R. G., Green, K., 1999. Assessing the accuracy of remotely sensed data: principles and

practices. Lewis, Boca Raton, FL, p. 137.

Conrad, O., 2006. SAGA — Program Structure and Current State of Implementation. In: Böhner, J.,
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variogram, 41

vertical variation, 7

adjusted R-squared, 107
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Akaike Information Criterion, 110
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soil mapping, 45

Aquila, 132
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automated mapping, 82
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Best Linear Unbiased Prediction, 27
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bubble, 94
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cor.test, 102
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correlation matrix, 103

covariance, see semivariance

extended matrix, 33

stationarity, 16
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effective scale, 97

environmental correlation, 23

environmental factors, see predictors
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foreignforeign, 89
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General Additive Models, 21

General Linear Models, 111

Generalized Least Squares, 28

Generalized Linear Models, 21
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geographic predictors, 12

geographically weighted regression, 23

GeoSciML, 84

geostatistical mapping, 2

geostatistics

application fields, 1

software, 79

GLS residuals, 36
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GRASS, 75

grid data frame, 100
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stand-alone, 65
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Idrisi, 76

ILWIS, 53
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export to R, 99

import, 89
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point pattern, 97

indicator geostatistics, 38
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intelligent mapping systems, 51

inverse distance interpolation, 11
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kappa statistics, 119

Keyhole Markup Language, 58

KML

ground overlay, 72, 128

image overlay, 71

shape files export, 69
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kriging

block predictions, 19
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how to get help, 68
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R package
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software

comparison, 79

Google Earth, 57

GRASS, 75

ILWIS, 53

SAGA, 55

soil mapping, 45

solar radiation, 96

sp, 67

space-time domain, 42

spatial interpolation, see spatial prediction

spatial prediction, 1
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memberships, 40

model, 8

spatial variation
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models, 7

spatio-temporal

anisotropy, 42

geostatistics, 41, 51

spatstat, 98
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spsample, 129

spTransform, 129
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statistical models

classification-based, 20
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step, 107

step-wise regression, 107
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surface interpolation, 12
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target variable, 8

temporal variability, 7
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correlation, 102

Kolmogorov-Smirnov, 101

texture fractions, 127
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two-phase sampling, 44

universal kriging, 32
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universal model of variation, 5, 28
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var, 94
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experimental, 14
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in gstat, 67

Matérn model, 18

models, 15

standard initial, 66

variogram, 113

visualization

texture fractions, 127

whitening, 60, 125

Wetness index, 96

WGS84, 69, 128

writeOGR, 71




	A Practical Guide to Geostatistical Mapping of Environmental Variables_001.pdf
	A Practical Guide to Geostatistical Mapping of Environmental Variables_002.pdf
	1 Theoretical backgrounds
	1.1 Basic concepts
	1.1.1 Environmental variables
	1.1.2 Aspects of spatial variability
	1.1.3 Spatial prediction models

	1.2 Mechanical spatial prediction models
	1.2.1 Inverse distance interpolation
	1.2.2 Regression on coordinates
	1.2.3 Splines

	1.3 Statistical spatial prediction models
	1.3.1 Kriging
	1.3.2 Environmental correlation
	1.3.3 Predicting from polygon maps
	1.3.4 Mixed or hybrid models


	2 Regression-kriging
	2.1 The Best Linear Unbiased Predictor of spatial data
	2.1.1 Selecting the right spatial prediction technique
	2.1.2 Universal kriging, kriging with external drift
	2.1.3 A simple example of regression-kriging

	2.2 Local versus localized models
	2.3 Spatial prediction of categorical variables
	2.4 Geostatistical simulations
	2.5 Spatio-temporal regression-kriging
	2.6 Sampling strategies and optimisation algorithms
	2.7 Fields of application
	2.7.1 Soil mapping applications
	2.7.2 Interpolation of climatic and meteorological data
	2.7.3 Mapping plant and animal species

	2.8 Final notes about regression-kriging
	2.8.1 Alternatives to RK
	2.8.2 Limitations of RK
	2.8.3 Beyond RK


	3 Hands-on software
	3.1 Overview and installation of software
	3.1.1 ILWIS
	3.1.2 SAGA
	3.1.3 R
	3.1.4 Gstat
	3.1.5 Google Earth

	3.2 Geostatistics in ILWIS
	3.2.1 Visualization of uncertainty using whitening

	3.3 Geostatistics in SAGA GIS
	3.4 Geostatistics with gstat
	3.4.1 The stand-alone version of gstat
	3.4.2 Geostatistics in R

	3.5 Visualisation of maps in Google Earth
	3.5.1 Exporting vector maps to KML
	3.5.2 Exporting raster maps (images) to KML

	3.6 Other software options
	3.6.1 Isatis
	3.6.2 GRASS GIS
	3.6.3 Idrisi

	3.7 Summary points
	3.7.1 Strengths and limitations of geostatistical software
	3.7.2 Getting addicted to R
	3.7.3 Further software developments
	3.7.4 Towards a system for automated mapping


	4 A geostatistical mapping exercise
	4.1 Case study: Ebergötzen
	4.2 Data import and preparation of maps
	4.2.1 The target variables
	4.2.2 Auxiliary maps --- predictors
	4.2.3 Assessment of the point geometry and sampling quality
	4.2.4 Pre-processing of the predictors

	4.3 Regression modelling
	4.3.1 Multiple linear regression
	4.3.2 Step-wise selection of predictors
	4.3.3 Multinomial logistic regression

	4.4 Variogram modelling
	4.4.1 Interpretation of the variograms
	4.4.2 Variograms of residuals

	4.5 Predictions and simulations
	4.6 Assessing the quality of predictions
	4.7 Comparison of predictions using various inputs
	4.7.1 Importance of the cell size
	4.7.2 Importance of the sampling intensity

	4.8 Visualization of the outputs
	4.8.1 Export to ILWIS
	4.8.2 Export to KML
	4.8.3 Alternative ways to geovisualization






