
Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 227–247 P.

A. Vasilieva
Quantum Algorithms for Computing the Boolean Function AND ..

Quantum Algorithms for Computing the Boolean

Function AND and Verifying Repetition Code

Alina Vasilieva
1

Faculty of Computing, University of Latvia

Raina bulv. 29, LV-1459, Riga, Latvia

Alina.Vasilieva@gmail.com

Quantum algorithms can be analyzed in a query model to compute Boolean functions. Function

input is provided in a black box, and the aim is to compute the function value using as few

queries to the black box as possible. In this paper we present two quantum algorithms. The first

algorithm computes the Boolean function AND of two bits using one query with a probability

p=4/5. It is also described how to extend this algorithm to compute AND(f
1
,f
2
), where f

1
 and f

2

are arbitrary Boolean functions. The second algorithm can be used for verification of the

repetition code for error detection. A repetition code is an error detection scheme that repeats

each bit of the original message r times. After a message with redundant bits is transmitted via a

communication channel, it must be verified. The verification procedure can be interpreted as an

application of a query algorithm, where input is a message to be checked. Classically, for an N-

bit message, values of all N variables must be queried. We present an exact quantum algorithm

that uses only N/2 queries in the case when r=2.

Keywords: quantum computing, quantum query algorithms, complexity theory, Boolean

functions, algorithm design.

1 Introduction

Quantum computing is an exciting alternative way of computation based on the laws

of quantum mechanics. This branch of computer science is developing rapidly;

various computational models exist, and this is a study of one of them.

Let
1 2

(, ,...,) :{0,1} {0,1}
N

N
f x x x → be a Boolean function. We consider the black

box model (also known as the query model), where a black box contains the input

1 2
(, ,...,)

N
X x x x= and can be accessed by querying x

i
 values. The goal is to compute

the value of the function. The complexity of a query algorithm is measured by the

number of questions it asks. The classical version of this model is known as decision

trees [1]. This computational model is widely applicable in software engineering. For

instance, a database can be considered a black box, and, to speed up application

performance, the goal is to reduce the number of database queries.

Quantum query algorithms can solve certain problems faster than classical

algorithms. The best known and at the same time the simplest exact quantum

algorithm for a total Boolean function was designed for the XOR function with N/2

1

 This research is supported by the European Social Fund project No.

2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004, No. ESS2009/77.

Quantum Algorithms for Computing the Boolean
Function AND and Verifying Repetition Code

Alina Vasilieva1

Faculty of Computing, University of Latvia
Raina bulv. 29, LV-1459, Riga, Latvia

Alina.Vasilieva@gmail.com

Quantum Algorithms for Computing the Boolean

Function AND and Verifying Repetition Code

Alina Vasilieva
1

Faculty of Computing, University of Latvia

Raina bulv. 29, LV-1459, Riga, Latvia

Alina.Vasilieva@gmail.com

Quantum algorithms can be analyzed in a query model to compute Boolean functions. Function

input is provided in a black box, and the aim is to compute the function value using as few

queries to the black box as possible. In this paper we present two quantum algorithms. The first

algorithm computes the Boolean function AND of two bits using one query with a probability

p=4/5. It is also described how to extend this algorithm to compute AND(f
1
,f
2
), where f

1
 and f

2

are arbitrary Boolean functions. The second algorithm can be used for verification of the

repetition code for error detection. A repetition code is an error detection scheme that repeats

each bit of the original message r times. After a message with redundant bits is transmitted via a

communication channel, it must be verified. The verification procedure can be interpreted as an

application of a query algorithm, where input is a message to be checked. Classically, for an N-

bit message, values of all N variables must be queried. We present an exact quantum algorithm

that uses only N/2 queries in the case when r=2.

Keywords: quantum computing, quantum query algorithms, complexity theory, Boolean

functions, algorithm design.

1 Introduction

Quantum computing is an exciting alternative way of computation based on the laws

of quantum mechanics. This branch of computer science is developing rapidly;

various computational models exist, and this is a study of one of them.

Let
1 2

(, ,...,) :{0,1} {0,1}
N

N
f x x x → be a Boolean function. We consider the black

box model (also known as the query model), where a black box contains the input

1 2
(, ,...,)

N
X x x x= and can be accessed by querying x

i
 values. The goal is to compute

the value of the function. The complexity of a query algorithm is measured by the

number of questions it asks. The classical version of this model is known as decision

trees [1]. This computational model is widely applicable in software engineering. For

instance, a database can be considered a black box, and, to speed up application

performance, the goal is to reduce the number of database queries.

Quantum query algorithms can solve certain problems faster than classical

algorithms. The best known and at the same time the simplest exact quantum

algorithm for a total Boolean function was designed for the XOR function with N/2

1

 This research is supported by the European Social Fund project No.

2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004, No. ESS2009/77.

1	 Introduction

228 Computer Science and Information Technologies

questions versus N questions required by classical algorithm [2]. The quantum query

model differs from the quantum circuit model [2, 3, 4], and algorithm construction

techniques for this model are less developed. The problem of quantum query

algorithm construction is very significant. Although there are many lower-bound and

upper-bound estimations of quantum query algorithm complexity [2, 5, 6, 7], there are

very few examples of original quantum query algorithms.

This paper consists of two parts, in which algorithm construction results for two

different computational problems are presented.

In the first part of this paper, we consider computing the Boolean function AND.

First, we demonstrate a bounded-error quantum query algorithm, which computes

Boolean function
1 2 1 2

(,)AND x x x x= ∧ with one query and probability 4 / 5p = . This

is better than the best possible classical probabilistic algorithm, where the probability

to obtain correct result is 2 / 3p = . Then we extend our approach and formulate a

general method for computing a composite Boolean function AND(f
1
,f
2
), where f

1
 and

f
2
 are arbitrary Boolean functions. In particular, we explicitly show how an N-variable

Boolean function
1 1 2

(,...,) ...
N N N

AND x x x x x= ∧ ∧ ∧ can be computed by the

quantum bounded-error algorithm with a probability p=4/5 using N/2 queries.

In the second part of this paper, we present an exact quantum query algorithm for

resolving a specific problem. The task is to verify a codeword message that has been

encoded using the repetition code for detecting errors [8] and has been transmitted

across a communication channel. The considered repetition code simply duplicates

each bit of the message. The verification procedure can be considered to be an

application of a query algorithm, where the codeword to be checked is contained in a

black box. To verify the message in the classical way, we would need to access all

bits. That is, for a codeword of length N, all N queries to the black box would be

required. We present an exact quantum query algorithm that requires only N/2

queries.

An exact algorithm always produces a correct answer with 100% probability.

Another variation is to use a bounded-error model, where an error margin 1/ 2ε < is

allowed. It is well-known that in the bounded-error model, a large difference between

classical and quantum computation is possible. The complexity gap between the best

known classical algorithm and quantum algorithm can be exponential, as, for

instance, in the case of the Shor’s algorithm [9]. Another famous example is the

Grover’s search algorithm that achieves a quadratic speed-up [10]. However, in

certain types of computer software, we cannot allow even a small probability of error,

for example, in spacecraft, aircraft, or medical software. For this reason, the

development of exact algorithms is extremely important.

Regarding exact quantum algorithms, the maximum speed-up achieved as of now is

half the number of queries compared with a classical deterministic case
2

 [11]. The

major open question is: is it possible to reduce the number of queries by more than

50%? In this paper, we present an algorithm that achieves the borderline gap of N/2

versus N.

2

 Exact quantum algorithm with complexity Q
E
(f) < D(f)/2 is not yet discovered for a total

Boolean function. For partial Boolean functions this limitation can be exceeded. An excellent

example is the Deutsch-Jozsa algorithm [12, 13].

229A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

2 Preliminaries

This section contains definitions and provides theoretical background on the subject.

First, we describe classical decision trees and show how to compute a simple Boolean

function in this model. Next, we provide a brief overview of the basics of quantum

computing. Finally, we describe the quantum query model that is the subject of this

paper.

2.1 Classical Decision Trees

The classical version of the query model is known as decision trees [1]. A black box

contains the input
1 2

(, , ...,)
N

X x x x= and can be accessed by querying x
i
 values.

The algorithm must allow to determine the value of a function correctly for arbitrary

input. The complexity of the algorithm is measured by the number of queries on the

worst-case input. For more details, see the survey by Buhrman and de Wolf [1].

Definition 1 [1]. The deterministic complexity of a function f, denoted by D(f), is

the maximum number of questions that must be asked on any input by a deterministic

algorithm for f.

Definition 2 [1]. The sensitivity ()
x

s f of f on input (x
1
,x

2
,…,x

N
) is the number of

variables x
i
 with the following property: f(x

1
,…,x

i
,…,x

N
) ≠ f(x

1
,…,1-x

i
,…,x

N
). The

sensitivity of f is () max ()
x x

s f s f= .

It has been proven that () ()D f s f≥ [1].

Figure 1 demonstrates a classical deterministic decision tree, which computes

3 1 2 3 1 2 1 3 2 3

(, ,) () () ()MAJORITY x x x x x x x x x= ∧ ∨ ∧ ∨ ∧ . In this figure, circles

represent queries, and rectangles represent output. It is easy to see that the third query

is necessary if values of first two queried variables are

different:
3 1 2 3

((, ,)) 3D MAJORITY x x x = .

Fig. 1. Classical deterministic decision tree for computing
3 1 2 3

(, ,)MAJORITY x x x

As in many other models of computation, the power of randomization can be added

to decision trees [1]. A probabilistic decision tree may contain internal nodes with a

probabilistic branching, i.e., multiple arrows exiting from this node, each one labeled

with a probability for algorithm to follow that way. The total sum of all probabilities

assigned to arrows in a probabilistic branching is supposed not to exceed 1. The result

230 Computer Science and Information Technologies

of a probabilistic decision tree is not determined by the input X with certainty

anymore. Instead, there is a probability distribution over the set of leaves. The total

probability to obtain a result {0,1}b∈ after the execution of an algorithm on certain

input X equals the sum of probabilities for each leaf labeled with b to be reached. The

total probability of an algorithm to produce the correct result is the probability on the

worst-case input.

2.2 Quantum Computing

This section briefly outlines the basic notions of quantum computing that are

necessary to define the computational model used in this paper. For more details, see

the textbooks by Nielsen and Chuang [3] and Kaye et al [4].

An n-dimensional quantum pure state is a unit vector in a Hilbert space. Let

|0〉,|1〉,..., |n-1〉 be an orthonormal basis for
n

C . Then, any state can be expressed as

|ψ〉=
ia

n

i
i∑

−

=

1

0
 for some a

i
∈� . Since the norm of |ψ〉 is 1, we have 1

2
1

0

=∑
−

=

n

i
i

a .

States |0〉,|1〉,…,|n-1〉 are called basis states. Any state of the form
ia

n

i
i∑

−

=

1

0
 is called

a superposition of |0〉,…,|n-1〉. The coefficient a
i
is called an amplitude of |i〉.

The state of a system can be changed by applying unitary transformation. The

unitary transformation U is a linear transformation on
n

C that maps vectors of unit

norm to vectors of unit norm. The transpose of a matrix A is denoted with
T

ij ji
A A= .

We denote the tensor product of two matrices with A B⊗ .

The simplest case of quantum measurement is used in our model – the full

measurement in the computation basis. Performing this measurement on a state

|ψ〉=a
0
|0〉+…a

n-1
|n-1〉 produces the outcome i with probability |a

i
|
2

. The measurement

changes the state of the system to |i〉 and destroys the original state |ψ〉.

2.3 The Quantum Query Model

The quantum query model is also known as the quantum black box model. This model

is the quantum counterpart of decision trees and is intended for computing Boolean

functions. For a detailed description, see the survey by Ambainis [5] and textbooks by

Kaye, Laflamme, Mosca [4], and de Wolf [2].

A quantum computation with T queries is a sequence of unitary transformations:

0 0 1 1 1 1
 , , , , ... , , ,

T T T
U Q U Q U Q U

− −

.

U
i
's can be arbitrary unitary transformations that do not depend on input bits. Q

i
's are

query transformations. Computation starts in the initial state 0

�

. Then we apply U
0
,

Q
0
,…, Q

T-1
, U

T
 and measure the final state.

We use the ket notation [3] to describe state vectors and algorithm structure:

1 0 0
... 0

T T
final U Q Q U

−

= ⋅ ⋅ ⋅ ⋅ ⋅

�

.

231A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

We use the following definition of a query transformation: if input is a state

i

i

a iψ =∑ , then the output is ()1
x
k
i

i
i

a iφ = −∑ , where we can arbitrarily

choose a variable assignment of
i
k

x for each basis state i . It is also allowed to skip

variable assignment for any particular basis state, i.e. to set 0
i
k

x = for a

particular i .

Formally, any transformation must be defined as a unitary matrix. The following is

a matrix representation of a quantum black box query.

()

()

()

1

2

1 0 ... 0

0 1 ... 0

...

0 0 ... 1

k

k

k
m

X

X

X

Q

 
−

 

 
−

 =

 

 

 −
 

Each quantum basis state corresponds to the algorithm's output. We assign a value

of a function to each output. The probability of obtaining the result {0,1}j∈ after

executing an algorithm on input X equals the sum of squared moduli of all amplitudes,

which correspond to outputs with value j.

Definition 3 [1]. A quantum query algorithm computes f exactly if the output equals

f(x) with a probability 1p = , for all {0,1}
N

x∈ . Complexity is equal to the number of

queries and is denoted with Q
E
(f).

Definition 4 [1]. A quantum query algorithm computes f with bounded-error if the

output equals f(x) with probability 2 / 3p > , for all {0,1}
n

x∈ . Complexity is equal to

the number of queries and is denoted with Q
p
(f).

Quantum query algorithms can be conveniently represented in diagrams, and we

will use this approach in this paper.

3 Quantum Query Algorithms for the Boolean Function AND

In this section, we present our results in constructing quantum query algorithms for a

set of Boolean functions based on the AND Boolean operation. We consider bounded-

error algorithms, which output a correct answer with some probability. Regarding

computing a two-variable function
1 2

(,)AND x x , the results were obtained as

follows: using a method described in Section 2.2.1 of [14], it is possible to construct a

bounded-error quantum algorithm for
1 2

(,)AND x x with one query and a probability

2 / 3p = . A better probability of correct answer for a one-query algorithm was

obtained in [15] and it is 3/ 4p = . In [16] in a proof for Lemma 1, an algorithm for

computing an arbitrary two-variable Boolean function is presented, whose probability

232 Computer Science and Information Technologies

is p=11/14. The authors also claim to be able to prove that probability p=9/10 is

optimal.

In this paper, we improve these results and show an algorithm which computes

1 2
(,)AND x x with one query and a probability 4 / 5p = . Moreover, we extend an

algorithm to compute the AND of two functions.

This section is organized as follows: first, we discuss the classical complexity of the

two-argument Boolean function
1 2

(,)AND x x . Then we demonstrate a bounded-error

quantum query algorithm that computes
1 2

(,)AND x x with a probability 4 / 5p = .

Finally, we generalize our approach and present a method for constructing efficient

quantum algorithms for computing a composite function 2
1 2

[,]AND f f , where f
1
 and

f
2
 are Boolean functions.

Definition 5. We define nAND construction (n N∈) as a composite Boolean

function where arguments are arbitrary Boolean functions f
i
 and which is defined as

1 2
=1

[, ,...,]() 1 ()

n

n
n i i

i

AND f f f X f X n= ⇔ =∑ ,

1 2
...

n

X X X X= ; X
i
 is input for i

th

 function
3

; f
i
’s are called base functions.

3.1 Classical Complexity of
1 2

(,)AND x x

Classical deterministic complexity of the Boolean function
2 1 2
(,)AND x x is

obviously equal to the number of variables:
2

() 2D AND = .

Next we will show that the best probability for a classical randomized decision tree

to compute this function with one query is p = 2/3. The general form of the optimal

randomized decision tree is shown in Figure 2.

Fig. 2. The general form of the optimal randomized decision tree for computing

AND
2
(x

1
,x

2
)

3

 Variables may also overlap among inputs for different functions, i.e. for X
i
= (x

i1
,...,x

in
) and X

j

= (x
j1
..x

jm
) there may be variables with the same indices.

233A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

We denote the probability to see the result {0,1}b∈ after executing the algorithm

on input X with Pr(" " |)b X . The correct answer probability calculation:

1) ()
1 1

Pr("0" | 00) 1 1

2 2

X s s s= = − + + = ,

2) ()
1 1 1

Pr("0" | 01 10) 1 1 ()

2 2 2

X X s s sq s sq= ∨ = = − + + = − − ,

3) 1 1

Pr("1" | 11) (1) (1)

2 2

X s q s q s sq= = − + − = − .

We denote ()s sq z− = . Then the total probability of the correct answer is

1

(Pr("0"),Pr("1")) (1 ,)

2

p min min z z= = − .

The best probability is obtained when Pr("0") Pr("1")= .

1

1

2

2

3

z z

z

− =

=

Corollary 1. The Boolean function
2 1 2
(,)AND x x can be computed by a

randomized classical decision tree with one query with the maximum probability

p=2/3.

3.2 Quantum Query Algorithms for
1 2

(,)AND x x

We start with a bounded-error quantum query algorithm for the simplest case of two-

variable function
1 2

(,)AND x x .

Theorem 1. There exists a quantum query algorithm Q1 that computes the Boolean

function
1 2

(,)AND x x with one quantum query and correct answer probability is

p=4/5:
4/5 2

() 1Q AND = .

Proof. The algorithm is presented in Fig. 3. Our algorithm uses 3-qubit quantum

system. Each horizontal line corresponds to the amplitude of the basis state.

Computation starts with the state

2 1

, 0, 0, 0, , 0, 0, 0

5 5

T

ϕ

 

=  

 

 (we omit

unitary transformation, which converts initial state ()0 1,0,0,..,0

T

=

�

 into ϕ). Two

large rectangles correspond to the 8 8× unitary matrices
0

U and
1

U . The vertical

layer of circles specifies the queried variable order for the single query
0

Q . Finally,

eight small squares at the end of each horizontal line define the assigned function

value for each basis state. The main idea is to assign the amplitude value 1 5α = to

the basis state 100 and leave it invariable until the end of the execution.

234 Computer Science and Information Technologies

Fig. 3. Bounded-error quantum query algorithm Q1 for computing AND(x
1
,x

2
)

Quantum state after the first transformation U
0
 becomes equal to

2 0 0

2 1

, 0, 0, 0, , 0, 0, 0

5 5

1 1 1 1 1

, , , , , 0, 0, 0

5 5 5 5 5

T

T

U Uϕ ϕ

 

= = ⋅ = 

 

 

=  

 

Further evolution of the quantum system for each input X is shown in Table 1.

Table 1.

Quantum query algorithm Q1 computation process for AND(x
1
,x

2
)

X 3 0 0
Q Uϕ ϕ=

1 0 0FINAL
U Q Uϕ ϕ= p(“1”)

00

1 1 1 1 1

, , , , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 2 1

, 0, , 0, , 0, 0, 0

5 5 5

T

 

 
 

 

 0

01

1 1 1 1 1

, , , - , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 1 1 1

, , 0, - , , 0, 0, 0

5 5 5 5

T

 

 
 

 

1

5

10

1 1 1 1 1

, - , , , , 0, 0, 0

5 5 5 5 5

T

 

 

 

1 2 1 1

0, , , , , 0, 0, 0

55 5 5

T

 

 
 

 

1

5

11
1 1 1 1 1

, - , , - , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 1

0, , 0, 0, , 0, 0, 0

5 5

T

 

 

 

4

5

Fig. 3. Bounded-error quantum query algorithm Q1 for computing AND(x
1
,x

2
)

Quantum state after the first transformation U
0
 becomes equal to

2 0 0

2 1

, 0, 0, 0, , 0, 0, 0

5 5

1 1 1 1 1

, , , , , 0, 0, 0

5 5 5 5 5

T

T

U Uϕ ϕ

 

= = ⋅ = 

 

 

=  

 

Further evolution of the quantum system for each input X is shown in Table 1.

Table 1.

Quantum query algorithm Q1 computation process for AND(x
1
,x

2
)

X 3 0 0
Q Uϕ ϕ=

1 0 0FINAL
U Q Uϕ ϕ= p(“1”)

00

1 1 1 1 1

, , , , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 2 1

, 0, , 0, , 0, 0, 0

5 5 5

T

 

 
 

 

 0

01

1 1 1 1 1

, , , - , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 1 1 1

, , 0, - , , 0, 0, 0

5 5 5 5

T

 

 
 

 

1

5

10

1 1 1 1 1

, - , , , , 0, 0, 0

5 5 5 5 5

T

 

 

 

1 2 1 1

0, , , , , 0, 0, 0

55 5 5

T

 

 
 

 

1

5

11
1 1 1 1 1

, - , , - , , 0, 0, 0

5 5 5 5 5

T

 

 

 

2 1

0, , 0, 0, , 0, 0, 0

5 5

T

 

 

 

4

5

235A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

3.3 Decomposing the
1 2

(,)AND x x Algorithm

This section is a transitional point to the generalized method for computing the

construction 2AND . Now we will reveal the internal details of the algorithm Q1 that

allow us to adapt its structure to compute a much wider set of Boolean functions.

The quite chaotic and asymmetric matrix U
0
 actually is a product of two other

matrices.

0 0 0

 B A

U U U= ⋅ =

1 1

0 0 0 0 0 0

1 12 2

0 0 0 0 0 0

1 1 2 2

 0 0 0 0 0 0

0 1 0 0 0 0 0 02 2

1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2

1 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0 0 02 2

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

 

 


 


 


− 


 


 


  −


 

• 

 
−

 

 

 

 

 

 


 
 

 















 

 

 

 

 

 

 

 



Matrix U
1
, in turn, is a product of the following two matrices.

1 1 1

 B A

U U U= ⋅ =

1 1

0 0 0 0 0 0

1 0 0 0 0 0 0 0 2 2

1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2

0 0 1 0 0 0 0 0 1 1

0 0 0 0 0 0

1 1 2 2

0 0 0 0 0 0

1 12 2

0 0 0 0 0 0

0 0 0 0 1 0 0 0 2 2

0 0 0 0 1 0 0 00 0 0 0 0 1 0 0

0 0 0 0 0 1 0 00 0 0 0 0 0 1 0

0 0 0 0 0 0 1 00 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1




 


 


 

−
 


 


 


 


 − • 
 


− 


 


 


 


 


 

 



































 

 
 



Detailed algorithm structure now looks as follows.

0 0 0 1 1
 , , , , []

A B A B

U U Q U U Measureϕ → →

The final vector is calculated as
1 1 0 0 0

B A B A

FINAL
U U Q U Uϕ ϕ= ⋅ ⋅ ⋅ ⋅ ⋅ .

Now the most important point – the algorithm part represented by transformations

0 0 1
 , ,

B A

U Q U actually executes two instances of an exact quantum query algorithm

for ()f x x= in parallel. Fig. 4 and 5 graphically demonstrate this significant detail.

Fig. 4. An exact quantum query algorithm for computing f(x) = x

236 Computer Science and Information Technologies

Fig. 5. A quantum algorithm for AND(x
1
,x

2
), revised

In other words, first of all quantum parallelism is employed to evaluate each

variable. Then unitary transformation
1

B

U is applied to correlate amplitude

distribution in such a way that the resulting quantum algorithm computes

1 2
(,)AND x x with acceptable error probability.

In the next section we will generalize this approach to allow to use other Boolean

functions as sub-routines.

3.4 A Method for Computing 2
1 2

[,]AND f f

It is possible to replace a sub-algorithm for ()f x x= (in an algorithm construction

demonstrated in the previous section) with any other quantum algorithm which

satisfies specific properties. We define a class EQQA+, and our method is applicable

to base algorithms that belong to this class.

Definition 6. An exact quantum query algorithm belongs to the class EQQA+

(positive exact quantum query algorithms) iff there is exactly one accepting basis

state, and on any input for its amplitude Cα ∈ only two values are possible before

the final measurement: either 0α = or 1α = .

Theorem 2. If there exist exact quantum query algorithms A1 and A2 for

computing Boolean functions f
1
(X

1
) and f

2
(X

2
) that belong to the class EQQA+, then a

composite Boolean function 2
1 2

[,]AND f f can be computed with a probability p =

4/5 using
E E

max(Q (A1),Q (A2)) queries to the black box.

Proof. A general algorithm construction method for computing the Boolean

function 2
1 2

[,]AND f f is presented below. The main idea is to assign the amplitude

value 1 5α = to some fixed basis state and leave it invariable until the end of the

execution.

237A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

A method for computing 2
1 2

[,]AND f f

Input. Two exact quantum query algorithms A1, A2 +EQQA∈ compute Boolean

functions
1 1 2 2
(), ()f X f X . We denote the dimension of Hilbert space utilized by the

first algorithm with
1

m (the number of amplitudes), and by the second algorithm with

2
m . We denote the positions of accepting outputs of A1 and A2 with acc

1
 and acc

2
.

Constructing steps

1. If
1 2

m m= , then utilize a quantum system with
1

4m amplitudes for a new

algorithm. First
1

2m amplitudes will be used for the parallel execution of A1

and A2. Additional qubit is required to provide separate amplitude for storing

the value of 1 5 .

2. If
1 2

m m≠ (without loss of generality assume that
1 2

m m>), then utilize a

quantum system with
1

2m amplitudes for a new algorithm. First ()
1 2

m m+

amplitudes will be used for the parallel execution of A1 and A2. Use the first

remaining free amplitude for storing the value of 1 5 .

3. Combine unitary transformations and queries of A1 and A2 in the following

way:

1 2 1 1

2 1 2 1

1 1 1 2 1 2

1

2

U O O
m m m m

U O U O
i m m m m

O O I
m m m m m m

 
× ×

 

 =
× ×

 

 
× × −

 

, here
i j

m m

O
×

 are
i j

m m× zero-matrices,

1 2
m m

I
−

is () ()
1 2 1 2

m m m m− −× identity matrix,
1

i
U and

2

i
U are either unitary

transformations or query transformations of A1 and A2.

4. Start computation from the state

1 2

2 5, 0,...,0, 2 5, 0,...,0, 1/ 5, 0,..,0

T

remaining amplitudesm m

ϕ

 

 
=
 

 

 

�������������� �������

.

5. Apply gates U
i
. Before the final measurement apply an additional unitary gate.

()

1 1 2

1

1 1 2 1 2 1

1 2

 1, if () & () & (())

 1/ 2, if ()

 1/ 2, if () & (()) OR (()) & ()

1/ 2, if (())

 0, otherwise

ij

i j i acc i m acc

i j acc

U u i acc j m acc i m acc j acc

i j m acc

= ≠ ≠ +



= =



= = = = + = + =



− = = +






6. Define as accepting output exactly one basis state
1

acc .

Output. A bounded-error QQA A for computing a function
1 1 2 2

() () ()F X f X f X= ∧

with a probability 4 / 5p = and complexity
4 / 5

() max((1), (2))
E E

Q A Q A Q A= .

238 Computer Science and Information Technologies

The most significant behavior of our method is that overall algorithm complexity

does not exceed the greatest complexity of sub-algorithms. Additional queries are not

required to compute a composite function. However, error probability is the cost for

efficient computing.

A very important aspect is that we used a specific algorithm for the two-variable

Boolean function
1 2

(,)AND x x as a base for the constructing method. If the correct

answer probability for the
1 2

(,)AND x x algorithm, which would also use an

algorithm for computing f(X)=X as a sub-routine, will be improved to 4 5p > , then

the probability of a general constructing method and all the further results of this

section will be improved as well.

3.5 Class EQQA+

In this section, we show that EQQA+ class (see Definition 6) is wide enough to be

taken into consideration. At the same time, approaches for constructing efficient

instances of EQQA+ are worth to be examined in a separate paper.

3.5.1 Conversion of Classical Decision Trees into Quantum Query Algorithms

Given an arbitrary classical deterministic decision tree, it is possible to convert it into

an exact quantum query algorithm which uses the same number of queries.

A classical query to the black box can be simulated with a quantum query algorithm

construction presented in Fig. 6.

Fig. 6. Quantum query algorithm construction for simulating a classical query

After the second Hadamard gate we obtain ()1,0

T

 if x = 0, or ()0,1

T

 if x = 1.

Then we can continue to query other variables by logically splitting the algorithm

flow into two separate threads and so on.

We demonstrate a complete example of converting a classical decision tree for

computing
1 2

(,)AND x x into an exact quantum query algorithm. Fig. 7 shows a

classical decision tree. Figure 8 shows the corresponding exact quantum query

algorithm.

We would like to note that, although such conversion is possible, it is not optimal.

For instance, it is well known that XOR can be computed in a quantum model using

two times less queries than required in a classical model.

239A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

Fig. 7. A classical deterministic decision tree for
1 2

(,)AND x x

Fig. 8. An exact quantum query algorithm for
1 2

(,)AND x x

If a deterministic decision tree has exactly one leaf with output value “1”, then it

obviously will be converted into an algorithm of class EQQA+.

It means that we can place into
2

AND construction any Boolean function that has

exactly one accepting input vector. Thus, our method is applicable to an infinite set of

base functions.

Theorem 3. For an infinite set of Boolean functions, quantum query algorithms can

be constructed using a method described in Section 3.4. As a result, the following

complexity gap can be achieved when computing the same function in quantum and

classical deterministic models: 2 2
4 / 5 1 2 1 2

1

((,)) ((,))

2

Q AND f f D AND f f= ⋅ .

Proof. For any Boolean function f that has exactly one accepting vector, the

sensitivity s(f) and, consequently, the deterministic complexity D(f) are equal to the

number of variables. Suppose we have two such Boolean functions f
1
 and f

2
, with the

same number of variables N, and wish to compute
2 1 2

(,)AND f f
4

. Obviously, the

4

 We assume that variables do not overlap this time.

240 Computer Science and Information Technologies

classical deterministic complexity of this function is 2
1 2

((,)) 2D AND f f N= . For

each function we can convert a deterministic algorithm into an exact quantum query

algorithm of the class EQQA+, which will use the same N queries. Finally, we apply

the method for constructing an algorithm for
2 1 2

(,)AND f f which does not require

additional queries: 2 2
4 / 5 1 2 1 2

1

((,)) ((,))

2

Q AND f f N D AND f f= = ⋅ .

In the theorem above, classical deterministic and quantum bounded-error query

complexity is compared. It would be interesting to compare classical probabilistic and

quantum bounded-error complexity correlation for
2 1 2

(,)AND f f . As of today, we do

not have such estimation yet.

Theorem 4. The Boolean function AND
N
(X) (2 , N k k N= ∈) can be computed by

a bounded-error quantum query algorithm with a probability p = 4/5 using N/2

queries:
4 5

() / 2
N

Q AND N= .

Proof. Boolean function AND
N
(X) can be represented as

2
/ 2 / 2

(,)
N N N

AND AND AND AND= .

It means that by applying our construction method it is possible to obtain an

algorithm with complexity

4 5 / 2
() ()

N E N
Q AND Q AND= .

The Boolean function
/ 2N

AND can be computed by a deterministic algorithm with

complexity
/ 2

() / 2
N

D AND N= , which has exactly one accepting output. It means

that this deterministic algorithm can be converted into EQQA+ class algorithm which

uses the same N/2 number of queries.

4 5 / 2
() () / 2

N E N
Q AND Q AND N= = .

3.6 An Example of a Larger Separation: () 6D f = vs. Q
4/5
(f)=2

We would like to demonstrate an example when quantum algorithm complexity can

be over two times less than classical deterministic algorithm complexity. It is possible

in cases when an exact quantum algorithm for a sub-function is better than the best

possible deterministic algorithm for the same function.

An exact quantum query algorithm for
3 1 2 2 3
() () ()EQUALITY X x x x x= ¬ ⊕ ∧¬ ⊕

has been first presented in [17]. The algorithm is depicted in Fig. 12 and it uses only

two quantum queries while classically all three queries are required. The algorithm

belongs to the class EQQA+ and can be used as a sub-algorithm for 2AND

construction.

To evaluate deterministic complexity of 2
3 3

[,]f AND EQUALITY EQUALITY= , we

use function sensitivity on any accepting input: () 6 () 6s f D f= ⇒ = .

241A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

A quantum bounded-error algorithm for 2
3

[]f AND EQUALITY= constructed using

our method will require only two queries:
4 / 5

() 2Q f = .

Fig. 9. An exact quantum query algorithm for EQUALITY
3

The same approach can be applied to any algorithm of class EQQA+ that computes

an N-variable Boolean function.

3.7 Repeated Application of a Method for Computing 2
1 2

[,]AND f f

The useful properties of the algorithm construction method described in Section 3.4

allow to apply this method repeatedly.

Theorem 5. Let
1 2 11 12

[,]F AND f f= and
2 2 21 22

[,]F AND f f= be composite

Boolean functions. Let Q1 and Q2 be bounded-error quantum query algorithms that

have been constructed using a method for computing AND
2
[f

1
,f
2
], and that compute

F
1
 and F

2
 with a probability p = 4/5. Then a bounded-error quantum query algorithm

Q can be constructed to compute a composite Boolean function
2 1 2

[,]F AND F F=

with a probability p = 16/25.

Proof. We straightforwardly apply the method for computing AND
2
[f

1
,f
2
] to

algorithms Q1 and Q2 instead of instances of QQA
+1

 class. As a result, the obtained

complex algorithm computes
2 1 2

[,]F AND F F= with a probability 4 4 16

5 5 25

p = ⋅ = .

As a consequence, we are able to compute a four-variable function AND(x
1
,…,x

4
)

with a single quantum query with a probability p=16/25.

Next iteration produces quantum algorithms that compute functions like

2 2 2 1 2 2 3 4 2 2 5 6 2 7 8
[[[,], [,]], [[,], [,]]]F AND AND AND f f AND f f AND AND f f AND f f=

with a probability p=64/125, which is just slightly more than a half.

4 An Exact Quantum Query Algorithm for Verifying Repetition

Code

In this section, we consider the second problem: verification of the codeword encoded

by the repetition code for error detection. In the first sub-section, we introduce

repetition codes and define a Boolean function for their verification. Secondly, we

242 Computer Science and Information Technologies

show that classically, for an N-bit message, values of all N variables must be queried

in order to detect an error. Finally, we present an exact quantum algorithm for N-bit

codeword verification that uses only N/2 queries to the black box.

4.1 Error Detection and Repetition Codes

In this sub-section, we investigate a problem related to information transmission

across a communication channel. The bit message is transmitted from a sender to a

receiver. During that transfer, information may be corrupted. Because of the noise in a

channel or adversary intervention, some bits may disappear, or may be reverted, or

even added. Various schemes exist to detect errors during transmission. In any case, a

verification step is required after transmission. The received codeword is checked

using defined rules and, as a result, a conclusion is made as to whether errors are

present.

We consider a repetition error detection scheme known as repetition codes. A

repetition code is a (r, N) coding scheme that repeats each N-bit block r times [8].

An example

• Using a (3,1) repetition code, the message m = 101 is encoded as c = 111000111.

• Using a (2,2) repetition code, the message m = 1011 is encoded as c = 10101111.

• Using a (2,3) repetition code, m = 111000 is encoded as c = 111111000000.
Verification procedure for the repetition code is the following – we need to check if

in each group of r consecutive blocks of size N all blocks are equal.

We start with verification of the (2,1) repetition code. The verification process can

be expressed naturally as computing a Boolean function in a query model. We assume

that the codeword to be checked is located in a black box. We define the Boolean

function to be computed with the query algorithm as follows.

Definition 7. The Boolean function ()
N

VERIFY X , where 2N k= ,

()
1 2 2
, ,...,

k
X x x x= is defined to have a value of “1” iff variables are equal by pairs.

() () () ()
1 2 3 4 5 6 2 -1 2

2

1, ...

()

0 ,

k k

k

if x x x x x x x x

VERIFY X

otherwise

 = ∧ = ∧ = ∧ ∧ =
= 



An example: the Boolean function
4
()VERIFY X has the following accepting

inputs:

{0000, 0011, 1100, 1111}.

243A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

4.2 Deterministic Complexity of
N

VERIFY

Fig. 10 demonstrates a classical deterministic decision tree which computes

4 1 2 3 4

(, , ,)VERIFY x x x x . In this figure, circles represent queries, and rectangles

represent output.

Theorem 6. ()
N

D VERIFY N= .

Proof. Check function sensitivity on any accepting input, for instance, on X =

1111..11. Inversion of any bit will invert the function value, because a pair of bits

with different values will appear. () ()
N N

s VERIFY N D VERIFY N= ⇒ = .

Fig. 10. A classical deterministic decision tree for computing
4 1 2 3 4

(, , ,)VERIFY x x x x

4.3 Computing the Function
N

VERIFY in a Quantum Query Model

Our approach to computing the Boolean function VERIFY
N
 in a quantum query model

is based on an exact quantum query algorithm for the XOR function.

Theorem 7. There exists an exact quantum query algorithm that computes the

Boolean function VERIFY
N
(X) using N/2 queries: () / 2

E N
Q VERIFY N= .

Proof. Definition of the VERIFY
N
 function can be re-formulated as follows.

() () () ()
1 2 3 4 5 6 2 -1 2

2

1, ...

()

0 ,

k k

k

if x x x x x x x x

VERIFY X

otherwise

 ¬ ⊕ ∧ ¬ ⊕ ∧ ¬ ⊕ ∧ ∧ ¬ ⊕
= 



An exact quantum algorithm for computing the Boolean function

1 2 1 2
(,) ()f x x x x= ¬ ⊕ with one query is presented in Fig. 11. We compose an

algorithm for VERIFY
N
 using an algorithm for

1 2 1 2
(,) ()f x x x x= ¬ ⊕ as building

blocks.

244 Computer Science and Information Technologies

Fig. 11. An exact quantum query algorithm for computing
1 2

() ()f X x x= ¬ ⊕

First, we execute an algorithm for
1 2 1 2

(,) ()f x x x x= ¬ ⊕ for variables x
1
 and x

2
. To

the first output (which has “1” assigned, see Fig. 11), we concatenate the second

instance of an algorithm for computing
1 2 1 2

(,) ()f x x x x= ¬ ⊕ . This time we execute

it for variables x
3
 and x

4
. We continue this way until all variables of VERIFY

N
 are

queried. The algorithm has only one accepting output, which is the first output of the

last sub-algorithm.

A schematic view of the described approach is depicted in Fig. 12. It is easy to see

that the total number of queries is N/2.

Fig. 12. An algorithm for computing the Boolean function VERIFY
N

4.4 Application to a String Equality Problem

The described approach can be adapted for solving such computational problem as

testing whether two binary strings are equal. This is a well-known task, which can be

used as a sub-routine in various algorithms.

A quantum algorithm for the Boolean function VERIFY
N
 checks whether variables

are equal by pairs, i.e. () () ()
1 2 3 4 1

...

N N
x x x x x x

−

= ∧ = ∧ ∧ = . On the other hand,

we can consider that this algorithm checks whether two binary strings,

245A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

1 3 5 1
...

N
Y x x x x

−

= and
2 4 6

...

N
Z x x x x= , are equal. Therefore, the algorithm can be

easily used not only to verify repetition codes, but also for checking equality of binary

strings.

4.5 Verification of the (r,1) Repetition Code

Now, let us consider the (r,1) repetition code, where each bit is repeated r times

during encoding. Verification procedure for a codeword encoded using such code

consists of checking whether in each sequence of r bits all bits are equal.

The Boolean function EQUALITY
r
 is defined as

() () () ()
1 2 3 4 5 6 1

1, ...

()

0 ,

r r

r

if x x x x x x x x

EQUALITY X

otherwise

−

 = ∧ = ∧ = ∧ ∧ =
= 



.

We define the Boolean function that corresponds to verification procedure as

() ()

()

1 1 2

(1) 1

1, ,..., ,..., ...

() ... ,...,

0 ,

r r r

r

r N N r Nr

if EQUALITY x x EQUALITY x x

VERIFY X EQUALITY x x

otherwise

+

⋅
− +

∧ ∧

= ∧












.

Theorem 8. Deterministic complexity of the Boolean function ()
r

r N
VERIFY X

⋅

 is

equal to the number of variables: ()
r

r N

D VERIFY Nr
⋅

= .

Proof. Again, we use function sensitivity on any accepting input. Inversion of any

bit will invert the function value because a pair of bits with different values will

appear. () ()
r r

r N r N

s VERIFY Nr D VERIFY Nr
⋅ ⋅

= ⇒ = .

Theorem 9. There exists an exact quantum query algorithm that computes the

Boolean function ()
r

r N
VERIFY X

⋅

using N r N⋅ − queries:

() (1)
r

E r N

Q VERIFY N r
⋅

= − .

Proof. Again, to speed up the verification procedure, we take into account the fact

that XOR of two bits can be computed with one quantum query. The Boolean function

EQUALITY
r
 can be expressed using operations ⊕ , ∧ and ¬ :

() () () ()
1 2 2 3 3 4 1

() ...
r r r

EQUALITY X x x x x x x x x
−

= ¬ ⊕ ∧¬ ⊕ ∧¬ ⊕ ∧ ∧¬ ⊕ .

This logical formula contains (r-1) clauses each consisting of XOR of two bits.

Using the approach described in the proof of Theorem 7, we can compose an exact

quantum query algorithm which computes EQUALITY
r
 using (r-1) quantum queries.

This algorithm has one accepting output. Next we use an algorithm for EQUALITY
r
as

a building block for composing an algorithm to compute
r

r N
VERIFY

⋅

. The resulting

algorithm uses (1)N r − queries to determine the value of the Boolean function

r

r N
VERIFY

⋅

 exactly.

246 Computer Science and Information Technologies

5 Conclusion

In this paper, we presented quantum query algorithms for resolving two specific

computational problems.

First, we considered computing the Boolean function AND in a bounded-error

setting. We presented a quantum query algorithm that computes
1 2

(,)AND x x with

one query and probability p = 4/5 while the optimal classical randomized algorithm

can compute this function with a probability p=2/3 only. Then we extended our

approach and formulated a general method for computing 2
1 2

[,]AND f f composite

construction with the same probability p=4/5 and number of queries equal to

1 2
max((), ())

E E
Q f Q f . The suggested approach allows to build quantum algorithms

for complex functions based on already known algorithms. A significant behavior is

that the overall algorithm complexity does not increase; additional queries are not

required to compute a composite function. However, error probability is the cost for

efficient computing. We demonstrated that our method is applicable to a large set of

Boolean functions. As a result, a complexity gap of
4 / 5

() 1/ 2 ()Q f D f= ⋅ can be

achieved for an infinite set of Boolean functions. We also showed that this is not the

lower bound for quantum algorithm complexity and examples where

4 / 5

() 1/ 2 ()Q f D f< ⋅ can be constructed as well.

In the second part of this paper, we considered verification of error detection codes.

We have represented the verification procedure as an application of a query algorithm

to an input codeword contained in a black box. We have represented an exact

quantum query algorithm which allows to verify a codeword of length N using only

N/2 queries to the black box. Our algorithm saves exactly half the number of queries

comparing to the classical case. This result repeats the largest difference between

classical and quantum algorithm complexity for a total Boolean function known today

in this model.

We see many possibilities for future research in the area of quantum query

algorithm design. The most significant open question still remains: is it possible to

increase exact algorithm performance more than two times using quantum tools?

Furthermore, there are many computational tasks waiting for an efficient solution in a

quantum setting. Regarding the AND Boolean function, we would like to improve

correct answer probability when computing a two-variable AND with one query.

Regarding verification of repetition codes, we would like to be able to verify

efficiently not only the (2,1) code, but also an arbitrary (r,N) code. Another

fundamental goal is to develop a framework for building efficient ad-hoc quantum

query algorithms for arbitrary Boolean functions.

Acknowledgments. I would like to thank my supervisor Rusins Freivalds for

introducing me to quantum computation and for his constant support and advice.

This research is supported by the European Social Fund project No.

2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004, Nr. ESS2009/77.

247A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

References

1. H. Buhrman and R. de Wolf. Complexity Measures and Decision Tree Complexity: A

Survey. Theoretical Computer Science, v. 288(1), 2002, pp. 21–43.

2. R. de Wolf. Quantum Computing and Communication Complexity. University of

Amsterdam, 2001.

3. M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. Cambridge

University Press, 2000.

4. P. Kaye, R. Laflamme, M. Mosca. An Introduction to Quantum Computing. Oxford, 2007.

5. A. Ambainis. Quantum query algorithms and lower bounds. (Survey article.) In:

Proceedings of FOTFS III, Trends on Logic, vol. 23, 2004, pp. 15–32.

6. A. Ambainis and R. de Wolf. Average-case quantum query complexity. Journal of Physics

A 34, 2001, pp. 6741–6754.

7. A. Ambainis. Polynomial degree vs. quantum query complexity. Journal of Computer and

System Sciences, 72, 2006, pp. 220–238.

8. T. M. Cover, J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991,

pp. 209–212.

9. P. W. Shor. Polynomial time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM Journal on Computing, 26(5), 1997, pp. 1484–1509.

10. L. Grover. A fast quantum mechanical algorithm for database search. In: Proceedings of

28
th

 STOC '96, 1996, pp. 212–219.

11. A. Ambainis, personal communication, April 2009.

12. D. Deutsch, R. Jozsa. Rapid solutions of problems by quantum computation. Proceedings

of the Royal Society of London, Vol. A 439, 1992, pp. 553–558.

13. R. Cleve, A. Ekert, C. Macchiavello, M. Mosca. Quantum algorithms revisited.

Proceedings of the Royal Society of London, Vol. A 454, 1998, pp. 339–354.

14. L. Lāce. Quantum Query Algorithms. Doctoral Thesis. University of Latvia, 2008, pp. 42–

43.

15. A. Vasilieva. Quantum Query Algorithms for AND and OR Boolean Functions, Logic and

Theory of Algorithms. Proceedings of the 4th Conference on Computability in Europe,

2008, pp. 453–462.

16. I. Kerenidis, R. de Wolf. Exponential Lower Bound for 2-Query Locally Decodable Codes

via a Quantum Argument. Journal of Computer and System Sciences, 2004, pp. 395–420.

17. A. Dubrovska. Quantum Query Algorithms for Certain Functions and General Algorithm

Construction Techniques. Quantum Information and Computation V, Proc. of SPIE, vol.

6573. SPIE, Bellingham, WA, article 65730F, 2007.

