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Quantum algorithms can be analyzed in a query model to compute Boolean functions. Function 

input is provided in a black box, and the aim is to compute the function value using as few 

queries to the black box as possible. In this paper we present two quantum algorithms. The first 

algorithm computes the Boolean function AND of two bits using one query with a probability 

p=4/5. It is also described how to extend this algorithm to compute AND(f
1
,f
2
), where f

1
 and f

2
 

are arbitrary Boolean functions. The second algorithm can be used for verification of the 

repetition code for error detection. A repetition code is an error detection scheme that repeats 

each bit of the original message r times. After a message with redundant bits is transmitted via a 

communication channel, it must be verified. The verification procedure can be interpreted as an 

application of a query algorithm, where input is a message to be checked. Classically, for an N-

bit message, values of all N variables must be queried. We present an exact quantum algorithm 

that uses only N/2 queries in the case when r=2.  

 

Keywords: quantum computing, quantum query algorithms, complexity theory, Boolean 

functions, algorithm design. 

1 Introduction  

Quantum computing is an exciting alternative way of computation based on the laws 

of quantum mechanics. This branch of computer science is developing rapidly; 

various computational models exist, and this is a study of one of them. 

Let 
1 2

( , ,..., ) :{0,1} {0,1}
N

N
f x x x →  be a Boolean function. We consider the black 

box model (also known as the query model), where a black box contains the input 

1 2
( , ,..., )

N
X x x x= and can be accessed by querying x

i
 values. The goal is to compute 

the value of the function. The complexity of a query algorithm is measured by the 

number of questions it asks. The classical version of this model is known as decision 

trees [1]. This computational model is widely applicable in software engineering. For 

instance, a database can be considered a black box, and, to speed up application 

performance, the goal is to reduce the number of database queries. 

Quantum query algorithms can solve certain problems faster than classical 

algorithms. The best known and at the same time the simplest exact quantum 

algorithm for a total Boolean function was designed for the XOR function with N/2 
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questions versus N questions required by classical algorithm [2]. The quantum query 

model differs from the quantum circuit model [2, 3, 4], and algorithm construction 

techniques for this model are less developed. The problem of quantum query 

algorithm construction is very significant. Although there are many lower-bound and 

upper-bound estimations of quantum query algorithm complexity [2, 5, 6, 7], there are 

very few examples of original quantum query algorithms. 

This paper consists of two parts, in which algorithm construction results for two 

different computational problems are presented. 

In the first part of this paper, we consider computing the Boolean function AND. 

First, we demonstrate a bounded-error quantum query algorithm, which computes 

Boolean function
1 2 1 2

( , )AND x x x x= ∧  with one query and probability 4 / 5p = . This 

is better than the best possible classical probabilistic algorithm, where the probability 

to obtain correct result is 2 / 3p = . Then we extend our approach and formulate a 

general method for computing a composite Boolean function AND(f
1
,f
2
), where f

1
 and 

f
2
 are arbitrary Boolean functions. In particular, we explicitly show how an N-variable 

Boolean function 
1 1 2

( ,..., ) ...
N N N

AND x x x x x= ∧ ∧ ∧  can be computed by the 

quantum bounded-error algorithm with a probability p=4/5 using N/2 queries. 

In the second part of this paper, we present an exact quantum query algorithm for 

resolving a specific problem. The task is to verify a codeword message that has been 

encoded using the repetition code for detecting errors [8] and has been transmitted 

across a communication channel. The considered repetition code simply duplicates 

each bit of the message. The verification procedure can be considered to be an 

application of a query algorithm, where the codeword to be checked is contained in a 

black box. To verify the message in the classical way, we would need to access all 

bits. That is, for a codeword of length N, all N queries to the black box would be 

required. We present an exact quantum query algorithm that requires only N/2 

queries. 

An exact algorithm always produces a correct answer with 100% probability. 

Another variation is to use a bounded-error model, where an error margin 1/ 2ε <  is 

allowed. It is well-known that in the bounded-error model, a large difference between 

classical and quantum computation is possible. The complexity gap between the best 

known classical algorithm and quantum algorithm can be exponential, as, for 

instance, in the case of the Shor’s algorithm [9]. Another famous example is the 

Grover’s search algorithm that achieves a quadratic speed-up [10]. However, in 

certain types of computer software, we cannot allow even a small probability of error, 

for example, in spacecraft, aircraft, or medical software. For this reason, the 

development of exact algorithms is extremely important. 

Regarding exact quantum algorithms, the maximum speed-up achieved as of now is 

half the number of queries compared with a classical deterministic case
2

 [11]. The 

major open question is: is it possible to reduce the number of queries by more than 

50%? In this paper, we present an algorithm that achieves the borderline gap of N/2 

versus N. 

                                                           

2

 Exact quantum algorithm with complexity Q
E
(f) < D(f)/2 is not yet discovered for a total 

Boolean function. For partial Boolean functions this limitation can be exceeded. An excellent 

example is the Deutsch-Jozsa algorithm [12, 13]. 



229A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

2 Preliminaries 

This section contains definitions and provides theoretical background on the subject. 

First, we describe classical decision trees and show how to compute a simple Boolean 

function in this model. Next, we provide a brief overview of the basics of quantum 

computing. Finally, we describe the quantum query model that is the subject of this 

paper. 

2.1 Classical Decision Trees 

The classical version of the query model is known as decision trees [1]. A black box 

contains the input 
1 2

( ,  ,  ...,  )
N

X x x x=  and can be accessed by querying x
i
 values. 

The algorithm must allow to determine the value of a function correctly for arbitrary 

input. The complexity of the algorithm is measured by the number of queries on the 

worst-case input. For more details, see the survey by Buhrman and de Wolf [1]. 

Definition 1 [1]. The deterministic complexity of a function f, denoted by D(f), is 

the maximum number of questions that must be asked on any input by a deterministic 

algorithm for f. 

Definition 2 [1]. The sensitivity ( )
x

s f of f on input (x
1
,x

2
,…,x

N
) is the number of 

variables x
i
 with the following property: f(x

1
,…,x

i
,…,x

N
) ≠ f(x

1
,…,1-x

i
,…,x

N
). The 

sensitivity of f is ( ) max ( )
x x

s f s f= . 

It has been proven that ( ) ( )D f s f≥  [1]. 

Figure 1 demonstrates a classical deterministic decision tree, which computes 

3 1 2 3 1 2 1 3 2 3

( , , ) ( ) ( ) ( )MAJORITY x x x x x x x x x= ∧ ∨ ∧ ∨ ∧ . In this figure, circles 

represent queries, and rectangles represent output. It is easy to see that the third query 

is necessary if values of first two queried variables are 

different:
3 1 2 3

( ( , , )) 3D MAJORITY x x x = . 

 

Fig. 1. Classical deterministic decision tree for computing 
3 1 2 3

( , , )MAJORITY x x x  

As in many other models of computation, the power of randomization can be added 

to decision trees [1]. A probabilistic decision tree may contain internal nodes with a 

probabilistic branching, i.e., multiple arrows exiting from this node, each one labeled 

with a probability for algorithm to follow that way. The total sum of all probabilities 

assigned to arrows in a probabilistic branching is supposed not to exceed 1. The result 
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of a probabilistic decision tree is not determined by the input X with certainty 

anymore. Instead, there is a probability distribution over the set of leaves. The total 

probability to obtain a result {0,1}b∈  after the execution of an algorithm on certain 

input X equals the sum of probabilities for each leaf labeled with b to be reached. The 

total probability of an algorithm to produce the correct result is the probability on the 

worst-case input. 

2.2 Quantum Computing 

This section briefly outlines the basic notions of quantum computing that are 

necessary to define the computational model used in this paper. For more details, see 

the textbooks by Nielsen and Chuang [3] and Kaye et al [4]. 

An n-dimensional quantum pure state is a unit vector in a Hilbert space. Let 

|0〉,|1〉,..., |n-1〉 be an orthonormal basis for 
n

C . Then, any state can be expressed as 

|ψ〉=
ia

n

i
i∑

−

=

1

0
 for some a

i
∈� . Since the norm of |ψ〉 is 1, we have 1

2
1

0

=∑
−

=

n

i
i

a . 

States |0〉,|1〉,…,|n-1〉 are called basis states. Any state of the form 
ia

n

i
i∑

−

=

1

0
 is called 

a superposition of |0〉,…,|n-1〉. The coefficient a
i 
is called an amplitude of |i〉.  

The state of a system can be changed by applying unitary transformation. The 

unitary transformation U is a linear transformation on 
n

C that maps vectors of unit 

norm to vectors of unit norm. The transpose of a matrix A is denoted with 
T

ij ji
A A= . 

We denote the tensor product of two matrices with A B⊗ . 

The simplest case of quantum measurement is used in our model – the full 

measurement in the computation basis. Performing this measurement on a state 

|ψ〉=a
0
|0〉+…a

n-1
|n-1〉 produces the outcome i with probability |a

i
|
2

. The measurement 

changes the state of the system to |i〉 and destroys the original state |ψ〉. 

2.3 The Quantum Query Model 

The quantum query model is also known as the quantum black box model. This model 

is the quantum counterpart of decision trees and is intended for computing Boolean 

functions. For a detailed description, see the survey by Ambainis [5] and textbooks by 

Kaye, Laflamme, Mosca [4], and de Wolf [2]. 

A quantum computation with T queries is a sequence of unitary transformations: 

0 0 1 1 1 1
              , , , , ... , , ,

T T T
U Q U Q U Q U

− −

. 

U
i
's can be arbitrary unitary transformations that do not depend on input bits. Q

i
's are 

query transformations. Computation starts in the initial state 0

�

. Then we apply U
0
, 

Q
0
,…, Q

T-1
, U

T
 and measure the final state. 

We use the ket notation [3] to describe state vectors and algorithm structure: 

1 0 0
... 0

T T
final U Q Q U

−

= ⋅ ⋅ ⋅ ⋅ ⋅

�

. 
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We use the following definition of a query transformation: if input is a state 

i

i

a iψ =∑ , then the output is ( )1
x
k
i

i
i

a iφ = −∑ , where we can arbitrarily 

choose a variable assignment of 
i
k

x for each basis state i . It is also allowed to skip 

variable assignment for any particular basis state, i.e. to set 0
i
k

x =  for a 

particular i . 

Formally, any transformation must be defined as a unitary matrix. The following is 

a matrix representation of a quantum black box query. 

( )

( )

( )

1

2

1 0 ... 0

0 1 ... 0

... ... ... ...

0 0 ... 1

k

k

k
m

X

X

X

Q

 
−

 

 
−

 =

 

 

 −
 

 

Each quantum basis state corresponds to the algorithm's output. We assign a value 

of a function to each output. The probability of obtaining the result {0,1}j∈ after 

executing an algorithm on input X equals the sum of squared moduli of all amplitudes, 

which correspond to outputs with value j. 

Definition 3 [1]. A quantum query algorithm computes f exactly if the output equals 

f(x) with a probability 1p = , for all {0,1}
N

x∈ . Complexity is equal to the number of 

queries and is denoted with Q
E
(f). 

Definition 4 [1]. A quantum query algorithm computes f with bounded-error if the 

output equals f(x) with probability 2 / 3p > , for all {0,1}
n

x∈ . Complexity is equal to 

the number of queries and is denoted with Q
p
(f). 

Quantum query algorithms can be conveniently represented in diagrams, and we 

will use this approach in this paper. 

3 Quantum Query Algorithms for the Boolean Function AND 

In this section, we present our results in constructing quantum query algorithms for a 

set of Boolean functions based on the AND Boolean operation. We consider bounded-

error algorithms, which output a correct answer with some probability. Regarding 

computing a two-variable function 
1 2

( , )AND x x , the results were obtained as 

follows: using a method described in Section 2.2.1 of [14], it is possible to construct a 

bounded-error quantum algorithm for 
1 2

( , )AND x x  with one query and a probability 

2 / 3p = . A better probability of correct answer for a one-query algorithm was 

obtained in [15] and it is 3/ 4p = . In [16] in a proof for Lemma 1, an algorithm for 

computing an arbitrary two-variable Boolean function is presented, whose probability 



232 Computer Science and Information Technologies

is p=11/14. The authors also claim to be able to prove that probability p=9/10 is 

optimal. 

In this paper, we improve these results and show an algorithm which computes 

1 2
( , )AND x x  with one query and a probability 4 / 5p = . Moreover, we extend an 

algorithm to compute the AND of two functions. 

This section is organized as follows: first, we discuss the classical complexity of the 

two-argument Boolean function 
1 2

( , )AND x x . Then we demonstrate a bounded-error 

quantum query algorithm that computes 
1 2

( , )AND x x  with a probability 4 / 5p = . 

Finally, we generalize our approach and present a method for constructing efficient 

quantum algorithms for computing a composite function 2
1 2

[ , ]AND f f , where f
1
 and 

f
2
 are Boolean functions.  

Definition 5. We define nAND construction ( n N∈ ) as a composite Boolean 

function where arguments are arbitrary Boolean functions f
i
 and which is defined as 

1 2
=1

[ , ,..., ]( ) 1      ( )

n

n
n i i

i

AND f f f X f X n= ⇔ =∑ , 

1 2
...

n

X X X X= ; X
i
 is input for i

th

 function
3

; f
i
’s are called base functions. 

3.1 Classical Complexity of 
1 2

( , )AND x x  

Classical deterministic complexity of the Boolean function 
2 1 2
( , )AND x x  is 

obviously equal to the number of variables:
2

( ) 2D AND = . 

Next we will show that the best probability for a classical randomized decision tree 

to compute this function with one query is p = 2/3. The general form of the optimal 

randomized decision tree is shown in Figure 2. 

 

Fig. 2. The general form of the optimal randomized decision tree for computing 

AND
2
(x

1
,x

2
) 

                                                           

3

 Variables may also overlap among inputs for different functions, i.e. for X
i 
= (x

i1
,...,x

in
) and X

j 

= (x
j1
..x

jm
) there may be variables with the same indices. 
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We denote the probability to see the result {0,1}b∈  after executing the algorithm 

on input X with Pr(" " | )b X . The correct answer probability calculation: 

1) ( )
1 1

Pr("0" | 00) 1 1

2 2

X s s s= = − + + = , 

2) ( )
1 1 1

Pr("0" | 01 10) 1 1 ( )

2 2 2

X     X s s sq s sq= ∨ = = − + + = − − , 

3) 1 1

Pr("1" | 11) (1 ) (1 )

2 2

X s q s q s sq= = − + − = − . 

We denote ( )s sq z− = . Then the total probability of the correct answer is  

1

(Pr("0"),Pr("1")) (1 , )

2

p min min z z= = − . 

The best probability is obtained when Pr("0") Pr("1")= . 

1

1

2

2

3

z z

z

− =

=

 

Corollary 1. The Boolean function 
2 1 2
( , )AND x x  can be computed by a 

randomized classical decision tree with one query with the maximum probability 

p=2/3. 

3.2 Quantum Query Algorithms for 
1 2

( , )AND x x  

We start with a bounded-error quantum query algorithm for the simplest case of two-

variable function 
1 2

( , )AND x x .  

Theorem 1. There exists a quantum query algorithm Q1 that computes the Boolean 

function 
1 2

( , )AND x x  with one quantum query and correct answer probability is 

p=4/5: 
4/5 2

( ) 1Q AND = . 

Proof. The algorithm is presented in Fig. 3. Our algorithm uses 3-qubit quantum 

system. Each horizontal line corresponds to the amplitude of the basis state. 

Computation starts with the state 

2 1

,  0,  0,  0,  ,  0,  0,  0

5 5

T

ϕ

 

=  

 

 (we omit 

unitary transformation, which converts initial state ( )0 1,0,0,..,0

T

=

�

 into ϕ ). Two 

large rectangles correspond to the 8 8×  unitary matrices 
0

U and 
1

U . The vertical 

layer of circles specifies the queried variable order for the single query 
0

Q . Finally, 

eight small squares at the end of each horizontal line define the assigned function 

value for each basis state. The main idea is to assign the amplitude value 1 5α =  to 

the basis state 100  and leave it invariable until the end of the execution. 
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Fig. 3. Bounded-error quantum query algorithm Q1 for computing AND(x
1
,x

2
) 

Quantum state after the first transformation U
0
 becomes equal to 

2 0 0

2 1

,  0,  0,  0,  ,  0,  0,  0

5 5

1 1 1 1 1

,  ,  ,  ,  ,  0,  0,  0

5 5 5 5 5

T

T

U Uϕ ϕ

 

= = ⋅ = 

 

 

=  

 

 

 

Further evolution of the quantum system for each input X is shown in Table 1. 
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2
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T
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3.3 Decomposing the 
1 2

( , )AND x x  Algorithm 

This section is a transitional point to the generalized method for computing the 

construction 2AND . Now we will reveal the internal details of the algorithm Q1 that 

allow us to adapt its structure to compute a much wider set of Boolean functions. 

The quite chaotic and asymmetric matrix U
0
 actually is a product of two other 

matrices. 

0 0 0

 B A

U U U= ⋅ =

1 1

0 0 0 0 0 0

1 12 2

0 0 0 0 0 0

1 1 2 2

  0   0 0 0 0 0

0   1 0   0 0 0 0 02 2

1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2

1 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0 0 02 2

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

 

 


 


 


− 


 


 


  −


 

• 

 
−

 

 

 

 

 

 


 
 

 















 

 

 

 

 

 

 

 



 

Matrix U
1
, in turn, is a product of the following two matrices. 

1 1 1

 B A

U U U= ⋅ =

1 1

0 0 0 0 0 0

1 0 0 0 0 0 0 0 2 2

1 1 1 1

0   0  0 0 0 0   0   0 0 0 0 0

2 2 2 2

0 0 1 0 0 0 0 0 1 1

0 0 0 0 0 0

1 1 2 2

0 0 0 0 0 0

1 12 2

0 0 0 0 0 0

0 0 0 0 1 0 0 0 2 2

0 0 0 0 1 0 0 00 0 0 0 0 1 0 0

0 0 0 0 0 1 0 00 0 0 0 0 0 1 0

0 0 0 0 0 0 1 00 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1




 


 


 

−
 


 


 


 


 − • 
 


− 


 


 


 


 


 

 



































 

 
 



 

Detailed algorithm structure now looks as follows. 

0 0 0 1 1
 ,   ,   ,   ,  [ ]

A B A B

U U Q U U Measureϕ → →  

The final vector is calculated as 
1 1 0 0 0

B A B A

FINAL
U U Q U Uϕ ϕ= ⋅ ⋅ ⋅ ⋅ ⋅ . 

Now the most important point – the algorithm part represented by transformations 

0 0 1
 ,   ,  

B A

U Q U  actually executes two instances of an exact quantum query algorithm 

for ( )f x x=  in parallel. Fig. 4 and 5 graphically demonstrate this significant detail. 

 

 

Fig. 4. An exact quantum query algorithm for computing f(x) = x 
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Fig. 5. A quantum algorithm for AND(x
1
,x

2
), revised 

In other words, first of all quantum parallelism is employed to evaluate each 

variable. Then unitary transformation 
1

B

U  is applied to correlate amplitude 

distribution in such a way that the resulting quantum algorithm computes 

1 2
( , )AND x x  with acceptable error probability. 

In the next section we will generalize this approach to allow to use other Boolean 

functions as sub-routines. 

3.4 A Method for Computing 2
1 2

[ , ]AND f f  

It is possible to replace a sub-algorithm for ( )f x x=  (in an algorithm construction 

demonstrated in the previous section) with any other quantum algorithm which 

satisfies specific properties. We define a class EQQA+, and our method is applicable 

to base algorithms that belong to this class. 

Definition 6. An exact quantum query algorithm belongs to the class EQQA+ 

(positive exact quantum query algorithms) iff there is exactly one accepting basis 

state, and on any input for its amplitude Cα ∈  only two values are possible before 

the final measurement: either 0α = or 1α = . 

Theorem 2. If there exist exact quantum query algorithms A1 and A2 for 

computing Boolean functions f
1
(X

1
) and f

2
(X

2
) that belong to the class EQQA+, then a 

composite Boolean function 2
1 2

[ , ]AND f f  can be computed with a probability p = 

4/5 using 
E E

max(Q ( A1),Q ( A2 ))  queries to the black box. 

Proof. A general algorithm construction method for computing the Boolean 

function 2
1 2

[ , ]AND f f  is presented below. The main idea is to assign the amplitude 

value 1 5α =  to some fixed basis state and leave it invariable until the end of the 

execution. 
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A method for computing 2
1 2

[ , ]AND f f  

Input. Two exact quantum query algorithms A1, A2  +EQQA∈  compute Boolean 

functions 
1 1 2 2
( ), ( )f X f X . We denote the dimension of Hilbert space utilized by the 

first algorithm with 
1

m  (the number of amplitudes), and by the second algorithm with 

2
m . We denote the positions of accepting outputs of A1 and A2 with acc

1
 and acc

2
. 

Constructing steps  

1. If 
1 2

m m= , then utilize a quantum system with 
1

4m amplitudes for a new 

algorithm. First 
1

2m amplitudes will be used for the parallel execution of A1 

and A2. Additional qubit is required to provide separate amplitude for storing 

the value of 1 5 . 

2. If 
1 2

m m≠  (without loss of generality assume that 
1 2

m m> ), then utilize a 

quantum system with 
1

2m  amplitudes for a new algorithm. First ( )
1 2

m m+  

amplitudes will be used for the parallel execution of A1 and A2. Use the first 

remaining free amplitude for storing the value of 1 5 . 

3. Combine unitary transformations and queries of A1 and A2 in the following 

way: 

1 2 1 1

2 1 2 1

1 1 1 2 1 2

1

2

U O O
m m m m

U O U O
i m m m m

O O I
m m m m m m

 
× ×

 

 =
× ×

 

 
× × −

 

, here 
i j

m m

O
×

 are 
i j

m m×  zero-matrices, 

1 2
m m

I
−

is ( ) ( )
1 2 1 2

m m m m− −×  identity matrix, 
1

i
U  and 

2

i
U  are either unitary 

transformations or query transformations of A1 and A2. 

4. Start computation from the state 

1 2

 
2 5,  0,...,0, 2 5,  0,...,0,  1/ 5,  0,..,0

T

remaining amplitudesm m

ϕ

 

 
=
 

 

 

�������������� �������

. 

 

5. Apply gates U
i
. Before the final measurement apply an additional unitary gate. 

( )

1 1 2

1

1 1 2 1 2 1

1 2

  1,    if ( ) & ( ) & ( ( ))

  1/ 2,  if ( )

  1/ 2,  if ( ) & ( ( )) OR ( ( )) & ( )

1/ 2,  if ( ( ))

  0, otherwise

ij

i j i acc i m acc

i j acc

U u i acc j m acc i m acc j acc

i j m acc

= ≠ ≠ +



= =



= = = = + = + =



− = = +






 

6. Define as accepting output exactly one basis state 
1

acc .  

Output. A bounded-error QQA A for computing a function
1 1 2 2

( ) ( ) ( )F X f X f X= ∧  

with a probability 4 / 5p =  and complexity 
4 / 5

( ) max( ( 1), ( 2))
E E

Q A Q A Q A= . 
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The most significant behavior of our method is that overall algorithm complexity 

does not exceed the greatest complexity of sub-algorithms. Additional queries are not 

required to compute a composite function. However, error probability is the cost for 

efficient computing.  

A very important aspect is that we used a specific algorithm for the two-variable 

Boolean function 
1 2

( , )AND x x  as a base for the constructing method. If the correct 

answer probability for the 
1 2

( , )AND x x  algorithm, which would also use an 

algorithm for computing f(X)=X as a sub-routine, will be improved to 4 5p > , then 

the probability of a general constructing method and all the further results of this 

section will be improved as well. 

3.5 Class EQQA+ 

In this section, we show that EQQA+ class (see Definition 6) is wide enough to be 

taken into consideration. At the same time, approaches for constructing efficient 

instances of EQQA+ are worth to be examined in a separate paper. 

3.5.1 Conversion of Classical Decision Trees into Quantum Query Algorithms 

Given an arbitrary classical deterministic decision tree, it is possible to convert it into 

an exact quantum query algorithm which uses the same number of queries.  

A classical query to the black box can be simulated with a quantum query algorithm 

construction presented in Fig. 6. 

 

Fig. 6. Quantum query algorithm construction for simulating a classical query 

After the second Hadamard gate we obtain ( )1,0

T

 if x = 0, or ( )0,1

T

 if x = 1. 

Then we can continue to query other variables by logically splitting the algorithm 

flow into two separate threads and so on. 

We demonstrate a complete example of converting a classical decision tree for 

computing 
1 2

( , )AND x x  into an exact quantum query algorithm. Fig. 7 shows a 

classical decision tree. Figure 8 shows the corresponding exact quantum query 

algorithm. 

We would like to note that, although such conversion is possible, it is not optimal. 

For instance, it is well known that XOR can be computed in a quantum model using 

two times less queries than required in a classical model.  
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Fig. 7. A classical deterministic decision tree for
1 2

( , )AND x x  

 

Fig. 8. An exact quantum query algorithm for
1 2

( , )AND x x  

If a deterministic decision tree has exactly one leaf with output value “1”, then it 

obviously will be converted into an algorithm of class EQQA+. 

It means that we can place into 
2

AND  construction any Boolean function that has 

exactly one accepting input vector. Thus, our method is applicable to an infinite set of 

base functions. 

Theorem 3. For an infinite set of Boolean functions, quantum query algorithms can 

be constructed using a method described in Section 3.4. As a result, the following 

complexity gap can be achieved when computing the same function in quantum and 

classical deterministic models: 2 2
4 / 5 1 2 1 2

1

( ( , )) ( ( , ))

2

Q AND f f D AND f f= ⋅ . 

Proof. For any Boolean function f that has exactly one accepting vector, the 

sensitivity s(f) and, consequently, the deterministic complexity D(f) are equal to the 

number of variables. Suppose we have two such Boolean functions f
1
 and f

2
, with the 

same number of variables N, and wish to compute 
2 1 2

( , )AND f f
4

. Obviously, the 

                                                           

4

 We assume that variables do not overlap this time. 
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classical deterministic complexity of this function is 2
1 2

( ( , )) 2D AND f f N= . For 

each function we can convert a deterministic algorithm into an exact quantum query 

algorithm of the class EQQA+, which will use the same N queries. Finally, we apply 

the method for constructing an algorithm for 
2 1 2

( , )AND f f  which does not require 

additional queries: 2 2
4 / 5 1 2 1 2

1

( ( , )) ( ( , ))

2

Q AND f f N D AND f f= = ⋅ . 

In the theorem above, classical deterministic and quantum bounded-error query 

complexity is compared. It would be interesting to compare classical probabilistic and 

quantum bounded-error complexity correlation for 
2 1 2

( , )AND f f . As of today, we do 

not have such estimation yet. 

Theorem 4. The Boolean function AND
N
(X) ( 2 ,  N k k N= ∈ ) can be computed by 

a bounded-error quantum query algorithm with a probability p = 4/5 using N/2 

queries: 
4 5

( ) / 2
N

Q AND N= . 

Proof. Boolean function AND
N
(X) can be represented as  

2
/ 2 / 2

( , )
N N N

AND AND AND AND= . 

It means that by applying our construction method it is possible to obtain an 

algorithm with complexity 

4 5 / 2
( ) ( )

N E N
Q AND Q AND= . 

The Boolean function 
/ 2N

AND  can be computed by a deterministic algorithm with 

complexity 
/ 2

( ) / 2
N

D AND N= , which has exactly one accepting output. It means 

that this deterministic algorithm can be converted into EQQA+ class algorithm which 

uses the same N/2 number of queries. 

4 5 / 2
( ) ( ) / 2

N E N
Q AND Q AND N= = . 

3.6 An Example of a Larger Separation: ( ) 6D f = vs. Q
4/5
(f)=2 

We would like to demonstrate an example when quantum algorithm complexity can 

be over two times less than classical deterministic algorithm complexity. It is possible 

in cases when an exact quantum algorithm for a sub-function is better than the best 

possible deterministic algorithm for the same function. 

An exact quantum query algorithm for 
3 1 2 2 3
( ) ( ) ( )EQUALITY X x x x x= ¬ ⊕ ∧¬ ⊕  

has been first presented in [17]. The algorithm is depicted in Fig. 12 and it uses only 

two quantum queries while classically all three queries are required. The algorithm 

belongs to the class EQQA+ and can be used as a sub-algorithm for 2AND  

construction. 

To evaluate deterministic complexity of 2
3 3

[ , ]f AND EQUALITY EQUALITY= , we 

use function sensitivity on any accepting input: ( ) 6 ( ) 6s f D f= ⇒ = . 
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A quantum bounded-error algorithm for 2
3

[ ]f AND EQUALITY= constructed using 

our method will require only two queries: 
4 / 5

( ) 2Q f = . 

 

Fig. 9. An exact quantum query algorithm for EQUALITY
3 

The same approach can be applied to any algorithm of class EQQA+ that computes 

an N-variable Boolean function. 

3.7 Repeated Application of a Method for Computing 2
1 2

[ , ]AND f f  

The useful properties of the algorithm construction method described in Section 3.4 

allow to apply this method repeatedly. 

Theorem 5. Let 
1 2 11 12

[ , ]F AND f f=  and 
2 2 21 22

[ , ]F AND f f=  be composite 

Boolean functions. Let Q1 and Q2 be bounded-error quantum query algorithms that 

have been constructed using a method for computing AND
2
[f

1
,f
2
], and that compute 

F
1
 and F

2
 with a probability p = 4/5. Then a bounded-error quantum query algorithm 

Q can be constructed to compute a composite Boolean function 
2 1 2

[ , ]F AND F F=  

with a probability p = 16/25. 

Proof. We straightforwardly apply the method for computing AND
2
[f

1
,f
2
] to 

algorithms Q1 and Q2 instead of instances of QQA
+1

 class. As a result, the obtained 

complex algorithm computes 
2 1 2

[ , ]F AND F F=  with a probability 4 4 16

5 5 25

p = ⋅ = . 

As a consequence, we are able to compute a four-variable function AND(x
1
,…,x

4
) 

with a single quantum query with a probability p=16/25. 

Next iteration produces quantum algorithms that compute functions like  

2 2 2 1 2 2 3 4 2 2 5 6 2 7 8
[ [ [ , ], [ , ]], [ [ , ], [ , ]]]F AND AND AND f f AND f f AND AND f f AND f f=

with a probability p=64/125, which is just slightly more than a half. 

4 An Exact Quantum Query Algorithm for Verifying Repetition 

Code 

In this section, we consider the second problem: verification of the codeword encoded 

by the repetition code for error detection. In the first sub-section, we introduce 

repetition codes and define a Boolean function for their verification. Secondly, we 
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show that classically, for an N-bit message, values of all N variables must be queried 

in order to detect an error. Finally, we present an exact quantum algorithm for N-bit 

codeword verification that uses only N/2 queries to the black box. 

4.1 Error Detection and Repetition Codes 

In this sub-section, we investigate a problem related to information transmission 

across a communication channel. The bit message is transmitted from a sender to a 

receiver. During that transfer, information may be corrupted. Because of the noise in a 

channel or adversary intervention, some bits may disappear, or may be reverted, or 

even added. Various schemes exist to detect errors during transmission. In any case, a 

verification step is required after transmission. The received codeword is checked 

using defined rules and, as a result, a conclusion is made as to whether errors are 

present. 

We consider a repetition error detection scheme known as repetition codes. A 

repetition code is a (r, N) coding scheme that repeats each N-bit block r times [8]. 

An example 

• Using a (3,1) repetition code, the message m = 101 is encoded as c = 111000111. 

• Using a (2,2) repetition code, the message m = 1011 is encoded as c = 10101111. 

• Using a (2,3) repetition code, m = 111000 is encoded as c = 111111000000. 
Verification procedure for the repetition code is the following – we need to check if 

in each group of r consecutive blocks of size N all blocks are equal. 

We start with verification of the (2,1) repetition code. The verification process can 

be expressed naturally as computing a Boolean function in a query model. We assume 

that the codeword to be checked is located in a black box. We define the Boolean 

function to be computed with the query algorithm as follows. 

 

 

Definition 7. The Boolean function ( )
N

VERIFY X , where 2N k= , 

( )
1 2 2
, ,...,

k
X x x x=  is defined to have a value of “1” iff variables are equal by pairs. 

( ) ( ) ( ) ( )
1 2 3 4 5 6 2 -1 2

2

1,    ...  

( )

0 ,                                                                          

k k

k

if x x x x x x x x

VERIFY X

otherwise

 = ∧ = ∧ = ∧ ∧ =
= 



 

An example: the Boolean function 
4
( )VERIFY X  has the following accepting 

inputs:  

{0000, 0011, 1100, 1111}. 
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4.2 Deterministic Complexity of 
N

VERIFY  

Fig. 10 demonstrates a classical deterministic decision tree which computes 

4 1 2 3 4

( , , , )VERIFY x x x x . In this figure, circles represent queries, and rectangles 

represent output. 

Theorem 6. ( )
N

D VERIFY N= . 

Proof. Check function sensitivity on any accepting input, for instance, on X = 

1111..11. Inversion of any bit will invert the function value, because a pair of bits 

with different values will appear. ( ) ( )
N N

s VERIFY N D VERIFY N= ⇒ =      . 

 

 

Fig. 10. A classical deterministic decision tree for computing 
4 1 2 3 4

( , , , )VERIFY x x x x  

4.3 Computing the Function 
N

VERIFY  in a Quantum Query Model 

Our approach to computing the Boolean function VERIFY
N
 in a quantum query model 

is based on an exact quantum query algorithm for the XOR function.  

Theorem 7. There exists an exact quantum query algorithm that computes the 

Boolean function VERIFY
N
(X) using N/2 queries: ( ) / 2

E N
Q VERIFY N= . 

Proof. Definition of the VERIFY
N
 function can be re-formulated as follows. 

( ) ( ) ( ) ( )
1 2 3 4 5 6 2 -1 2

2

1,    ...  

( )

0 ,                                                                                     

k k

k

if x x x x x x x x

VERIFY X

otherwise

 ¬ ⊕ ∧ ¬ ⊕ ∧ ¬ ⊕ ∧ ∧ ¬ ⊕
= 



An exact quantum algorithm for computing the Boolean function 

1 2 1 2
( , ) ( )f x x x x= ¬ ⊕  with one query is presented in Fig. 11. We compose an 

algorithm for VERIFY
N
 using an algorithm for 

1 2 1 2
( , ) ( )f x x x x= ¬ ⊕  as building 

blocks.  
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Fig. 11. An exact quantum query algorithm for computing 
1 2

( ) ( )f X x x= ¬ ⊕  

First, we execute an algorithm for
1 2 1 2

( , ) ( )f x x x x= ¬ ⊕  for variables x
1
 and x

2
. To 

the first output (which has “1” assigned, see Fig. 11), we concatenate the second 

instance of an algorithm for computing 
1 2 1 2

( , ) ( )f x x x x= ¬ ⊕ . This time we execute 

it for variables x
3
 and x

4
. We continue this way until all variables of VERIFY

N
 are 

queried. The algorithm has only one accepting output, which is the first output of the 

last sub-algorithm. 

A schematic view of the described approach is depicted in Fig. 12. It is easy to see 

that the total number of queries is N/2. 

 

 

Fig. 12. An algorithm for computing the Boolean function VERIFY
N 

4.4 Application to a String Equality Problem 

The described approach can be adapted for solving such computational problem as 

testing whether two binary strings are equal. This is a well-known task, which can be 

used as a sub-routine in various algorithms. 

A quantum algorithm for the Boolean function VERIFY
N
 checks whether variables 

are equal by pairs, i.e. ( ) ( ) ( )
1 2 3 4 1

...

N N
x x x x x x

−

= ∧ = ∧ ∧ = . On the other hand, 

we can consider that this algorithm checks whether two binary strings, 
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1 3 5 1
...

N
Y x x x x

−

=  and 
2 4 6

...

N
Z x x x x= , are equal. Therefore, the algorithm can be 

easily used not only to verify repetition codes, but also for checking equality of binary 

strings. 

4.5 Verification of the (r,1) Repetition Code 

Now, let us consider the (r,1) repetition code, where each bit is repeated r times 

during encoding. Verification procedure for a codeword encoded using such code 

consists of checking whether in each sequence of r bits all bits are equal. 

The Boolean function EQUALITY
r
 is defined as 

( ) ( ) ( ) ( )
1 2 3 4 5 6 1

1,  ...

( )

0 ,                                                                     

r r

r

if x x x x x x x x

EQUALITY X

otherwise

−

 = ∧ = ∧ = ∧ ∧ =
= 



. 

 

We define the Boolean function that corresponds to verification procedure as 

( ) ( )

( )

1 1 2

( 1) 1

1,  ,..., ,..., ...

( )                               ...  ,...,

0 ,                                                                  

r r r

r

r N N r Nr

if EQUALITY x x EQUALITY x x

VERIFY X EQUALITY x x

otherwise

+

⋅
− +

∧ ∧

= ∧

        












. 

Theorem 8. Deterministic complexity of the Boolean function ( )
r

r N
VERIFY X

⋅

 is 

equal to the number of variables: ( )
r

r N

D VERIFY Nr
⋅

= . 

Proof. Again, we use function sensitivity on any accepting input. Inversion of any 

bit will invert the function value because a pair of bits with different values will 

appear. ( ) ( )
r r

r N r N

s VERIFY Nr D VERIFY Nr
⋅ ⋅

= ⇒ =      . 

Theorem 9. There exists an exact quantum query algorithm that computes the 

Boolean function ( )
r

r N
VERIFY X

⋅

using N r N⋅ −  queries:  

( ) ( 1)
r

E r N

Q VERIFY N r
⋅

= − . 

Proof. Again, to speed up the verification procedure, we take into account the fact 

that XOR of two bits can be computed with one quantum query. The Boolean function 

EQUALITY
r
 can be expressed using operations ⊕ , ∧  and ¬ : 

( ) ( ) ( ) ( )
1 2 2 3 3 4 1

( ) ...
r r r

EQUALITY X x x x x x x x x
−

= ¬ ⊕ ∧¬ ⊕ ∧¬ ⊕ ∧ ∧¬ ⊕ . 

This logical formula contains (r-1) clauses each consisting of XOR of two bits. 

Using the approach described in the proof of Theorem 7, we can compose an exact 

quantum query algorithm which computes EQUALITY
r
 using (r-1) quantum queries. 

This algorithm has one accepting output. Next we use an algorithm for EQUALITY
r 
as 

a building block for composing an algorithm to compute 
r

r N
VERIFY

⋅

. The resulting 

algorithm uses ( 1)N r −  queries to determine the value of the Boolean function 

r

r N
VERIFY

⋅

 exactly. 
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5 Conclusion 

In this paper, we presented quantum query algorithms for resolving two specific 

computational problems.  

First, we considered computing the Boolean function AND in a bounded-error 

setting. We presented a quantum query algorithm that computes 
1 2

( , )AND x x  with 

one query and probability p = 4/5 while the optimal classical randomized algorithm 

can compute this function with a probability p=2/3 only. Then we extended our 

approach and formulated a general method for computing 2
1 2

[ , ]AND f f  composite 

construction with the same probability p=4/5 and number of queries equal to 

1 2
max( ( ), ( ))

E E
Q f Q f . The suggested approach allows to build quantum algorithms 

for complex functions based on already known algorithms. A significant behavior is 

that the overall algorithm complexity does not increase; additional queries are not 

required to compute a composite function. However, error probability is the cost for 

efficient computing. We demonstrated that our method is applicable to a large set of 

Boolean functions. As a result, a complexity gap of 
4 / 5

( ) 1/ 2 ( )Q f D f= ⋅  can be 

achieved for an infinite set of Boolean functions. We also showed that this is not the 

lower bound for quantum algorithm complexity and examples where 

4 / 5

( ) 1/ 2 ( )Q f D f< ⋅  can be constructed as well. 

In the second part of this paper, we considered verification of error detection codes. 

We have represented the verification procedure as an application of a query algorithm 

to an input codeword contained in a black box. We have represented an exact 

quantum query algorithm which allows to verify a codeword of length N using only 

N/2 queries to the black box. Our algorithm saves exactly half the number of queries 

comparing to the classical case. This result repeats the largest difference between 

classical and quantum algorithm complexity for a total Boolean function known today 

in this model. 

We see many possibilities for future research in the area of quantum query 

algorithm design. The most significant open question still remains: is it possible to 

increase exact algorithm performance more than two times using quantum tools? 

Furthermore, there are many computational tasks waiting for an efficient solution in a 

quantum setting. Regarding the AND Boolean function, we would like to improve 

correct answer probability when computing a two-variable AND with one query. 

Regarding verification of repetition codes, we would like to be able to verify 

efficiently not only the (2,1) code, but also an arbitrary (r,N) code. Another 

fundamental goal is to develop a framework for building efficient ad-hoc quantum 

query algorithms for arbitrary Boolean functions. 

 

Acknowledgments. I would like to thank my supervisor Rusins Freivalds for 

introducing me to quantum computation and for his constant support and advice.  

This research is supported by the European Social Fund project No. 

2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004, Nr. ESS2009/77. 



247A. Vasilieva. Quantum Algorithms for Computing the Boolean Function AND ..

References 

1. H. Buhrman and R. de Wolf. Complexity Measures and Decision Tree Complexity: A 

Survey. Theoretical Computer Science, v. 288(1), 2002, pp. 21–43. 

2. R. de Wolf. Quantum Computing and Communication Complexity. University of 

Amsterdam, 2001. 

3. M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. Cambridge 

University Press, 2000. 

4. P. Kaye, R. Laflamme, M. Mosca. An Introduction to Quantum Computing. Oxford, 2007. 

5. A. Ambainis. Quantum query algorithms and lower bounds. (Survey article.) In: 

Proceedings of FOTFS III, Trends on Logic, vol. 23, 2004, pp. 15–32. 

6. A. Ambainis and R. de Wolf. Average-case quantum query complexity. Journal of Physics 

A 34, 2001, pp. 6741–6754. 

7. A. Ambainis. Polynomial degree vs. quantum query complexity. Journal of Computer and 

System Sciences, 72, 2006, pp. 220–238. 

8. T. M. Cover, J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991, 

pp. 209–212. 

9. P. W. Shor. Polynomial time algorithms for prime factorization and discrete logarithms on 

a quantum computer. SIAM Journal on Computing, 26(5), 1997, pp. 1484–1509. 

10. L. Grover. A fast quantum mechanical algorithm for database search. In: Proceedings of 

28
th

 STOC '96, 1996, pp. 212–219. 

11. A. Ambainis, personal communication, April 2009. 

12. D. Deutsch, R. Jozsa. Rapid solutions of problems by quantum computation. Proceedings 

of the Royal Society of London, Vol. A 439, 1992, pp. 553–558. 

13. R. Cleve, A. Ekert, C. Macchiavello, M. Mosca. Quantum algorithms revisited. 

Proceedings of the Royal Society of London, Vol. A 454, 1998, pp. 339–354. 

14. L. Lāce. Quantum Query Algorithms. Doctoral Thesis. University of Latvia, 2008, pp. 42–

43. 

15. A. Vasilieva. Quantum Query Algorithms for AND and OR Boolean Functions, Logic and 

Theory of Algorithms. Proceedings of the 4th Conference on Computability in Europe, 

2008, pp. 453–462. 

16. I. Kerenidis, R. de Wolf. Exponential Lower Bound for 2-Query Locally Decodable Codes 

via a Quantum Argument. Journal of Computer and System Sciences, 2004, pp. 395–420. 

17. A. Dubrovska. Quantum Query Algorithms for Certain Functions and General Algorithm 

Construction Techniques. Quantum Information and Computation V, Proc. of SPIE, vol. 

6573. SPIE, Bellingham, WA, article 65730F, 2007. 


