
The Concept of Automated Process Control

Ivo Oditis1, Janis Bicevskis2

1 Bank of Latvia, K. Valdemara 2a, Riga, Latvia
ivo.oditis@lais.lv

2 University of Latvia, Raina bulv. 19, Riga, Latvia
Janis.Bicevskis@lu.lv

This paper describes research on control of heterogeneous information systems, which run as
parallel interlinked processes. A formalized process control description language is proposed. It
is a domain-specific language which provides opportunity to automate process execution control
mechanism. The language separates two types of processes: base and supervisory processes.
Supervisory processes require specific language elements for the control and synchronization
of base processes. Also, the first concept of automated control mechanism is introduced. The
proposed mechanism and process control definition language is developed as part of smart
technology framework aiming at autonomous system concept developed by IBM.

Keywords: business process control, domain-specific languages.

Introduction
For many years computer scientists spent most of their work on research of

software development technologies, while less effort was spent to make the use of the
already developed software more convenient. In part this problem can be explained by
software developers' concerns about software sales leaving software usage problems
into users’ hands. The complexity of the whole system is increased when one company
or organization acquires software from more than one vendor and software is introduced
with significant time span. This way a complex heterogeneous system environment is
formed.

There are at least two groups among system users: those who are end users or users
of the system’s business functionality and system administrators whose responsibilities
include system security and technical configuration of system and its environment. By
its complexity the area of business system administration and control is comparable
to network administration. There are numerous tools for network administration and
monitoring in the market; however, the authors of this paper could find no acceptable
solutions for heterogeneous system administration and their process execution control.
It can be explained by the diversity of the systems and the nonstandard nature of legacy
system communication.

Process control is a well-known problem. There have been many attempts to solve
it in software history [1]. In the era of mainframes, process management was partly
delegated to the operating system and Job Control Language. As a significant tool of
this area, the SDL or Specification and Description Language must be mentioned. SDL
is a specification language targeted at unambiguous specification and description of the

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 193–203 P.

I. Oditis and J. Bicevskis
Concept of Automated Process Control

194 Computer Science and Information Technologies

behavior of reactive and distributed systems. Originally focused on telecommunication
systems, its current areas of application include process control and real-time applications
in general; however, it requires a very detailed process description and is not suitable for
high-level business process description. Therefore, authors introduce a new and simple
domain-specific language for business process control.

In the first chapter, problems are identified and brief solutions are explained. The
second chapter describes the architecture of the process control mechanism and the
domain-specific language used for process control description.

1	 Description of the Problem

1.1	U sage of Heterogeneous Systems

This publication is aimed to describe the usage of heterogeneous software in
large companies, where many different software platforms are used. The formation
of heterogeneous environment in long running large companies is unavoidable, if the
necessary software is acquired gradually and the size and functions of the companies
are changing over time.

The most serious problems are caused by distributed environment where many
systems are running simultaneously on different platforms and communicating with
each other. Typically, operators and administrators of each of these systems have to have
specific management skills. As a rule, service staff have to follow if processes carried
out by the systems are done correctly; and there is no process control built in systems.
If one process is carried out by two or more independent systems, each system can
control execution as far as it is in its scope, but the whole process typically is controlled
manually. Therefore, the usage of systems depends on the qualification of the supporting
staff and precise execution of operations by the staff.

Automated process control is proposed to solve the problems described above and to
reduce the dependency of system usage on the subjective factor of the supporting staff.
In brief, the proposed solution contains two components: a description of controlled
processes and a mechanism for controlling process execution according to process
description.

1.2	 Smart Technology and Autonomous Systems

The proposed process control automation solution is based on the ideas of smart
technology [2]. The idea of smart technology is to create software similar to a live
organism, which can react adequately to unpredictable changes of living environment.
Ideally software built according to the principles of smart technologies could adequately
react to the changes of the external environment (changes of infrastructure, network
throughput etc) as well as to the internal environment. Smart technologies provide a
framework for software development. Using a common framework, smart technology
could be included in systems without significant increase of software complexity.

The concept of smart technology includes external environment testing [3, 4],
intelligent version updating [5], self-testing [6] and others. The concept of smart
technology has similar goals as the concept of autonomous systems developed by IBM

195I. Oditis and J. Bicevskis. Concept of Automated Process Control

in 2001 [7, 8, 9]. Both concepts aim at improving software intellect by adding a set of
nonfunctional advantages – ability to adapt to external situation, self-renewing, self-
optimizing and other advantages. The autonomous systems are built as universal and
independent form properties of a specific system. As a rule, they function outside of a
specific system and cooperate on the level of application interface.

The first results of smart technology implementations are available. There are two
types of smart technology software developed and introduced in currently used systems:
intelligent version updating software and software for external environment testing. The
first is used in budget planning and the discharge control system FIBU. It is used in more
than 400 state-owned organizations in the Republic of Latvia. There are more than 2 000
users of this software. The external environment testing software is used by the same
system, FIBU, to solve the problem of many operating systems and other application
versions. The same external environment testing software is planned to be used in the
Bank of Latvia to manage numerous independently developed, but interrelated systems.
The first results of the use of smart technology demonstrate their practical usefulness
[10, 11].

This research is on smart technology as well: automated operation control of
heterogeneous systems.

1.3	 Process Control Automation as Part of Smart Technology Framework

The suggested automated process control concept can be identified as another
extension of smart technology. It works over heterogeneous systems and semi-automates
system process control.

The solution introduces two types of processes:
−	 base processes – simple processes containing no sub-processes;
−	 supervisory processes that contain, control and synchronize base processes.
Processes implemented by computer systems are mutable by their nature. Process

modifications can be caused by changes in system infrastructure, by changes in
process priorities or changes in organization structure. The suggested process control
concept contains two components: the process control mechanism and process control
description. The process control mechanism is running according to easily adjustable
process description. It is useful to implement process control description by introducing
a domain-specific language with elements particular for the control of base and
supervisory processes.

We briefly describe the process control mechanism and process control definition
language. Detailed implementation of the language and control mechanism is subject of
further research.

Processes from a payment clearing system will be used in descriptions of the process
control mechanism and process control definition language. Payment clearing systems
provide a large volume of retail payment exchange and settlement (clearing) among
banks (system participants). Typically, a clearing process is organized in four steps:
systems receive retail payment batches from participants, calculate each participant's
position (difference of payments’ totals sent and received by participant), settle positions
in the system where participant accounts are kept and deliver payments to participants,

196 Computer Science and Information Technologies

payment receivers. This is called a "clearing cycle". Systems with one or more clearing
cycles per day exist. A system with one clearing cycle will be used in our examples.

Using the clearing system, base and main processes can be identified. Receiving
payments from one clearing participant can be described as a base process, and the whole
clearing cycle can be identified as a supervisory process containing and controlling a set
of base processes (each participant’s payment collection).

2	 Automated Process Control
Automated process or system operation control mechanisms check if the described

system processes are running according to the process descriptions. The process sequence
and operation timing is checked. If a discrepancy between the description and ongoing
processes is detected, the control mechanism sends information to system support stuff.
Two types of information can be identified: timely warnings (the system tries to identify
potential problems) and information on the detected errors.

The control mechanism’s main task is to continuously verify whether the process
flow is correct, incoming and outgoing data is coherent, all process steps are done and
whether all of the steps are done timely. The control mechanism does not test the system
under control nor does it test the quality of data produced by the system.

Another important component of the process control mechanism is process trace
recorder. Process traces could be useful not only to identify possible causes when a
problem has occurred, but also could provide substantial statistical information on a
typical system workload and bottlenecks. Analysis of system traces could provide early
warnings about changes in process execution times.

Three collaboration types are possible between the control mechanism and systems
under control:

−	 the system under control is interpreted as a black box from the control
mechanism perspective, and all information on the process flow is taken from
system external interfaces;

−	 the system under control sends information to the control mechanism on process
execution;

−	 the system under control requests information from the control mechanism on
process execution.

2.1	 The Architecture of the Process Control Mechanism

A significant number of systems are distributed over more than one server. Thus, one
of the most important requirements for the architecture of the system control mechanism
is the possibility to control widely distributed systems.

The control mechanism offered by the authors contains two main components:
Central Hub and Agents. Agents are software modules which trace different events of
the systems implementing the process under control. For example, a new file or file
modification could be one type of event handled by agents. When agent detects event
related to the process under control, it sends event notification to the central in order to
check if the process is running according to process description and if the timing of the
process is accurate.

197I. Oditis and J. Bicevskis. Concept of Automated Process Control

For instance (Fig. 1), one process could be provided by two systems: A and B.
System A takes an input file, processes its contents and inserts new data in a database.
System B takes the data from the database and produces another output file. Central
Hub is controlling the whole process by using two event agents: one agent provides file
system events, another – database events. When input file is received, the file system
event agent receives “new file” event and passes it to Central Hub. After System A
inserts data into database, “new record” events are handled by the second agent and sent
to Central Hub for processing. When System B creates an output file one more “new
file” event is handled by the first agent and passed to Central Hub.

Fig. 2. A UML class diagram of the process control mechanism components

Fig. 1. The control mechanism contains two types of components: Central Hub and Agents

198 Computer Science and Information Technologies

Central Hub (Fig. 2 represents components of the process control mechanism)
contains five modules: Process Library, Controller Instances, event Dispatcher,
Agent Directory and Timer Agent. Process Library contains all of Process Description
the Central Hub has to look after. When a new process is started, Central Hub takes
the Process Description from Process Library and creates new Controller Instance
to control the process flow. Controller Instance analyses Process Description and
receives events from Dispatcher the process could generate. Data Dispatcher
subscribes to the appropriate type of event from appropriate Agent according to
the required event types and Agent Directory. When Agent handles the requested
event, it sends it to the Central Hub’s Dispatcher where Controller Instance which
requested the event is identified. Control Instance processes each event and checks
process state according to Process Description. If events are fired in inappropriate
order, Controller Instance sends error messages or warnings to the person in charge
according to Process Description notification rules. There is a specific type of Agent,
the Timer Agent, hosted in Central Hub. It provides timer events to Controller
Instances. Control Hub is hosted on one server; however, there may be more than
one Agent hosted inside a network on many servers. Many servers may host many
Agents, but only one of each type. Thus, the control mechanism can be applied to a
widely distributed system.

2.2	 The Process Control Description Language ProCDeL

The domain-specific language ProCDeL is introduced by authors for description of
controlled processes. The language was developed with two main criteria in mind:

−	 it must be easy to use by various types of users (from system administrators to
skillful end users);

−	 the language should be used for rather complex process description.

The first criterion sets a requirement for the process description language to have
both graphical and textual notation so that processes could be represented as graphs or
scripts.

The concept of the process control definition language is similar to BiLingva
[12], where a typical state chart diagram (contains state and connection elements) is
supplemented with action elements. The process control definition language ProCDeL
contains three types of elements: states, events (connections in state charts) and flow
control elements (actions in BiLingva). Process flow control elements allow to describe
parallel process execution, loops and control over other processes.

2.2.1	 An Example of ProCDeL Usage
Let us demonstrate the language elements by example. Fig. 3 describes an electronic

clearing payment system. The process starts with event Clearing day opened. It must
be done no later than at 8:30 in the morning. After the day has been opened, the system
starts to process incoming client payment files. Those are processed in parallel. At
14:00 file reception must be stopped and payments may be settled. After it is done, all
payments are delivered to recipients.

199I. Oditis and J. Bicevskis. Concept of Automated Process Control

Fig. 3. The clearing process workflow

This process can be described in the process description language as a graph (Fig. 4)
or as a textual version. The first event that the control mechanism has to detect is the
beginning of the clearing day. This can be done by checking the database for new day
event.

Next step in the clearing process workflow (Fig. 3) is file processing. There is another
process description named ReceiveIncomingFiles made according to this workflow step.
It describes file processing for one clearing participant. All clearing participants must
be identified before process ReceiveIncomingFiles is started. It is done by flow control
operation ControlData (Banks, DBData.Procedure, [CLEAR_GET_PARTICIPANTS]).
After all participants are found, next control flow operation is executed to load file
processing processes for each participant.

When all files are received, file reception must be closed. It is identified by state
FILE_RECEPTION_CLOSED in the process description graph. This state can be
reached when all file processing processes are finished. There is one more control added
to this state – time 14:00. It means that the control mechanism must check if the state is
reached by 14:00.

There are two more events and states following FILE_RECEPTION_CLOSED.
The first event detects when all of payments are settled. This event corresponds to
workflow step Settling payments. On this event, the process moves to the next state
PAYMENTS_SETTLED. There is no time control for this state. The last event in this
process description is the event that identifies the end of payment delivery. This event
leads the process into the ending state with time control 14:30.

200 Computer Science and Information Technologies

All of the processes mentioned above can be described in a textual form using the
same language.

Clearing process description in a textual form in ProCDeL

process PaymentDay{
 event (Banks, DBData.Procedure,
 [CLEAR_DAY_STARTED]);
 state CLEARING_DAY_OPENED (time 8:30);
 forEach (Bank in Banks) {
 loadProcess (ReceiveIncomingFiles, [Bank.ID,
												 Bank.Folder]);
 }
 state FILE_RECEPTION_CLOSED (time 14:00);
 event (DBData.Procedure, [CLEAR_PAYMENTS_SETTLED]);
 state PAYMENTS_SETTLED (time no limit);

Fig. 4. The clearing process described in the process definition language

201I. Oditis and J. Bicevskis. Concept of Automated Process Control

 event (DBData.Procedure,
 [CLEAR_PAYMENTS_DELIVERED]);
 state END (time 14:30);
}

The example shows just one kind of event (DBData.Procedure – event occurs if the
database procedure returns any data); however, there are no limitations to event types
in the process description language. As many events as event agents implemented in the
control mechanism can be used: for instance, file system event agents, database event
agents, e-mail agents etc.

Each event’s occurrence returns results that can be used in other events. For instance
(Fig. 3), first event in the process PaymentDay is type of DBData.Process and it calls
database procedure CLEAR_DAY_STARTED. It returns all of clearing participants and
those are loaded in the variable Banks. Later the variable Banks may be used in other
events or control flow statements as an argument. The variable Banks was used in the
process PaymentDay to define forEach statement (loop over all list items).

Discussions are still ongoing on,how to describe reporting issues in the process
description language. When the control mechanism detects improper process execution
according to the process definition, it must send some alarms to the person who is in
charge. There could be a rather simple process control with just one type of alarm (for
instance, error messages) and one recipient. However, many complex processes running
over more than one system could have errors, warnings and notifications with various
recipients. Thus, the process description language must have rather flexible control flow
expressions to add different types of notifications. These problems will be solved in
future developments of the language.

2.2.2	E lements of ProCDeL
Three types of elements are utilized in the process description language: states,

events and flow control elements (Fig. 5).
Process description (Fig. 5) has three attributes: process name, schedule for when

process may be running and the number of process instances allowed to be running in
parallel.

The language introduces three types of process states: Beginning, Ending and
Intermediate State, the last two of which are time-controlled states. It means that time
control can be done by reaching these states. Time control allows for two types of limits:
absolute time (for example, state must be reached by 12:45) and relative distance from
other states. The distance may be set in seconds, minutes, hours and days, depending on
process specifics. Intermediate states may be identified by unique ids used to specify the
acceptable distance between states.

States are connected by Events. Each event has event type, arguments and optional
event id. Event id may be used in other events or control flow elements to refer to the
results returned by the event.

Last group of the elements is Flow Control elements. Cycle allows to define
iterations in the list of items returned as a result of some event. The body of Cycle may
contain other States, Events or even Flow Control elements. Load Control is provided
for loading sub-process controls. Those sub-process controls may run synchronously or
asynchronously.

202 Computer Science and Information Technologies

Conclusion
A new component of a smart technology framework – process control – is being

researched. From the process description perspective, the ProCDeL language is ready
for the first prototype of the process control mechanism implementation. However, the
language must be supplemented with error and warning elements to offer broad potential
of information distribution on incorrect and correct process flows. For instance, there
can be a process state with two time limits in one process description: when the first
limit is reached, the system operators are warned about a possible problem and, when
the second limit is reached, error messages are sent.

After the language is supplemented, the first prototype of the process control
mechanism will be developed. Most likely this step will make some further changes
in the language to make it more usable. The process control mechanism itself is a wide
avenue of future research as it is distributed in real time systems. The authors have
identified two groups of problems in the process control mechanism:

−	 problems concerning correct interpretation of event flow by Central Hub of the
control mechanism;

−	 technical problems to implement the control mechanism as a reliable distributed
real-time system.

The first group of problems is concerned with the algorithms of process control. For
instance, there must be an algorithm of how to identify right process control instance if
two of the instances from the control instance pool have subscribed for NewFile event
from the same network resource and one event has arrived. One of the solutions is to
move both of processes one step further and keep in mind that one of them could be

Fig. 5. Elements of the process description language

203I. Oditis and J. Bicevskis. Concept of Automated Process Control

rolled back. There are other problems concerning event interpretation in this problem
group.

The other problem group of mechanism implementation contains more technical
problems: heart beat mechanism implementation to determine if all the agents are up and
running, time synchronization and tracking of the order of nearly simultaneous events,
and other technical problems. Most of these problems are not unique for the process
control mechanism and there are solutions in the distributed server system world.

This paper only introduces the concept of automated process control. Further
research on concept prototype implementation will be done.

References
1.	 J. A. Bergstra, P. Klint. The discrete time TOOLBUS – a software coordination architecture. Science of

Computer Programming, 31, 1998, pp. 205–229.
2.	 Z. Bičevska, J. Bičevskis. Smart Technologies in Software Life Cycle. In: J. Münch, P. Abrahamsson

(eds.), Product-Focused Software Process Improvement. 8th International Conference, PROFES 2007,
Riga, Latvia, July 2–4, 2007, LNCS, vol. 4589. Berlin/Heidelberg: Springer-Verlag, 2007, pp. 262–272.

3.	 K. Rauhvargers, J. Bicevskis. Environment Testing Enabled Software – a Step Towards Execution Context
Awareness. In: H.-M. Haav, A. Kalja (eds.), Databases and Information Systems, Selected Papers from
the 8th International Baltic Conference, vol. 187. IOS Press, 2009, pp. 169–179.

4.	 K. Rauhvargers. On the Implementation of a Meta-Data Driven Self Testing Model. In: T. Hruška,
L. Madeyski, M. Ochodek (eds.), Software Engineering Techniques in Progress, Brno, Czech Republic,
2008, pp. 153–166.

5.	 Z. Bičevska, J. Bičevskis. Applying Smart Technologies in Software Development: Automated
Version Updating. In: Scientific Papers of the University of Latvia, Computer Science and Information
Technologies, vol .733, 2008, pp. 24–37. ISSN 1407-2157.

6.	 E. Diebelis, V. Takeris, J. Bičevskis. Self-testing – new approach to software quality assurance. In:
Proceedings of the 13th East-European Conference on Advances in Databases and Information Systems
(ADBIS 2009). Riga, Latvia, 7–10 September, 2009, pp. 62–77.

7.	 A. G. Ganek, T. A. Corbi. The dawning of the autonomic computing era. IBM Systems Journal, vol. 42,
no. 1, 2003, pp. 5–18.

8.	 R. Sterritt, D. Bustard. Towards an autonomic computing environment. Proceedings of the 14th
International Workshop on Database and Expert Systems Applications (DEXA 2003), 2003, pp. 694–698.

9.	 S. Lightstone. Foundations of Autonomic Computing Development. Proceedings of the 4th IEEE
International Workshop on Engineering of Autonomic and Autonomous Systems, 2007, pp. 163–171.

10.	 Z. Bicevska. Applying Smart Technologies: Evaluation of Effectiveness. Conference Proceedings of
the 2nd International Multi-Conference on Engineering and Technological Innovation (IMETI 2009),
Orlando, Florida, USA, July 10–13, 2009.

11.	 Z. Bičevska, J. Bičevskis. Applying Self-Testing: Advantages and Limitations. In: H.-M. Haav, A. Kalja
(eds.), Databases and Information Systems, Selected Papers from the 8th International Baltic Conference,
vol. 187, IOS Press, 2009, pp. 192–202.

12.	 J. Ceriņa-Bērziņa, J. Bičevskis, Ģ. Karnītis. Information Systems Development Based on Visual Domain-
Specific Language BiLingva. Accepted for publication in the 4th IFIP TC2 Central and East European
Conference on Software Engineering Techniques (CEE-SET 2009), Krakow, Poland, October 12–14,
2009.

