
Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 173–192 P.

A. Sprogis
The Configurator in DSL Tool Building

The Configurator in DSL Tool Building

Arturs Sprogis
Institute of Mathematics and Computer Science, University of Latvia

Raina bulv. 29, Riga, LV-1459, Latvia
Arturs.Sprogis@lumii.lv

This paper describes the Configurator which provides ability to create graphical tools for different 
domain-specific languages (DSLs) quickly and convieniently. To define different DSLs by the 
Configurator, a TDA graphical tool building platform and its main component – a Tool Definition 
Metamodel, is used. By using this technology, a specific graphical tool is built as an instance 
of the Tool Definition Metamodel, the main task of the Configurator being creation of new Tool 
Definition Metamodel instances. The basic idea behind the Configurator is to create the instances 
graphically and add its properties through dialog windows. New universal graphical language and 
transformations converting universal language elements into Tool Definition Metamodel instances 
was developed as a materialization of this idea.

Keywords: DSL, graphical tool building, metamodel, model transformation.

1	 Introduction
Many different formal models are used to describe complex information structure 

and each model is expressed in a particular language. DSLs [1, 2] are typically the 
choice because they are specially created to solve problems in one specific domain using 
well-known concepts for domain experts in contrary to universal languages which solve 
problems in many domains simultaneously. The main advantage of DSLs is that they 
allow thinking in a higher level of abstraction; however, their application is restricted 
by the lack of corresponding tools. Programming every single tool from scratch is time-
consuming and takes a lot of effort. Therefore, more advanced methods implementing 
DSL tools are necessary.

Currently the leading DSL tool definition frameworks are MetaEdit+ [3, 4, 5], 
Eclipse GMF [6] and Microsoft DSL Tools [7]. DSL tools in MetaEdit+ are defined by 
GOPPRR [3] (Graph, Object, Property, Port, Relationship, Role) modelling language. 
All concepts are defined independently from each other but their relationships are 
specified later when all concepts have been defined. Although in MetaEdit+ new DSL 
tools are made easily by defining language concepts graphically, the main disadvantage 
is that it is impossible to change the default behaviour with additional code. 

Eclipse GMF and Microsoft DSL Tools use code generation approach. DSL tools 
are created by compiling generated code and if any changes are necessary, the generated 
code has to be altered. This requires DSL developers to have advanced knowledge in 
generated code and in the programming language used in code generation. In addition, 
one of the main disadvantages of Eclipse GMF is that a user interface is hard to 
understand, whereas Microsoft DSL Tools is a commercial product and it may only be 
used together with Microsoft Visual Studio.



174 Computer Science and Information Technologies

In this paper, a new approach of defining DSL tools is presented incorporating both – 
an easy-to-use graphical interface for typical use cases and a programmatic approach for 
more specific cases. This idea is implemented in the Configurator, allowing tool builders 
to define DSL tools with greater flexibility.

Chapter 2 is an overview of the Configurator. An overview of the graphical platform 
used to build the Configurator is presented in Chapter 3. The implementation of the 
Configurator and an example illustrating the use of the Configurator is described in 
Chapter 4.

2	 An Overview of the Configurator
Each DSL consists of a number of graphical concepts. One of the basic principles 

used in the Configurator is to define each concept graphically by defining concept 
prototypes. Thus, it is necessary for the Configurator’s DSL to define other DSLs in the 
same way OMG defines UML [8] by using Meta-Object Facility (MOF) [9].

DSLs are implemented as graph diagrams; therefore, the Configurator’s DSL 
consists of three main concepts – box, line and property. Box describes nodes, line 
describes edges and property describes compartments added to node or edge in graph 
diagrams. Thus, prototypes are expressed in terms of these three concepts. However, 
each concept has its own behaviour, notation and constraints distinguishing it from other 
concepts and these features are specified by complex dialog windows. Thus, graphical 
concepts together with dialog windows make the Configurator’s DSL.

The Configurator is implemented using the TDA [10, 11, 12] graphical tool-
building platform. The TDA platform consists of engines and metamodels. Every 
engine has its own corresponding metamodel. For example, Presentation Engine uses 
Presentation Metamodel to depict diagrams, whereas Dialog Engine uses Dialog 
Metamodel to show dialog windows to end users. Most important of those are the 
Universal Interpreter and the Tool Definition Metamodel. The Universal Interpreter 
is a universal transformation interpreting the Tool Definition Metamodel to provide 
working DSL tools. The basic idea of the Configurator is that it defines instances of 
the Tool Definition Metamodel and the Universal Interpreter does the rest of the work 
in cooperation with the Presentation Engine and the Dialog Engine. The main task in 
TDA platform which is accomplished by the Configurator is the creation of the the 
Tool Definition Metamodel instances.

Although the Configurator is a tool that defines other DSL tools, the Configurator 
itself is implemented as a DSL tool in TDA platform using the bootstrapping method. 
The Configurator’s Tool Definition Metamodel instances are created as a software code 
and interpreted by the Universal Interpreter afterwards. An important thing in the TDA 
platform is the Extension Point mechanism. The Extension Point mechanism allows a 
tool builder to create his own transformations or even programmes and then stores them 
in the Tool Definition Metamodel instances, in this way defining a self-contained tool. 
The Extension Point transformations are called by the Universal Interpreter in certain 
situations. Therefore, very complex tools can be made including the Configurator itself, 
which maps the Configurator’s DSL individuals to the Tool Definition Metamodel 
instances.



175A. Sprogis. The Configurator in DSL Tool Building

3	 The TDA Platform
The Configurator is implemented in the TDA platform as a DSL tool; therefore, the 

TDA platform will be explained in more detail. The TDA platform consists of engines 
and related metamodels. Every engine accomplishes its functions by interpreting 
corresponding metamodel. The most important components are the Universal Interpreter 
and the Tool Definition Metamodel. The Tool Definition Metamodel defines DSLs and the 
Universal Interpreter implements them. The Universal Interpreter consists of two kinds 
of transformations – Universal Transformations and Specific Transformations executed 
in specific situations. The main transformation is the Universal Transformation, which 
provides the end users with working DSL tools by interpreting static part of the Tool 
Definition Metamodel.

A command and event mechanism is used to provide a communication among 
multiple engines. Each event corresponds to the end user’s action. As an example – a 
double click on element corresponds to the event, commands correspond to an order for 
the engine, for instance, an order for the Presentation Engine to redraw all the elements 
in the diagram. Thus, the communication is organized in such a way that if the end-user 
does something in the diagram, the Presentation Engine receives this action. Then the 
Presentation Engine classifies the action and creates a new event for the transformation. 
At this moment, the control is assigned to the main transformation that decides which 
transformation is called to process the event. When the event is processed, the control is 
passed back to the Presentation Engine and a command is created if any assistance by 
Presentation Engine is necessary. 

3.1	 The Presentation Metamodel

The Presentation Engine interprets the Presentation Metamodel that results in 
diagrams seen by end users. Diagrams and their elements are presented as graphs and 
therefore the Presentation Metamodel is very similar to the graph metamodel. In Fig. 1, 
the kernel of the Presentation Metamodel is presented.

Fig. 1. The kernel of the Presentation Metamodel



176 Computer Science and Information Technologies

In the Presentation Metamodel every diagram is a graph with name represented 
by the class GraphDiagram. Each diagram contains some elements represented by 
Element. Element is an abstract class and therefore real diagram elements are described 
by its subclasses Node, Edge, Port, FreeLine and FreeBox. These elements have two 
attributes – location and style. Attribute style describes how an individual element is 
visualized and location contains information about element position in the diagram and 
its size. Each element may have a number of attributes, which display the information 
entered by an end user and are represented by class Compartment containing attribute 
input to store entered value and style to represent the value.

However, every element must have its own default style and therefore the Presentation 
Metamodel is symmetrically extended with classes GraphDiagramStyle, ElemStyle, 
EdgeStyle, NodeStyle and CompartStyle. The extended Presentation Metamodel is 
presented in Fig. 2. Default styles are used when a new element is created, but they can 
be changed by an end user as well. Thus, when each element is created the default style 
value is stored in style, but if the individual style is changed afterwards, the value stored 
in style is overwritten.

Fig. 2. The Presentation Metamodel

The next step is to extend the metamodel to support additional services. Classes 
Palette, PaletteElement, PaletteNode, PaletteFreeBox, PaletteFreeLine, PalettePort 
and PaletteEdge describe controls allowing to create new elements in diagrams. Classes 
Toolbar and ToolbarElement add a toolbar component and classes PopUpDiagram and 
PopUpElement add context menus.

To ensure the previously described event and command mechanism, Event and 
Command classes must be added to the metamodel as well. Each particular event and 
command is represented as a subclass of Event or Command (they are not presented 
in this paper). Class Event has exactly one instance at any given time, whereas 



177A. Sprogis. The Configurator in DSL Tool Building

several Command instances can be linked by previous-next links simultaneously. Two 
additional classes CurrentDgrPointer and Collection indicate the state of the tool. 
CurrentDgrPointer indicates the active diagram; Collection indicates elements selected 
by an end user. In Fig. 3, a simplified metamodel is presented.

Fig. 3. A simplified Presentation Metamodel

3.2	 The Structure of the Tool Definition Metamodel

The Tool Definition Metamodel is created as an extension of the Presentation 
Metamodel and its basic idea is to describe DSL’s graphical elements, their behaviour, 
constraints, and the necessary information to automatically generate dialog windows. 
The main classes are GraphDiagramType, ElemType, NodeType, EdgeType, PortType, 
CompartType that are symmetric to the Presentation Metamodel. These classes store 
metainformation about each individual tool and are interpreted by the Universal 
Interpreter which processes all end user’s actions in cooperation with other engines, 
for example, Presentation Engine and Dialog Engine. To create more powerful tools, 
types are complemented with a special kind of attributes starting with prefix “proc” 
in order to implement the Extension Point mechanism which allows adding specific 
transformations by tool developers to specify element behaviour in certain situations, 
for example, to fill dynamically drop-down menus.

However, types not only describe element behaviour, they describe the existing 
constraints as well. A composition relationship between GraphDiagramType and 
ElemType is a constraint, which determines a set of elements contained in the diagram, 
whereas composition between ElemType and CompartType defines attributes linked to 
the element. A class Pair determines which types of elements may be connected. Thus, 
associations pair-start and pair-end define which type of elements can serve as start 



178 Computer Science and Information Technologies

and end elements. Another constraint is the association containerType-componentType 
defining which type of Boxes may contain other Boxes. At the same time association 
nodeType-portType determines the type of Box that is enchained to a Port.

There are situations when some attribute values have to be entered independently 
from other attribute values and they have to be concatenated when shown in diagrams. 
This is implemented using composite attributes by adding associations subCompartment-
parentCompartment and subCompartType-parentCompartType. A hierarchy of attributes 
is made in a way that only first level attributes are displayed to end users and attributes 
above hold their temporary values when processed by the Universal Interpreter. For 
instance, in a UML class diagram, Object name (full name) is made by concatenating 
three values – “individual_name”, “:” and “class_name”. There is one first level attribute 
showing the result of concatenation, for example, “John:Person”, and three second level 
attributes holding values for each attribute – “John”, “:” and “Person”.

Classes PropertyDiagram, PropertyTab, PropertyRow represent components used 
by the Universal Interpreter to generate complete dialog windows automatically. Class 
PropertyRow has an attribute rowType determining the type of control used to enter 
attribute values. For example, the value “InputRow” specifies the text box control. To 
allow calling multiple dialog windows in several levels an association calledPropertyRow-
calledPropertyDiagram is introduced. This feature is used if the rowType value, for 
example, “InputRow+Button” is chosen. As a result, a text box and a button are added, 
and by pressing the button, another dialog window is opened. 

Sometimes it is necessary to dynamically change element and attribute styles. 
Element and attribute type has at least one corresponding style that is joined by the 
associations elemType-elemStyle or compartType-compartStyle. If there is more than 
one style, they must be switched in certain situations. It is implemented by adding a 
class ChoiceItem and associations choiceItem-ElemStyleByChoiceItem and choiceItem-
compartStyleByChoiceItem. Each ChoiceItem instance holds a certain value and if this 
value is entered, the linked style is added. For instance, in UML class diagram, Class 
name’s text has to be shown in normal or in italic based on whether the class is abstract 
or not. Thus, there must be a check box, which is checked if the class is abstract and not 
checked otherwise. According to the metamodel, there are two ChoiceItem instances 
holding values “True” and “False”. A normal style is added to “False” value and an 
italic style is added to “True” value. Hence, when an end user checks or unchecks the 
check box, the Class name’s style is changed accordingly. In Fig. 4, the complete Tool 
Definition Metamodel is present.

4	 The Configurator
The implementation of the Configurator is predominantly based on the Universal 

Interpreter and the Tool Definition Metamodel. All the tools store two different kinds 
of instances in the Tool Definition Metamodel. One kind of instances defines the tool 
and is static as far as instances never change. The Universal Interpreter uses them to 
process end user actions. The second kind of instances is created dynamically and those 
correspond to the elements end users work with. End users may add, update, and delete 
them. The main problem is how to define static instances because they are individual 
for every single tool, whereas dynamic instances are processed equally in all tools. 



179A. Sprogis. The Configurator in DSL Tool Building

If static instances are “somehow” created, the working tool is obtained immediately. 
The naïve approach would be to create them manually but it causes several problems. 
Firstly, a number of instances soon grow very large. Secondly, there are many links and 
attribute values to be set and those can easily cause an error; therefore, this approach 
is significantly error-prone. Thirdly, a tool developer must know the Tool Definition 
Metamodel and attribute values expected by the Presentation Engine.

The Configurator is built to automate the creation of the Tool Definition Metamodel 
instances using the bootstrapping method. The basic idea is to implement the Configurator 

Fig. 4. The Tool Definition Metamodel



180 Computer Science and Information Technologies

as a DSL tool using the Tool Definition Metamodel and the Universal Interpreter. There 
are static instances defining the Configurator like any other tool in TDA but the new 
approach is to define static instances of DSL tools by dynamic instances using mapping 
from dynamic instances to static. The mapping is created using the Extension Point 
mechanism. The Universal Interpreter calls specific transformations in certain situations 
and this process consists of two steps. In the first step, the Universal Interpreter creates 
dynamic instances, which are seen by tool developers. Then, in the second step, a specific 
transformation which creates, deletes or updates static instances is called. The structure 
of DSL tool definition in the Configurator is presented in Fig. 5.

Fig. 5. The structure of DSL tool definition in the Configurator

The scaffolding must be added to the Tool Definition Metamodel to implement 
the Configurator according to the schema. The main purpose of scaffolding is to map 
dynamic instances to the static instances. There are three associations presentation-
target_type added to the metamodel to identify an element type being defined by 
GraphDiagram, Element or Compartment. In Fig. 6, an extended Tool Definition 
Metamodel fragment is presented.

Fig. 6. An extended Tool Definition Metamodel



181A. Sprogis. The Configurator in DSL Tool Building

4.1	 Implementing the Configurator

According to the TDA platform, static and dynamic instances are stored for each 
DSL tool. As far as the Configurator is implemented as a DSL tool, there are static 
instances defining the Configurator and those are presented in this sub-section.

The Configurator’s DSL consists of two diagram types. One type of diagrams 
defines prototypes for diagram seeds, and lines illustrating dependencies between them. 
The second type of diagrams defines element prototypes. The first type of diagram is 
named Specification Diagram with three types of elements possible – Seeds, Lines and 
Specializations. Seed is an element which defines seed prototype; Line is an element 
which defines dependency prototype, and Specialization is a line used to indicate that a 
sub-element inherits incoming and outgoing lines and constraints from a super-element. 
Tool Definition Metamodel instances presented in Fig. 7 specify element types for Seeds, 
Lines, and Specializations. There are additional instances specifying context menus and 
corresponding palette buttons.

Fig. 7. The specification diagram defined in the Tool Definition Metamodel

The second diagram type defines element prototypes. There are six different element 
types available – Box, Line, FreeBox, FreeLine, Port and Specialization. Box and Line 
elements allow defining prototypes for boxes and lines; FreeBox allows defining boxes 
always remaining in background; FreeLine allows defining lines having no start and 
no end elements; Port allows defining small boxes which are always attached to some 
Box; Specialization is used for the same purpose as in Specification Diagram. In Fig. 8, 
a definition of prototype diagram and its elements with relevant context menus in the 
Tool Definition Metamodel is presented. Line and Specialization elements are allowed to 
connect all the elements except Specialization. For example, Box and Box elements are 



182 Computer Science and Information Technologies

allowed being connected by Line or Specialization element, but Box and Specialization 
elements are not allowed being connected by either Line or Specialization. Thus, all 
the possible pairs must be present in the metamodel to indicate which elements may 
be connected and which may not. there is a special NodeType instance with id value 
“superType” added as a super-type for all the elements, except Specialization, and two 
Pair instances, which connect “superType” instance and Specialization’s type instance, 
“superType” instance and Line’s type instance. Introduction of “superType” is needed 
to save the effort of making all the necessary pairs because the incoming and outgoing 
lines are inherited from the super-type.

Fig. 8. Prototype diagram’s definition in the Tool Definition Metamodel

4.2	 The Configurator in Use

In Fig. 7 and 8, the Tool Definition Metamodel instances defining the Configurator 
are presented. If the tool is specified by static instances, the Universal Interpreter creates 
and processes dynamic instances. To illustrate how static instances are used in tool 
building, a simplified Flowchart editor is built consisting of the following symbols – 
Start, End, Action, Branching, Simple Flow and Branching Flow. In addition, Action 
symbol has a property Expression; Branching symbol has a property Condition and 
Branching Flow has a property Choice.



183A. Sprogis. The Configurator in DSL Tool Building

A new diagram type is defined in Specification Diagram by creating a new seed. A 
new Node instance is created and linked to GraphDiagram, NodeType and NodeStyle 
instances by the Universal Interpreter. The result is presented in Fig. 9. 

Fig. 9. Node instance created by the Universal Interpreter

When the Universal Interpreter's work is done, a specific Extension Point 
transformation from attribute procCreateDomain is called to create corresponding 
static instances for Flowchart editor and dynamic instances for the Configurator. It is 
achieved in two steps. In the first step, a new GraphDiagram instance is created for 
Flowchart element prototype definition. In the second step, new NodeType, NodeStyle, 
GraphDiagramType and GraphDiagramStyle instances are created. NodeType instance 
defines a seed type in Project Diagram, NodeStyle instance defines a seed style. 
GraphDiagramType instance defines a diagram type, which corresponds to Flowchart 
diagram, and GraphDiagramStyle instance defines its style. Node and NodeType, 
GraphDiagram and GraphDiagramType instances are linked by presentation-target_
type to indicate which diagram type is defined; Node and GraphDiagram instances are 
linked by source-target to connect seed prototype and diagram, in which prototypes 
are defined. However, there is a necessity for additional instances of type Palette and 
PaletteNode to create a palette and a palette button in Project Diagram.

When a seed element is created, a property to store diagram’s name must be added. 
This is achieved by adding Compartment, CompartStyle, CompartType to store and 
represent the end user values, but PropertyDiagram and PropertyRow instances are 
added to enter the value from dialog window. In Fig. 11, the instance diagram defining 
Flowchart seed is presented.

Fig. 10. Instance diagram after creating Flowchart’s seed element



184 Computer Science and Information Technologies

When a Flowchart’s seed element is defined, element prototypes must be defined. 
Element prototypes of Box type are added in the same way as seed prototype; therefore, 
only line definition is explained in more detail. Assuming that Start and Action elements 
are defined in the same manner as Seed, Simple Flow prototype is added in two steps. In 
the first step, Edge instance is created that links two Node instances which represent Start 
and Action. In the second step, Flowchart’s editor static instances EdgeType, EdgeStyle, 
Pair and PaletteLine are created. EdgeType and Pair instances define a Simple Flow 
element, which allows to connect Start and Action elements; EdgeStyle defines Simple 
Flow’s style and PaletteLine defines a palette button to create Simple Flow element. In 
Fig. 11, the instance diagram defining Flow is presented.

Fig. 11. Flow’s definition

Fig. 12. The Tool Definition Metamodel instances



185A. Sprogis. The Configurator in DSL Tool Building

The entire Tool Definition Metamodel instance of the Flowchart editor presented in 
Fig. 12 can be obtained using the method described above.

4.3	 Defining Flowchart Editor Using the Configurator

After discussing the Configurator’s implementation and the way it creates the 
instances of the Tool Definition Metamodel above, we shall demonstrate the use of 
the Configurator from the tool builder’s point of view by implementing the Flowchart 
editor. 

Fig. 13. A new tool definition window

When a new DSL tool is defined, a window to specify project details (Project –>New 
project) is opened. It is presented in Fig. 13. A tool builder has to select value 
UniversalTool in the field Tool. Then he has to specify the name of the new tool in the 
field Project name and the project location in the field Workspace. When DSL developer 
presses OK button, Project diagram is opened. In general, Project diagram contains all 
the available diagram type seeds (elements that allow making diagrams), but that is not 
the case in the Configurator. When using the Configurator, Project diagram contains no 
diagram type at all, because the Configurator will define it later. New diagram types are 
defined in Specification diagram. Tool builder can navigate to Specification diagram 
by right-clicking and choosing Specification diagram from the context menu. A sample 
project diagram and the context menu are presented in Fig. 14.

Fig. 14. A sample project diagram



186 Computer Science and Information Technologies

In Specification diagram, new diagram types are defined using Seed element. A 
Flowchart diagram Seed has to be created by pressing Seed button in the palette. When 
Flowchart diagram type is defined, a Flowchart diagram is opened by double-clicking 
on the diagram Seed. In Fig. 15, Flowchart diagram Seed and diagram for element 
definitions is presented.

Fig. 15. Creating Flowchart Seed

When Flowchart definition diagram is opened, Flowchart elements can be defined 
by creating their prototypes. For instance, Action is defined by choosing Box button in 
the palette. A Box dialog window is displayed afterwards and tool builder is prompted 
to enter element values. In the field Name a value “Action” has to be entered which 
automatically renames a palette element name in the field Palette Element Name. In the 
field Palette Element Nr, a number for palette element in the palette has to be entered 
and in this case, the number is “2”. In the field, Icon Path an icon’s name for a palette 
element has to be specified. Context menu elements for Action have to be defined as well. 
Those are specified in the table PopUpDiagram and in this case, context menu items 
are default with corresponding default transformations added from the transformation 
library – Delete, Cut, Copy and Properties. It is possible to specify navigation target 
diagram in the field Navigate To Diagram by double-clicking on the element. If 
nothing is specified, no navigation is possible. However, in this particular case, a value 
“Flowchart” is specified meaning that double-clicking navigates the end user to one of 
the Flowchart diagrams. In Fig. 16, a window to enter Action values is presented.

When all the element values are entered, element properties have to be specified. 
It is done by pressing the button AddChild. In Fig. 17, a property dialog window is 
presented. Property value has to be entered in the field Name, and in this particular case, 
the value is “Expression”. The visual control used to enter the property value has to be 
specified in the field Row Type, and in this case, the value is “InputRow”, meaning the 
control to enter property values is a textbox. 

When all the values are entered, element style has to be specified by pressing the 
button Style. In Fig. 18, the dialog window to enter element style is presented. In this 
dialog window, a tool builder has to specify values as box type, which may take one of 
the following values – rectangle, ellipse, round rectangle, etc; a default size, a colour, a 
border’s colour, a border’s width and some other visual features.



187A. Sprogis. The Configurator in DSL Tool Building

Fig. 16. Definition of an Action element

Fig. 17. Definition of the property “Expression”



188 Computer Science and Information Technologies

Fig. 18. A style definition window for Box prototype

In Fig. 19, the dialog window to enter properties style values is presented. The tool 
builder has to specify property values like text alignment, adjustment, font style, etc in 
this window.

Fig. 19. A style definition window for properties

This is how concepts of Box type are defined in the Configurator. Other Flowchart 
concepts of Box type like Start, End and Branching symbols are defined using similar 
approach. In Fig. 20, all Flowchart prototypes of Box type are presented.



189A. Sprogis. The Configurator in DSL Tool Building

Fig. 20. Box prototypes for the Flowchart editor

The next step is to define prototypes of Line type. They are Simple Flow and 
Branching Flow. In the context of this example, the assumption is made that a Simple 
Flow is an element which may join Start and Action, Start and Branching, Action and 
Action, Action and Branching, Action and End symbols, whereas Branching Flow may 
join only Branching and Action symbols.

When a Line prototype for a Simple Flow is defined, all the mentioned cases have to 
be considered. One Line can join only two elements and wherefore there is a necessity 
for many new prototypes to consider all the Simple Flow cases. However, the tool user 
does not have to know all the technical constraints; therefore, an illusion must be created 
that there is only one Simple Flow element in the diagram. This is achieved by having 
a common palette button for all the different prototypes in diagram’s palette and all 
the prototypes are made equal by their style and behaviour. In Fig. 21, an example 
is demonstrated of how prototype is defined for one of Simple Flow elements. The 
definition of elements with a Line type is very similar to the Box type definition; hence, 
in the field Palette Element Name a drop down menu is used to offer all the palette 
button names. If the name entered matches any item from the drop down menu, a new 
palette button is not created and prototype being defined is linked to an existing palette 
button. Otherwise, a new palette button is created. In the Flowchart case, all the Simple 
Flow prototypes are linked to the palette button Flow.



190 Computer Science and Information Technologies

Fig. 21. Definition of a Simple Flow element

Branching Flow is defined almost in the same way as Simple Flow, except 
Branching Flow has a property Choice to enter values like – Yes, No, True, False, etc. 
In addition, Branching Flow is linked to the palette button Flow. Thus, all the Lines 
are created by only one palette button Flow and the decision which Line to choose in 
particular situation is made by the Universal Interpreter. In Fig. 22, a final definition of 
a Flowchart editor is presented.

Fig. 22. Definition of a Flowchart editor



191A. Sprogis. The Configurator in DSL Tool Building

Yet, in Fig. 23, a working Flowchart editor is presented.

Fig. 23. A Flowchart editor in use

Conclusion and the Future Work
Currently the Configurator has enough functionality to implement many different 

DSL tools. For example, as far as the Configurator is a DSL tool, it is powerful enough 
to implement even such a complex tool as the Configurator itself. Real business tools 
are also implemented for Investment and Development Agency of Latvia and the State 
Social Insurance Agency. Although these tools where successfully implemented, several 
problems require further research – there is no multi-user mode to support multiple 
DSL tool developers, the graphical language is insufficiently self-descriptive and user-
friendly, and incorporation of other software like MS Word, Database editors, etc in 
implemented tools is not completely satisfactory. 

References
1.	 UML vs. Domain-Specific Languages. Available: http://www.methodsandtools.com/archive/archive.

php?id=71.
2.	 Domain-Specific Language. Available: http://www.program-transformation.org/Transform/

DomainSpecificLanguages.
3.	 MetaEdit+ Workbench User’s Guide, Version 4.5. Available: http://www.metacase.com/support/45/

manuals/mwb/Mw.html.
4.	 S. Kelly, J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley, 2008, 

p. 448.
5.	 Domain-Specific Modeling with MetaEdit+. Available: http://www.metacase.com/.
6.	 Graphical Modeling Framework (GMF, Eclipse Modeling subproject). Available: http://www.eclipse.org/

gmf/.



192 Computer Science and Information Technologies

7.	 S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific Development with Visual Studio DSL Tools. 
Addison-Wesley, 2007.

8.	 OMG modeling specification, UML 2.0 Superstructure and Infrastracture. Available: http://www.omg.
org/docs/formal/07-02-05.pdf.

9.	 Meta-Object Facility (MOF). Available: http://www.omg.org/mof/.
10.	 J. Bārzdiņš, E. Rencis, S. Kozlovičs. The Transformation-Driven Architecture. The 8th OOPSLA 

Workshop on Domain-Specific Modeling, October 19–20, 2008, Nashville, TN.
11.	 J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis, A. Zarins. A Graph Diagram Engine for the Transformation-

Driven Architecture. Proc. of the Workshop on Model-Driven Development of Advanced User Interfaces 
2009. Florida, USA: IUI, 2009.

12.	 J. Bārzdiņš, A. Zariņš, K. Čerāns, A. Kalniņš, E. Rencis, L. Lāce, R. Liepiņš, A. Sproģis. GrTP: 
Transformation-Based Graphical Tool Building Platform. The 10th International Conference on Model-
Driven Engineering Languages and Systems, Models 2007, September 30–October 5, 2007, Nashville, 
TN.


