SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2010. Vol. 756
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 173-192 P.

The Configurator in DSL Tool Building

Arturs Sprogis
Institute of Mathematics and Computer Science, University of Latvia
Raina bulv. 29, Riga, LV-1459, Latvia
Arturs.Sprogis@Ilumii.lv

This paper describes the Configurator which provides ability to create graphical tools for different
domain-specific languages (DSLs) quickly and convieniently. To define different DSLs by the
Configurator, a TDA graphical tool building platform and its main component — a Tool Definition
Metamodel, is used. By using this technology, a specific graphical tool is built as an instance
of the Tool Definition Metamodel, the main task of the Configurator being creation of new Tool
Definition Metamodel instances. The basic idea behind the Configurator is to create the instances
graphically and add its properties through dialog windows. New universal graphical language and
transformations converting universal language elements into Tool Definition Metamodel instances
was developed as a materialization of this idea.

Keywords: DSL, graphical tool building, metamodel, model transformation.

1 Introduction

Many different formal models are used to describe complex information structure
and each model is expressed in a particular language. DSLs [1, 2] are typically the
choice because they are specially created to solve problems in one specific domain using
well-known concepts for domain experts in contrary to universal languages which solve
problems in many domains simultaneously. The main advantage of DSLs is that they
allow thinking in a higher level of abstraction; however, their application is restricted
by the lack of corresponding tools. Programming every single tool from scratch is time-
consuming and takes a lot of effort. Therefore, more advanced methods implementing
DSL tools are necessary.

Currently the leading DSL tool definition frameworks are MetaEdit+ [3, 4, 5],
Eclipse GMF [6] and Microsoft DSL Tools [7]. DSL tools in MetaEdit+ are defined by
GOPPRR [3] (Graph, Object, Property, Port, Relationship, Role) modelling language.
All concepts are defined independently from each other but their relationships are
specified later when all concepts have been defined. Although in MetaEdit+ new DSL
tools are made easily by defining language concepts graphically, the main disadvantage
is that it is impossible to change the default behaviour with additional code.

Eclipse GMF and Microsoft DSL Tools use code generation approach. DSL tools
are created by compiling generated code and if any changes are necessary, the generated
code has to be altered. This requires DSL developers to have advanced knowledge in
generated code and in the programming language used in code generation. In addition,
one of the main disadvantages of Eclipse GMF is that a user interface is hard to
understand, whereas Microsoft DSL Tools is a commercial product and it may only be
used together with Microsoft Visual Studio.

174 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

In this paper, a new approach of defining DSL tools is presented incorporating both —
an easy-to-use graphical interface for typical use cases and a programmatic approach for
more specific cases. This idea is implemented in the Configurator, allowing tool builders
to define DSL tools with greater flexibility.

Chapter 2 is an overview of the Configurator. An overview of the graphical platform
used to build the Configurator is presented in Chapter 3. The implementation of the
Configurator and an example illustrating the use of the Configurator is described in
Chapter 4.

2 An Overview of the Configurator

Each DSL consists of a number of graphical concepts. One of the basic principles
used in the Configurator is to define each concept graphically by defining concept
prototypes. Thus, it is necessary for the Configurator’s DSL to define other DSLs in the
same way OMG defines UML [8] by using Meta-Object Facility (MOF) [9].

DSLs are implemented as graph diagrams; therefore, the Configurator’s DSL
consists of three main concepts — box, line and property. Box describes nodes, line
describes edges and property describes compartments added to node or edge in graph
diagrams. Thus, prototypes are expressed in terms of these three concepts. However,
each concept has its own behaviour, notation and constraints distinguishing it from other
concepts and these features are specified by complex dialog windows. Thus, graphical
concepts together with dialog windows make the Configurator’s DSL.

The Configurator is implemented using the TDA [10, 11, 12] graphical tool-
building platform. The TDA platform consists of engines and metamodels. Every
engine has its own corresponding metamodel. For example, Presentation Engine uses
Presentation Metamodel to depict diagrams, whereas Dialog Engine uses Dialog
Metamodel to show dialog windows to end users. Most important of those are the
Universal Interpreter and the Tool Definition Metamodel. The Universal Interpreter
is a universal transformation interpreting the Too! Definition Metamodel to provide
working DSL tools. The basic idea of the Configurator is that it defines instances of
the Tool Definition Metamodel and the Universal Interpreter does the rest of the work
in cooperation with the Presentation Engine and the Dialog Engine. The main task in
TDA platform which is accomplished by the Configurator is the creation of the the
Tool Definition Metamodel instances.

Although the Configurator is a tool that defines other DSL tools, the Configurator
itself is implemented as a DSL tool in TDA platform using the bootstrapping method.
The Configurator’s Tool Definition Metamodel instances are created as a software code
and interpreted by the Universal Interpreter afterwards. An important thing in the TDA
platform is the Extension Point mechanism. The Extension Point mechanism allows a
tool builder to create his own transformations or even programmes and then stores them
in the Tool Definition Metamodel instances, in this way defining a self-contained tool.
The Extension Point transformations are called by the Universal Interpreter in certain
situations. Therefore, very complex tools can be made including the Configurator itself,
which maps the Configurator’s DSL individuals to the Too! Definition Metamodel
instances.

A. Sprogis. The Configurator in DSL Tool Building 175

3 The TDA Platform

The Configurator is implemented in the TDA platform as a DSL tool; therefore, the
TDA platform will be explained in more detail. The TDA platform consists of engines
and related metamodels. Every engine accomplishes its functions by interpreting
corresponding metamodel. The most important components are the Universal Interpreter
and the Tool Definition Metamodel. The Tool Definition Metamodel defines DSLs and the
Universal Interpreter implements them. The Universal Interpreter consists of two kinds
of transformations — Universal Transformations and Specific Transformations executed
in specific situations. The main transformation is the Universal Transformation, which
provides the end users with working DSL tools by interpreting static part of the Tool
Definition Metamodel.

A command and event mechanism is used to provide a communication among
multiple engines. Each event corresponds to the end user’s action. As an example — a
double click on element corresponds to the event, commands correspond to an order for
the engine, for instance, an order for the Presentation Engine to redraw all the elements
in the diagram. Thus, the communication is organized in such a way that if the end-user
does something in the diagram, the Presentation Engine receives this action. Then the
Presentation Engine classifies the action and creates a new event for the transformation.
At this moment, the control is assigned to the main transformation that decides which
transformation is called to process the event. When the event is processed, the control is
passed back to the Presentation Engine and a command is created if any assistance by
Presentation Engine is necessary.

3.1 The Presentation Metamodel

The Presentation Engine interprets the Presentation Metamodel that results in
diagrams seen by end users. Diagrams and their elements are presented as graphs and
therefore the Presentation Metamodel is very similar to the graph metamodel. In Fig. 1,
the kernel of the Presentation Metamodel is presented.

GraphDiagram
caption:String
bkgColorinteger

0.1 Element
start | location:String
0.1 | style:String
end

eStart| eEnd|*
L3
Edge 0.1
container Compartment
’L‘ input.String
FreeLine style:String

Fig. 1. The kernel of the Presentation Metamodel

176

COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

In the Presentation Metamodel every diagram is a graph with name represented
by the class GraphDiagram. Each diagram contains some elements represented by
Element. Element is an abstract class and therefore real diagram elements are described
by its subclasses Node, Edge, Port, FreeLine and FreeBox. These elements have two
attributes — location and style. Attribute style describes how an individual element is
visualized and location contains information about element position in the diagram and
its size. Each element may have a number of attributes, which display the information
entered by an end user and are represented by class Compartment containing attribute
input to store entered value and style to represent the value.

However, every element must have its own default style and therefore the Presentation
Metamodel is symmetrically extended with classes GraphDiagramStyle, ElemStyle,
EdgeStyle, NodeStyle and CompartStyle. The extended Presentation Metamodel is
presented in Fig. 2. Default styles are used when a new element is created, but they can
be changed by an end user as well. Thus, when each element is created the default style
value is stored in style, but if the individual style is changed afterwards, the value stored
in style is overwritten.

GraphDiagam

[«

bkgColorinteger

caption:String graphDiagram 1 M
bkgColorinteger |* graphDiagramStyle idString
= caplion:String
layoutMode:Integer ElemSuyje
layoutAlgorithm:integer id:5tring

caption:String

0.1 Element screenZoom:integer shapeCode:Integer
start [location:String printZoom:Integer shapeStyle:Integer
style:String element 1 | bkaColorinteger
- elemStyle | lineColorinteger

EdgeStyle

lineType:Integer

startShapeCodeInteger
stariLineWidth:Integer
startDashLength:Integer
startLineColorinteger
endShapeCodeinteger

eStart| eEnd[*

0.1 !
container
* |component%:_ | FreeBox

endLineWidth:Integer NodeSiae
endDashLength:Integer
CompartStile . ¥
N — |1 ST endLineColorInteger m
compartment[r COMPAMSYIE | oopiion-String

Compariment alignmentInteger
input:String adjustmentinteger
style:String adornmentinteger

isVisible:Integer

Fig. 2. The Presentation Metamodel

The next step is to extend the metamodel to support additional services. Classes
Palette, PaletteElement, PaletteNode, PaletteFreeBox, PaletteFreeLine, PalettePort
and PaletteEdge describe controls allowing to create new elements in diagrams. Classes
Toolbar and ToolbarElement add a toolbar component and classes PopUpDiagram and
PopUpElement add context menus.

To ensure the previously described event and command mechanism, Event and
Command classes must be added to the metamodel as well. Each particular event and
command is represented as a subclass of Event or Command (they are not presented
in this paper). Class Event has exactly one instance at any given time, whereas

A. Sprogis. The Configurator in DSL Tool Building 177

several Command instances can be linked by previous-next links simultaneously. Two
additional classes CurrentDgrPointer and Collection indicate the state of the tool.
CurrentDgrPointer indicates the active diagram; Collection indicates elements selected
by an end user. In Fig. 3, a simplified metamodel is presented.

next(0..1

0.1 Command
previous ~nfo:Sinng
—
0. 1|source 0.1 _Toolbar A Toolbarf lemant
toolbar lastring
recaiver|1 graphDiagram|* ___|caston:Shing
3 Disgram G Diagrams5i picture: String
> |___GmphDisgram Srphbisgrmste | i vieger
graphDiagram | caption Siring graphDiagram 4 |/a:Sting feg
caption:Sting 1 | bkoColarintager - e caplonSting
.:irmﬂ.f:finu & layoutAlgonthmointeger Elem:
LU bkgColorinteger iaSting
A scraenZoom:integer caption:Sting
= prntZoominteger shapeCode integer
1 shapeStyieinteger
Tocalion Siing| glement L8 Pl
i Edgeshie elemSiie | ineColorinteger
lineTypeinteger

staniShapeCodednteger o

startiDashLengthinteger

stariLineWidthintager
stariLineColorinteger T

_Node |. [port Code:integer PortStyie
e \eocmoe andLineWidhinteger
" endDashLengthinteger Hode!
-I' o endLineColorinteger
PopUpDiagram|
__Event__ 1 source N Comparsi
Infoc Siring o1 Comparment | comparment 1 m_sq_mn) "
Inputsinng * compartSie | C2ption:String Tamant
atyle:String | alignmentinteger Eaption String
_amnmcm&":::; procedure_nameString
| nrinte
{IsVisibleInteger sl

Fig. 3. A simplified Presentation Metamodel

3.2 The Structure of the Tool Definition Metamodel

The Tool Definition Metamodel is created as an extension of the Presentation
Metamodel and its basic idea is to describe DSL’s graphical elements, their behaviour,
constraints, and the necessary information to automatically generate dialog windows.
The main classes are GraphDiagramType, ElemType, NodeType, EdgeType, PortType,
CompartType that are symmetric to the Presentation Metamodel. These classes store
metainformation about each individual tool and are interpreted by the Universal
Interpreter which processes all end user’s actions in cooperation with other engines,
for example, Presentation Engine and Dialog Engine. To create more powerful tools,
types are complemented with a special kind of attributes starting with prefix “proc”
in order to implement the Extension Point mechanism which allows adding specific
transformations by tool developers to specify element behaviour in certain situations,
for example, to fill dynamically drop-down menus.

However, types not only describe element behaviour, they describe the existing
constraints as well. A composition relationship between GraphDiagramType and
ElemType is a constraint, which determines a set of elements contained in the diagram,
whereas composition between ElemType and CompartType defines attributes linked to
the element. A class Pair determines which types of elements may be connected. Thus,
associations pair-start and pair-end define which type of elements can serve as start

178 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

and end elements. Another constraint is the association containerType-componentType
defining which type of Boxes may contain other Boxes. At the same time association
nodeType-portType determines the type of Box that is enchained to a Port.

There are situations when some attribute values have to be entered independently
from other attribute values and they have to be concatenated when shown in diagrams.
This is implemented using composite attributes by adding associations subCompartment-
parentCompartment and subCompartType-parentCompartType. A hierarchy of attributes
is made in a way that only first level attributes are displayed to end users and attributes
above hold their temporary values when processed by the Universal Interpreter. For
instance, in a UML class diagram, Object name (full name) is made by concatenating
three values — “individual name”, “:”” and “class_name”. There is one first level attribute
showing the result of concatenation, for example, “John:Person”, and three second level
attributes holding values for each attribute — “John”, “:” and “Person”.

Classes PropertyDiagram, PropertyTab, PropertyRow represent components used
by the Universal Interpreter to generate complete dialog windows automatically. Class
PropertyRow has an attribute rowType determining the type of control used to enter
attribute values. For example, the value “InputRow” specifies the text box control. To
allow calling multiple dialogwindows inseveral levelsanassociation calledPropertyRow-
calledPropertyDiagram is introduced. This feature is used if the rowType value, for
example, “InputRow+Button” is chosen. As a result, a text box and a button are added,
and by pressing the button, another dialog window is opened.

Sometimes it is necessary to dynamically change element and attribute styles.
Element and attribute type has at least one corresponding style that is joined by the
associations elemType-elemStyle or compartType-compartStyle. If there is more than
one style, they must be switched in certain situations. It is implemented by adding a
class Choiceltem and associations choiceltem-ElemStyleByChoiceltem and choiceltem-
compartStyleByChoiceltem. Each Choiceltem instance holds a certain value and if this
value is entered, the linked style is added. For instance, in UML class diagram, Class
name’s text has to be shown in normal or in italic based on whether the class is abstract
or not. Thus, there must be a check box, which is checked if the class is abstract and not
checked otherwise. According to the metamodel, there are two Choiceltem instances
holding values “True” and “False”. A normal style is added to “False” value and an
italic style is added to “True” value. Hence, when an end user checks or unchecks the
check box, the Class name’s style is changed accordingly. In Fig. 4, the complete Tool
Definition Metamodel is present.

4 The Configurator

The implementation of the Configurator is predominantly based on the Universal
Interpreter and the 7ool Definition Metamodel. All the tools store two different kinds
of instances in the Too! Definition Metamodel. One kind of instances defines the tool
and is static as far as instances never change. The Universal Interpreter uses them to
process end user actions. The second kind of instances is created dynamically and those
correspond to the elements end users work with. End users may add, update, and delete
them. The main problem is how to define static instances because they are individual
for every single tool, whereas dynamic instances are processed equally in all tools.

A. Sprogis. The Configurator in DSL Tool Building 179

= mparTiee | cncasiie: Sing 01
0 l"“ isHrt Enclean

sExanntal Erolean
procBodingFaldEnieredSiing
procFoadialnsFakErerad g [B00

procenem etemsChickBoSng
proclemposaSing biocon)
procDecomposerSting "
procFeliEnsmd Sting

peocCreate CompatmenDomain Sing
prociipdateCom parmentDiomain Sting
procDela eComparimenDiomain Sking
s e compariment Boclaan
nerdDocument Secfiean
DiagranName Boolear

Fig. 4. The Tool Definition Metamodel

If static instances are “somehow” created, the working tool is obtained immediately.
The naive approach would be to create them manually but it causes several problems.
Firstly, a number of instances soon grow very large. Secondly, there are many links and
attribute values to be set and those can easily cause an error; therefore, this approach
is significantly error-prone. Thirdly, a tool developer must know the Tool Definition
Metamodel and attribute values expected by the Presentation Engine.

The Configurator is built to automate the creation of the Tool Definition Metamodel
instances using the bootstrapping method. The basic idea is to implement the Configurator

180 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

as a DSL tool using the Tool Definition Metamodel and the Universal Interpreter. There
are static instances defining the Configurator like any other tool in TDA but the new
approach is to define static instances of DSL tools by dynamic instances using mapping
from dynamic instances to static. The mapping is created using the Extension Point
mechanism. The Universal Interpreter calls specific transformations in certain situations
and this process consists of two steps. In the first step, the Universal Interpreter creates
dynamic instances, which are seen by tool developers. Then, in the second step, a specific
transformation which creates, deletes or updates static instances is called. The structure
of DSL tool definition in the Configurator is presented in Fig. 5.

Tool Definition Metamodel instances

Step 1. Universal
transformations

Step 2. Configurator's
specific transformations

Fig. 5. The structure of DSL tool definition in the Configurator

The scaffolding must be added to the Tool Definition Metamodel to implement
the Configurator according to the schema. The main purpose of scaffolding is to map
dynamic instances to the static instances. There are three associations presentation-
target_type added to the metamodel to identify an element type being defined by
GraphDiagram, Element or Compartment. In Fig. 6, an extended Tool Definition
Metamodel fragment is presented.

GraphDiagram | graphDiagram 0..1 |GraphDiagramType
caption:String * graphDiagram Type |id:String
bkgC olorinteger |presentation 0.1 | caption String
* target twpe
1 f
Element presentation 0.1 ElemTipe
location:String * target_type |id:String
shyle:String element 0.1 | caption:String
* elemType | ---
* *
Companment | presentation 0.1 Compa riType
input:String * target twpe | id:String
style:String com partment 0.1 | caption String
* comparlype |-

Fig. 6. An extended Tool Definition Metamodel

A. Sprogis. The Configurator in DSL Tool Building 181

4.1 Implementing the Configurator

According to the TDA platform, static and dynamic instances are stored for each
DSL tool. As far as the Configurator is implemented as a DSL tool, there are static
instances defining the Configurator and those are presented in this sub-section.

The Configurator’s DSL consists of two diagram types. One type of diagrams
defines prototypes for diagram seeds, and lines illustrating dependencies between them.
The second type of diagrams defines element prototypes. The first type of diagram is
named Specification Diagram with three types of elements possible — Seeds, Lines and
Specializations. Seed is an element which defines seed prototype; Line is an element
which defines dependency prototype, and Specialization is a line used to indicate that a
sub-element inherits incoming and outgoing lines and constraints from a super-element.
Tool Definition Metamodel instances presented in Fig. 7 specify element types for Seeds,
Lines, and Specializations. There are additional instances specifying context menus and
corresponding palette buttons.

:PopUpDiagram

:GraphDiagramType
id = "Project Diagram™
:GraphDiagram Style
caption ="Specification Diagram™

[:PopUpElement | P
caption = "Add PopUp”™ caption = "Add Toolbar”
procedure_name = "add_popUp~ procedure_name = "add_toolbar®

:GraphDiagramType
id ="Specification Diagram™
:PaletieEdge
caption ="Line™ |
nr=2 + ‘;pamguode caption = "Specialization”|
caption ="Seed” nr=3
nr=1 ‘
:EdgeType
:EdgeT r id ="specialization™
id="line" Kl il procCreateElementDomain = “create_subtype™
openPropertiesOnCreate = true =T procDeleteElementDomain = “delete_subtype™
P p - - - openPropertiesOnElemeniCreate = true procioveLine = "move_subtype”
procL2ClickEvent = "line_properties procProperties = "box_properties” S
procProperties = "line_properties” .

procL2ClickEvent = "navigate™
procCreateElementDomain = “create_diagramType”
procDeleteElement = "delete_specification_diagram_element’

procCreateElementDomain = "add_type”
procDeleteElementDomain = "delete_type"

stan source end P—
_;Edqﬁstyle :Hode Style :PopUpDiagram
id ="line” id="seed”
- :ComparfType :PopUpDiagram
PoplipDiagram - e :PopUpElement
- ‘ ‘ caption = "Delete”
r :PopU pElement :PopUpElement procedure_name = "delete”
w% o caplion = Delete” caption="Open~
e T AL Lt procedure_name = "delete” | | procedure_name = “open_target_diagram

‘| target L
caption —';(;BI:;?:-'“E"‘ = caption = "Properties”
G LIS - ‘GraphDiagramType procedure_name ="box_properties”
procedure_name = "line_properties id="diagramTypeDiagram™ | | |

Fig. 7. The specification diagram defined in the Too! Definition Metamodel

The second diagram type defines element prototypes. There are six different element
types available — Box, Line, FreeBox, FreeLine, Port and Specialization. Box and Line
elements allow defining prototypes for boxes and lines; FreeBox allows defining boxes
always remaining in background; FreeLine allows defining lines having no start and
no end elements; Port allows defining small boxes which are always attached to some
Box; Specialization is used for the same purpose as in Specification Diagram. In Fig. 8,
a definition of prototype diagram and its elements with relevant context menus in the
Tool Definition Metamodel is presented. Line and Specialization elements are allowed to
connect all the elements except Specialization. For example, Box and Box elements are

182 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

allowed being connected by Line or Specialization element, but Box and Specialization
elements are not allowed being connected by either Line or Specialization. Thus, all
the possible pairs must be present in the metamodel to indicate which elements may
be connected and which may not. there is a special NodeType instance with id value
“superType” added as a super-type for all the elements, except Specialization, and two
Pair instances, which connect “superType” instance and Specialization’s type instance,
“superType” instance and Line’s type instance. Introduction of “superType” is needed
to save the effort of making all the necessary pairs because the incoming and outgoing
lines are inherited from the super-type.

g - ____GraphDiagmmStle
__:PopUpDiagmm caption = diagramTypeDiagram-
eType -

J :GraphDiagramType &
id ="diagramTypeDiagram™

:PopUpE lement
caption ="Add PopUp™
procedure_name = "add_popUp™

:PopUpElement :P_alelteLine _
capfion ="Add Toolbar caption ="Specialization
pracedure_name = "add_toolbar” nr=6
id="ling" ‘PaletisE dge]
openPropertiesOnCreate = frue caption ="Line" = :_EdgeType
procL2ClickEvent = "elem_properties” nr=2 id ="Specialization . .
procProperties = “elem_properties™ procCi Domain = "create_sublype’

pracDeleteElementDomain = “delete_subtype”

pracCreateElementDomain = "add_type”™ NodeType prachoveline = "move_subtype”

procDeleteElementDomain = "delete_type”™ id="box"
subType :ComparfType | | openPropertiesOr reate =true ‘

id="Mame" | |procProperties = "elem_properiies™ ‘Edgestle
procL2ClickEvent = "elem_| - T="Specialzation|
:PopUpDiagram ‘ procC Domain = "add_type”

procDeleleElement = "delete_type”

:PopUpDiagram

:Pair

subType
:PopUpElement
CompariSiyle caption = Delete”
d="N e
¥ B 3 lame” HNodeStle procedure_name = "delete’
id="box" E
B Popllleagmm :PopUpElement
caption J‘;“;gu:rs:s""lem PouUuDIagmm ‘ caption = "Properties™
. 3 procedure_name = "elem_properties”

procedure_name = "properiies’

PopU pElement
caption ="Copy”
procedure_name = "copy”

PortType __ :PopUpElement | e
caption = "Delete”

procedure_name = "delefe”

:Popll pEIement
caption = Delete”
procedure_name = "delete”

id="port’
openPropertiesOnElementCreate = true
procProperties = "elem_properties™

:PopUpDiagram _ |,

procl2ClickEvent = "elem_praperties” [:PopUpElement | :NodeType -

procCreateElementDomain = "add_type™ caption ="Properiies™ id="freeBox™ :PopUpElement
procDeleteElement = “delete_type™ procedure_name ="elem_properties” | | open reate=true | |caption=Delete

= procProperties = "glem_| g™ _name ="delete”
- ‘Node St procL2ClickEvent = "elem_properties”
subType S guer procCreateElementDomain = "add_type™ =
AT caption = Fort | |1 TREBONY | eteElement = "delete_type PopUptlement
1 supertType nr=3 [= el Caplion = Properties”
__:NodeType oy J . procedure_name = "elem_properies”
end|id="superType” subType
— superType
st LOMPAMIYDe | [paletieF rooBox PopUpElement
— el | | Tk 1d="Name" | | ption = Treepor | |caplion="Copr"
superType id="port" | |caption = Pmperlls:s B nr=4 procedure_name = "copy”
E——— . procedure_name = "elem_properties’
uperlipe = “EdgeType PaletieF reeLine |
ena :Compartsile[“7T/P® |id="freeLine" Caption = FreeLine"
:PopUpElement id="Name" openPropertiesOnElementCreate =true [(nr=5
caption = Delete” procProperties = "elem_properties™
procL2ClickEvent = "elem_properties”

procedure_name = "delefe’ “PopUpDiagram

procCreateElementDomain = "add_type”
procDele = "delete_type”

:PopUpElement
caption = "Copy”
procedure_name = "copy”

id="freeLine™

Fig. 8. Prototype diagram’s definition in the Tool Definition Metamodel

4.2 The Configurator in Use

In Fig. 7 and 8, the Tool Definition Metamodel instances defining the Configurator
are presented. If the tool is specified by static instances, the Universal Interpreter creates
and processes dynamic instances. To illustrate how static instances are used in tool
building, a simplified Flowchart editor is built consisting of the following symbols —
Start, End, Action, Branching, Simple Flow and Branching Flow. In addition, Action
symbol has a property Expression; Branching symbol has a property Condition and
Branching Flow has a property Choice.

A. Sprogis. The Configurator in DSL Tool Building 183

A new diagram type is defined in Specification Diagram by creating a new seed. A
new Node instance is created and linked to GraphDiagram, NodeType and NodeStyle
instances by the Universal Interpreter. The result is presented in Fig. 9.

:GraphDiagramType __-GraphDiagram __
id="DiagramTypeDiagram” caption = "Flowchart”
‘NodeType :Node
id="box" ECE N .

M The same style
id ="box are coded in

different formats

Fig. 9. Node instance created by the Universal Interpreter

When the Universal Interpreter's work is done, a specific Extension Point
transformation from attribute procCreateDomain is called to create corresponding
static instances for Flowchart editor and dynamic instances for the Configurator. It is
achieved in two steps. In the first step, a new GraphDiagram instance is created for
Flowchart element prototype definition. In the second step, new NodeType, NodeStyle,
GraphDiagramType and GraphDiagramStyle instances are created. NodeType instance
defines a seed type in Project Diagram, NodeStyle instance defines a seed style.
GraphDiagramType instance defines a diagram type, which corresponds to Flowchart
diagram, and GraphDiagramStyle instance defines its style. Node and NodeType,
GraphDiagram and GraphDiagramType instances are linked by presentation-target
type to indicate which diagram type is defined; Node and GraphDiagram instances are
linked by source-target to connect seed prototype and diagram, in which prototypes
are defined. However, there is a necessity for additional instances of type Palette and
PaletteNode to create a palette and a palette button in Project Diagram.

When a seed element is created, a property to store diagram’s hame must be added.
This is achieved by adding Compartment, CompartStyle, CompartType to store and
represent the end user values, but PropertyDiagram and PropertyRow instances are
added to enter the value from dialog window. In Fig. 11, the instance diagram defining
Flowchart seed is presented.

i P LG [-Paletie
— T - =| |id ="Project Diagram™ 1= ——
caption ="Specification Diagram’ | ’ﬁ caption = "Flowchart™

:Node

o =
id = "Specification Diagram™

presentation
I

- :ProperyDiagram
target_type NodeT) .

ype
source id="Flowchart_|source
:NodeStyle

:Node Style id = "Flowchart’ :PropertyRow
id="seed” Compartment | oo iovion ‘ComparfType rowType =“InputRow”
input = "Flowchart™ target_type id="Name”
_Comparisijle _
:GraphDiagramType target] SiName
id="diagramTypeDiagram”

:GraphDiagram presentation ,ﬂj

caption = "Flowchart target_type ‘ﬁmplll)iagmm'[ype
1

source |1d="seed”

id = "Flowchart’

:GraphDiagram Style
id = "Flowchart”

Fig. 10. Instance diagram after creating Flowchart’s seed element

184

COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

When a Flowchart’s seed element is defined, element prototypes must be defined.
Element prototypes of Box type are added in the same way as seed prototype; therefore,
only line definition is explained in more detail. Assuming that Start and Action elements
are defined in the same manner as Seed, Simple Flow prototype is added in two steps. In
the first step, Edge instance is created that links two Node instances which represent Start
and Action. In the second step, Flowchart’s editor static instances EdgeType, EdgeStyle,
Pair and PaletteLine are created. EdgeType and Pair instances define a Simple Flow
element, which allows to connect Start and Action elements; EdgeStyle defines Simple
Flow’s style and PaletteLine defines a palette button to create Simple Flow element. In
Fig. 11, the instance diagram defining Flow is presented.

:GraphDiagramType

id ="DiagramTypeDiagram™

presentation

:PaleteLine
caption ="Flow™

:Edge Style

id ="Simple Flow™

:Pair
isReverse =false

Fig. 11. Flow’s definition

:N
J target_type |id = "Action”

pRCDekieEkRment = TefEul_dekte_skement|
&l

end

d ="Simplefows"
openPopertiesOnCRate = e

HNow
a="End"

pmcPrpemis ="skm_poperties”
pmci2ClkkEvent ="z lém_pmparties”
B ‘HetauR_deise_slement’

P Pak
CIaphliE gEmType| —
TrapiDagamste 1 ="Raw e | PanBNE
H="rowear [:a > =pmn ==t
1 r=1
No®T)pe
T W ="SmpErawi”
pe pe
Hos Stis DDcPpeRiEs ="slem_poperks” pRCPmpeties ="el2m_poperks"
d=ser —|pmel2CikkEvent ~"elem_pmperies” pROL2CIkEvent ="eim _pmperties”
pocDekkElRment - Hetul dele_ poeDekieElement = Hetul_deles_ ___Eageste
M e W ="Shpe oW T
mumpiicRy =1 =
e start
& — | Pake b No®
i [] ot G pion - Branching”
Now S W ="Branang end =G
W ="Brncning’ penFop
[pmcFopeties ="sem_poperes”
pmcL2 “glem_pmperies” = 5
bmcDskteEkment = HefuR delte_ckement’ u» Ei pie P 2] =
o ; o || Eomeste |
|ed | prcPrpeties —"sem_prpeies” | |5 Smperow
[etan EREE ERIL
pmpertes”
DRmCDeRERMENt = TREUR_
ToET delete_ekmenr’
ot WA .
J=ET pe = PakNo®
pocPmpeies ="slm_popertiss” = et |
e = F=SEETT nr-2
= = openPopenksOnCRaE = e TRk
pEcPropefies ="slem_popeies” Edgestls -"_..How.‘
F=n [end |stEn LSB" T pRELEClikEvent ="2lem_poperies” W ="Smperowi" mﬂ"g
Tom =] ‘HefuR_dele_element
P L R - = 5
opsnFmpeMsOnCRate - tue —
pRcPopefies ="elem_poperies” E '
PRCLECIIGREVent ="eiem_poperies
____ EogeTye

id="SmpleRow3"
openPopertiesCnCralke = e
pocPrpefies ="slem_poperiks”

| Edgestis |
i = SmpEAINT

poCLICHkEvent ="2lem_poperies
pocDeleleElement - HetuR delte_slkement’

__ Edgeshle
W ="SMpRFOWE

Fawblios
Gapion—End”
nr=5

=]

W = EEncngrow

PR el
prRcDekieElment= e

openPopemesCNCRale = e
pocPrpeties ="slem_pmperiies”
_prpertes’

R delte_element’

| _Edgesyls
i@ =" cningrow”

Fig. 12. The Tool Definition Metamodel instances

A. Sprogis. The Configurator in DSL Tool Building 185

The entire Tool Definition Metamodel instance of the Flowchart editor presented in
Fig. 12 can be obtained using the method described above.

4.3 Defining Flowchart Editor Using the Configurator

After discussing the Configurator’s implementation and the way it creates the
instances of the Tool Definition Metamodel above, we shall demonstrate the use of
the Configurator from the tool builder’s point of view by implementing the Flowchart
editor.

&, TDA Framework - &
Project Window Help
B
Il [
Create Project 7
Tool [UniversalT ool E]
| Project name IFIuwchaf"
Workspace [EATDAVT deFramewerkPracts MI

Fig. 13. A new tool definition window

When a new DSL tool is defined, a window to specify project details (Project—=>New
project) is opened. It is presented in Fig. 13. A tool builder has to select value
UniversalTool in the field Tool. Then he has to specify the name of the new tool in the
field Project name and the project location in the field Workspace. When DSL developer
presses OK button, Project diagram is opened. In general, Project diagram contains all
the available diagram type seeds (elements that allow making diagrams), but that is not
the case in the Configurator. When using the Configurator, Project diagram contains no
diagram type at all, because the Configurator will define it later. New diagram types are
defined in Specification diagram. Tool builder can navigate to Specification diagram
by right-clicking and choosing Specification diagram from the context menu. A sample
project diagram and the context menu are presented in Fig. 14.

t TDA Framework

=

_Project Diagram Commands Window Help
|o =« @|a

=

§ Project Diagram Flowchart]

‘ Specification Diagram i

Fig. 14. A sample project diagram

186 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

In Specification diagram, new diagram types are defined using Seed element. A
Flowchart diagram Seed has to be created by pressing Seed button in the palette. When
Flowchart diagram type is defined, a Flowchart diagram is opened by double-clicking
on the diagram Seed. In Fig. 15, Flowchart diagram Seed and diagram for element
definitions is presented.

b oA et g oo mmn
Project Diagram Commands Window Help
[sma|lo=esslo ——r— &||wn]
J Specification Diagram @ J Flowchart ===

= @

vim | B

s1HE | ®

Fig. 15. Creating Flowchart Seed

When Flowchart definition diagram is opened, Flowchart elements can be defined
by creating their prototypes. For instance, Action is defined by choosing Box button in
the palette. A Box dialog window is displayed afterwards and tool builder is prompted
to enter element values. In the field Name a value “Action” has to be entered which
automatically renames a palette element name in the field Palette Element Name. In the
field Palette Element Nr, a number for palette element in the palette has to be entered
and in this case, the number is “2”. In the field, Icon Path an icon’s name for a palette
element has to be specified. Context menu elements for Action have to be defined as well.
Those are specified in the table PopUpDiagram and in this case, context menu items
are default with corresponding default transformations added from the transformation
library — Delete, Cut, Copy and Properties. It is possible to specify navigation target
diagram in the field Navigate To Diagram by double-clicking on the element. If
nothing is specified, no navigation is possible. However, in this particular case, a value
“Flowchart” is specified meaning that double-clicking navigates the end user to one of
the Flowchart diagrams. In Fig. 16, a window to enter Action values is presented.

When all the element values are entered, element properties have to be specified.
It is done by pressing the button AddChild. In Fig. 17, a property dialog window is
presented. Property value has to be entered in the field Name, and in this particular case,
the value is “Expression”. The visual control used to enter the property value has to be
specified in the field Row Type, and in this case, the value is “InputRow”, meaning the
control to enter property values is a textbox.

When all the values are entered, element style has to be specified by pressing the
button Style. In Fig. 18, the dialog window to enter element style is presented. In this
dialog window, a tool builder has to specify values as box type, which may take one of
the following values — rectangle, ellipse, round rectangle, etc; a default size, a colour, a
border’s colour, a border’s width and some other visual features.

A. Sprogis. The Configurator in DSL Tool Building

187

TDA Framewark - [FIchhart]

) Project Diagram Commands Window Help

[aag]c~esrsle——s]

[& Box Properties = | Bl
@ T ———

b ‘Action BoxPropettes | Transformations | Exres |

] Name [action

= Open Prapetties On Elemert Create [¥

— Is Container Mandatory [~

=5 Muttiplicity I

Navigate To Diagram

Palette Hlement Name Immn

Paltte lemert Nr [2

AddChid DeleteChid

Icon Path
| L 4
Poplp
ftemName | TransformationMName | Nr | AddPop UpElement |
Delete | delete | 1 | DeletePopUpElement
Cut |eut 2
: Copy | copy | 3

e

Fig. 16. Definition of an Action element

s TDA Framework - [FIDw'Chart]_

& Project Diagram Commands Window Help

[EEL i)

[; =)
i - Action CompartmentPropetties |T|ansformauons| Bdras |
5 i.. Expression
= Name: IExpression
i Row Type [loputFow =
g Teb | ~|
Start Value I

Adomment Prefix |

Adomment Suffic I

Concat Style

Is Essential ™

AddChild DeleteChild

Fig. 17. Definition of the property “Expression”

188 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

Box Style O i | -
Shape | Compartment Style |
Swrbal shape lzan Default sizer
= Selact Remove
s L1fohaces) width: [0
i
Border width: |1_ | T & Maximized on front Height |45_
Bordder dash lengihe [0 4| | T Muitple " Maximized on backaround

Bolderhleaklength:lﬂ «|»| T Noborder O lconized Placement
- I Nobackgaund Qe 2
o backgroun

Color Backar. o o

Cancel |

Fig. 18. A style definition window for Box prototype

In Fig. 19, the dialog window to enter properties style values is presented. The tool
builder has to specify property values like text alignment, adjustment, font style, etc in
this window.

- S—
Box Style R ﬁ =
Shape Compartment Style |
Compartment Name |VisibIEiAdiustment |Text aIiglIAdomment Fant |P|cture|F'|clure|F‘|cl ath\racllo(
Expression Yes | |left | Arial 9 ‘Select ‘ | |

Cancel |

Fig. 19. A style definition window for properties

This is how concepts of Box type are defined in the Configurator. Other Flowchart
concepts of Box type like Start, End and Branching symbols are defined using similar
approach. In Fig. 20, all Flowchart prototypes of Box type are presented.

A. Sprogis. The Configurator in DSL Tool Building 189

* TDA Framework - [FIuwChart]_

“ Eruj_ect__ Diagram Cumman@s
[ama||s =« » @

Fig. 20. Box prototypes for the Flowchart editor

The next step is to define prototypes of Line type. They are Simple Flow and
Branching Flow. In the context of this example, the assumption is made that a Simple
Flow is an element which may join Start and Action, Start and Branching, Action and
Action, Action and Branching, Action and End symbols, whereas Branching Flow may
join only Branching and Action symbols.

When a Line prototype for a Simple Flow is defined, all the mentioned cases have to
be considered. One Line can join only two elements and wherefore there is a necessity
for many new prototypes to consider all the Simple Flow cases. However, the tool user
does not have to know all the technical constraints; therefore, an illusion must be created
that there is only one Simple Flow element in the diagram. This is achieved by having
a common palette button for all the different prototypes in diagram’s palette and all
the prototypes are made equal by their style and behaviour. In Fig. 21, an example
is demonstrated of how prototype is defined for one of Simple Flow elements. The
definition of elements with a Line type is very similar to the Box type definition; hence,
in the field Palette Element Name a drop down menu is used to offer all the palette
button names. If the name entered matches any item from the drop down menu, a new
palette button is not created and prototype being defined is linked to an existing palette
button. Otherwise, a new palette button is created. In the Flowchart case, all the Simple
Flow prototypes are linked to the palette button Flow.

190

COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

* TDA Framework - [FlowChart]

..' Project Diagram Commands Window Help

|[ama|o=ecs®le —tI— @

.’ Line Properties
a

- Simple Flow

(i EE| 9

EdgeFroperties ITransfanﬂatloﬂsl Edras |

Open Properties On Blement Create [

Hame IS\mpIe Flow

Is Simetric [~
Is Reverse > [
Is Reverse < [
Multiplicity I

Start Multiplicity Constrairt I

End Multiplicity Constrairt I

Palette Hlement Name IFIOW

Palette Element Nr I3

lcon Path
—

PopUp

temMName: | TransformationName | M-

| AddPopUpBemert

Delete

| delete 1

DeletePoplipElement

AddChild DeleteChild

FPmperﬁes | -2

Fig. 21. Definition of a Simple Flow element

Branching Flow is defined almost in the same way as Simple Flow, except
Branching Flow has a property Choice to enter values like — Yes, No, True, False, etc.
In addition, Branching Flow is linked to the palette button Flow. Thus, all the Lines
are created by only one palette button Flow and the decision which Line to choose in
particular situation is made by the Universal Interpreter. In Fig. 22, a final definition of

a Flowchart editor is presented.

* TDA Framework

Project Diagram Commands Window Help

sag|lcoes®leo —F— o]

j‘ .S.pec';i;l.:aﬁon Di-a=gram ' [SEEE]

| &

= -

iime 8

| »

m

Fig. 22. Definition of a Flowchart editor

A. Sprogis. The Configurator in DSL Tool Building 191

Yet, in Fig. 23, a working Flowchart editor is presented.

* TDA Framework
Project Diagram Commands Window Help

[amg|-ccssle —F— 8|
& Project Diagram Flowchart === ‘I‘;’uﬁﬂ’"&haﬁ.ﬁﬁmple
| [N | 3 i
04 o i
-
—
L 4
®

m

Fig. 23. A Flowchart editor in use

Conclusion and the Future Work

Currently the Configurator has enough functionality to implement many different
DSL tools. For example, as far as the Configurator is a DSL tool, it is powerful enough
to implement even such a complex tool as the Configurator itself. Real business tools
are also implemented for Investment and Development Agency of Latvia and the State
Social Insurance Agency. Although these tools where successfully implemented, several
problems require further research — there is no multi-user mode to support multiple
DSL tool developers, the graphical language is insufficiently self-descriptive and user-
friendly, and incorporation of other software like MS Word, Database editors, etc in
implemented tools is not completely satisfactory.

References

1. UML vs. Domain-Specific Languages. Available: http://www.methodsandtools.com/archive/archive.
php?id=71.

2. Domain-Specific Language. Available: http://www.program-transformation.org/Transform/
DomainSpecificLanguages.

3. MetaEdit+ Workbench User’s Guide, Version 4.5. Available: http://www.metacase.com/support/45/
manuals/mwb/Mw.html.

4. S. Kelly, J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley, 2008,
p. 448.

5. Domain-Specific Modeling with MetaEdit+. Available: http://www.metacase.com/.

6. Graphical Modeling Framework (GMF, Eclipse Modeling subproject). Available: http://www.eclipse.org/
gmf/.

192 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

7.

8.

9.

10.

11

12.

S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific Development with Visual Studio DSL Tools.
Addison-Wesley, 2007.

OMG modeling specification, UML 2.0 Superstructure and Infrastracture. Available: http://www.omg.
org/docs/formal/07-02-05.pdf.

Meta-Object Facility (MOF). Available: http://www.omg.org/mof/.

J. Barzdips, E. Rencis, S. Kozloviés. The Transformation-Driven Architecture. The 8th OOPSLA
Workshop on Domain-Specific Modeling, October 19-20, 2008, Nashville, TN.

J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis, A. Zarins. AGraph Diagram Engine for the Transformation-
Driven Architecture. Proc. of the Workshop on Model-Driven Development of Advanced User Interfaces
2009. Florida, USA: IUI, 2009.

J. Barzding, A. Zaring, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins, A. Sprogis. GrTP:
Transformation-Based Graphical Tool Building Platform. The 10th International Conference on Model-
Driven Engineering Languages and Systems, Models 2007, September 30—October 5, 2007, Nashville,
TN.

