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In this paper, an MDE-based approach to tool building is described. It is based on a core tool 
definition metamodel and an interpreter of this metamodel. Besides, an extension of the core 
metamodel is proposed, allowing for tool-specific model transformations to enrich the behavior 
of the universal interpreter. As a result, a novel wide-profile tool building platform is obtained. 
The visualization component of the platform is based on an original high-performance graphical 
diagram presentation engine which embodies advanced graph drawing algorithms.
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1	 Introduction
In this paper, we present an MDE-based interpretive approach to domain-specific 

tool (DST) building on the basis of a simple yet flexible and powerful tool definition 
metamodel (TDMM) that fully specifies a DST as its instance, and the interpreting 
engine of this metamodel. 

The idea of providing explicit metamodeling foundations for the meta-tools 
themselves has not been central to many powerful developments in DST building area, 
including MetaEdit+ [1, 2], Pounamu/Marama [3, 4], ViatraDSM [5], Tiger [6], and 
METAclipse [7]. These tool-building frameworks generally offer some configuration 
facilities that allow us to define a DST in a user-friendly way (for instance, Pounamu 
[3] offers a shape designer, metamodel designer, event handler designer and view 
designer, MetaEdit+ [1] offers Object, Relationship, Role, Port, Graph and Property 
tools). The result of the configuration process, however, is typically stored in some 
format that is not revealed to the tool user and that is later compiled or interpreted to 
obtain a DST.

Our approach advocates opening the tool runtime structures to the end user in the 
form of a simple metamodel that specifies the DST as its instance. The organization 
of the DST definition and runtime structures in the form of a simple metamodel, in 
addition to its theoretical appeal (applying MDE principles to meta-tools supporting 
MDE-based development themselves), allows for possibilities of basic tool behavior 
extension by (high-level) model transformations that we ascribe to certain well-defined 
extension points in the tool definition metamodel and that are handled by the tool 
metamodel interpreting engine. These transformations can be used for, e.g., domain 
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model synchronization, constraints, dynamic content in the tool, advanced presentation 
behavior, as well as integration with other data engines. 

Some further benefits of the metamodel-based tool data structure include model 
migration possibilities among tool and meta-tool versions just by model transformations, 
as well as easy external access to model repository.

The idea of DST definition by a metamodel is already successfully implemented, 
for instance, in the Eclipse GMF framework (GMF) [8] (Microsoft DSL Tools (DSLT) 
[9] also follow a related approach). In GMF, a tool definition consists of instances that 
correspond to domain, graphical definition, tooling and mapping metamodels, and the 
tool itself is obtained by compiling these instances into a Java code. The main difference 
of our approach from that of GMF or DSLT is that we aim for greater flexibility of MDE-
level constructs in tool definition by following the tool model interpretation approach 
(instead of compilation into JAVA or C#). On the basis of this approach, we are able 
to offer the possibility to extend tool behavior by means of model transformations that 
can be attached to certain well-defined points in the tool definition metamodel. In GMF 
or DSLT, the tool behavior extension is possible by adding code to the JAVA or C# 
classes generated for the tool by the framework. This task may be feasible; however, 
it requires rather profound expertise in the internal program-level structure of classes 
and methods generated by the corresponding framework. Our approach provides an 
alternative to GMF and DSLT by allowing us to create the extensions in model-level 
rather than program-level terms.

We structure the presentation of the TDMM into core and extended versions, where 
the core metamodel allows for basic tool behavior description and the extended TDMM 
allows for model transformation incorporation. In Core TDMM, we focus on tools 
defined directly in terms of their graphical presentation (there are applications where 
this is sufficient). The handling of domain model, if that were necessary, is delegated 
to model transformations (allowed by the extended TDMM) that can perform the task 
(see, e.g., [7] for comparison of static mapping and model transformation approaches 
in modeling tools).

The TDMM is defined to contain both the tool definition and tool runtime instances 
at the same metamodeling abstraction level. This is achieved using a structure that 
resembles an adaptive object-model [10] element type pattern. A theoretical note: 
this design allows for easy implementation of dynamic tool model reconfiguration in 
parallel with particular model creation by the tool, as advocated, for instance, in [3] (in 
practice the modeling power of the platform is restricted in its “end-user” versions and 
user model migration between tool versions (as well as between platform versions) is 
achieved by model transformations).

The TDMM is also defined as an extension of a more general graph diagramming 
metamodel (GDMM) [11], and its implementation is provided by universal (platform-
level) model transformations associated with the events (instances of Event class) 
defined in GDMM that interpret the specific TDMM instance. To make our presentation 
complete, we also review GDMM in this paper. An earlier authors’ work with much 
more limited tool definition possibilities and without separating GDMM from the tool 
definition metamodel has been reported in [12].

The rest of this paper is organized as follows. Section 2 describes the graph 
diagramming metamodel and engine (GDE), explaining what is used as the basis for 
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the tool-building platform. The communication mechanism between the graph diagram 
presentation engine and the “business logic engine” that is behind any specific graph 
diagramming tool and is typically implemented by model transformations (on the basis 
of GDMM) is also outlined here.

Section 3 presents the core tool definition metamodel, including its full abstract 
syntax and explanation of its semantics. This metamodel is general enough to allow for 
a definition of a broad class of DST, including the EMOF [13] class diagram and UML 
2.0 activity diagram editors; yet it is simple enough for its abstract syntax, together with 
the relevant parts of GDMM, to be presented on a single page. We also outline principles 
of implementing the core tool building platform on the basis of GDE.

In Section 4, we extend the core tool definition metamodel to allow for MDE-based 
extension mechanism to the platform. It is a widely accepted fact that extensions are 
among the most complicated problems every meta-tool faces. The extension mechanism 
we propose is not hidden in the depths of implementation; instead, it is elevated to the 
level of the metamodel. The core tool definition metamodel together with extensions is 
sufficient to build efficiently, e.g., a full UML 2.0 class diagram editor with full support 
of attributes, stereotypes and tagged values, as well as other DST editors of comparable 
complexity. The high-level extensibility mechanism based on model transformations 
allows us to achieve such tool features that are beyond the scope of usual DSTs.

2	 The Graph Diagramming Metamodel and Engine
The tool definition metamodel together with its interpreter – the tool building 

platform – are based on basic presentation services whose interface is described by 
metamodels. One of the most important such services is that of graph diagramming. It 
is defined by means of a graph diagramming metamodel (GDMM) and implemented 
by a graph diagramming engine (GDE). Another service for which we also have a 
metamodel and a corresponding engine is that of property editors. The property editor 
metamodel and engine are used in our implementation of the tool building platform; 
however, they are not of primary importance in explaining its semantics. Therefore, they 
are not considered in detail here.

The aim of GDMM is to describe the graph diagramming functionality that can be 
offered by GDE and that is common to a wide range of graphical diagramming tasks that 
may go beyond any particular DST, or even the task of DST building in general. Since 
providing appropriate abstractions in GDMM can considerably ease the tool definition 
process on the basis of GDE, the emphasis in the design of GDMM has been on properly 
separating our concerns into “purely graphical” tasks that are to be handled by the GDE 
itself, and tasks involving “logic” of the tools using GDE. 

GDMM (Fig. 1) is built around the classes for visual elements of the presentation, 
namely GraphDiagram, Element, Box, Line, and Port together with Compartment 
corresponding to text fields placed in boxes and attached to lines and ports (note that 
the start and end of lines can be attached to any elements, not just boxes). Instances 
of these classes are diagrams and elements created by the user. Every element, 
compartment and graph diagram has its style (see classes ElemStyle, CompartStyle and 
GraphDiagramStyle). The metamodel allows for every element to specify its default 
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style and local style (the diagramming engine uses the local style if it is defined; 
otherwise the default style is used). The Collection class contains a single item that 
is linked to currently active (selected) elements in the diagram. The seed/child link 
between Element and GraphDiagram permits specifying an element to be a seed for a 
diagram (typically, not the diagram the element is in), thus providing means for building 
diagram hierarchies.

Besides the classes of visual elements, GDMM also contains classes describing 
the tool’s environment (Palette, Toolbar and Keyboard classes with corresponding 
elements). Instances of these classes are typically created at the tool creation time and 

Fig. 1. The graph diagramming metamodel
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do not change during the work with a tool. A context menu (ContextMenu class) can also 
be specified to be opened in response to the tool’s request.

There is an Event class in GDMM whose singleton subclasses correspond to the 
actions the user may perform on a particular diagram (the event classes are represented 
as rounded rectangles), and that are understood by GDE. Upon observing a current 
event, GDE invokes the event’s eventAction transformation responsible for particular 
tool’s “business logic” in response to this event. The Command class describes the 
requests (commands) that the tool transformations can issue for GDE. There may be 
several commands issued by a single tool transformation. Command classes are denoted 
as ellipses in Fig. 1.

For instance, the creation of a new box in a graph diagram starts by the user clicking 
the tool-triggering GDE to set CurrentEventPointer to the only instance of NewBoxEvent 
(the parent link from the event is set if the new box is to be created inside another box). 
The event’s transformation then may, for instance, create a new element of the Box 
class (or it may do some extra/other action depending on the tool’s specific logic). Then 
it creates an instance of UpdateDgrCmd and transfers the control back to GDE that 
processes the command by updating the diagram so that the newly-created box becomes 
visible.

The semantics of some further Command subclasses is explained as follows. 
The ActiveDgrCmd sets the editor’s focus on the particular diagram, RefreshCmd 
refreshes the specified elements in the diagram, PasteCmd computes coordinates of 
elements pasted into the diagram model, RefreshConfigCmd rebuilds toolbars and 
palettes, ActivateContextMenuCmd opens a context menu (depending on the collection 
of elements pointed to by the Collection element), StyleDialogCmd opens the style 
dialogue of elements, ExecTransfCmd is used for calling back transformations. The 
other commands and events should be mostly self-explanatory.

Although most of user activities in a tool trigger setting of the current event and 
invoke some transformation, there are actions that are performed solely by GDE (e.g., 
undo/redo, zoom, export to HTML, print diagrams, etc). The toolbar items responsible 
for these actions do not have associated ToolSelectEvents to be triggered when the 
user selects the toolbar item. The context menu item that is handled directly by GDE 
is “Symbol Style”. GDE is also responsible for handling element coordinates (the 
coordinates can be abstracted away while writing tool defining transformations).

The implementation of GDE has been a considerable programming task of several 
person years. The relatively simple diagram structure has allowed us to implement 
advanced graph drawing capabilities [14, 15] in GDE, which support diagram initial 
layout application as well as serve the interactive diagram editing process. The definition 
of GDE interface in the form of GDMM allows for reuse of its graph diagramming 
capabilities in various MDE-related tasks, among them, meta-tool creation. The 
architecture of GDE is described in more detail in [11, 16].

3	 The Tool Definition Metamodel: the Core
In this section, we describe the syntax and semantics of the core tool definition 

metamodel (Core TDMM) that can have (simple) modeling tools as its instances. The 
aim of Core TDMM is to provide basic means for DST definition on the level of graphical 
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presentation. There is a wide range of applications where the graphical presentation 
view on the modeled system is sufficient since this is the view of the system directly 
perceived by the user. The other views on the system if necessary can be obtained by 
model transformations that work either offline, performing export and import tasks, or 
synchronously, using tool behavior extension points, as described in Section 4.

Core TDMM (Fig. 2) is built around the concepts of GraphDiagramType, 
ElementType and CompartmentType, providing type (or pattern) information for graph 
diagrams, elements and compartments that are specified in the graph diagramming 
metamodel (GDMM) and that may appear in the particular tool’s visual editor. Therefore, 
Core TDMM is described as an extension of GDMM. Fig. 2 describes the classes of Core 
TDMM as well as a selection of relevant classes of GDMM (in two grey rectangles). 

The containment hierarchy Tool  GraphDiagramType  ElementType  
CompartmentType (via base link) forms the backbone of TDMM. Every tool can serve 
several graph diagram types (one of these being the first diagram type in the tool). Every 
graph diagram type contains several element types (instances of ElementType), each of 
them being either a box type (e.g., an Action in the activity diagram), a line type (e.g., 
a Flow), or a port type (e.g., a Pin). Every element type has an ordered collection of 
CompartmentType instances attached via its base link. These instances form the list of 
types of compartments of the diagram elements of the particular element type. 

We notice the resemblance of relations between graph diagram and graph diagram 
type, element and element type, and compartment and compartment type to adaptive 
object model [10] patterns. 

The element type specification (ElementType class and its subclasses) allows to 
describe inclusion possibility between boxes of different types (partType/containerType 
relation), attachments of ports to boxes, the box type multiplicity constraints (e.g. 0..1 
boxes of certain type in a diagram), as well as line type connectivity rules (the element 
type pairs for which connection by a line of a certain type is possible are specified by 
LineSubtype class instances).

The CompartmentType class is divided into subclasses according to the multiplicity 
of the type’s compartments in the elements as well as the possibilities to work with them 
in the property editor. Table 1 summarizes these subclasses. 

Table 1 

Compartment type subclasses

FieldType Single input field.
MultiLine 
FieldType

Multi-line input field, with each line corresponding to a compartment. The 
empty field corresponds to no compartments of this type in the element.

LabelType Non-editable label. Used, for instance, in the property editor to show 
element names.

CheckBox 
Type

Check box. The attribute displayValue defines the value shown in the 
diagram when the user has selected the corresponding value. For instance, 
in a class diagram, when an attribute is derived (the corresponding check 
box is selected, activating a CheckBoxItem with value true), it should be 
displayed in diagram as “/”.

ComboBox 
Type

Combo box. The user can choose among certain values predefined as 
ComboChoiceItems.
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ComplexType Compartment consisting of several sub-compartments. It can be entered 
either directly (e.g., as a string "attr:Integer=5"), or in a separate 
window, where values for sub-compartments (e.g., "attr" for the name, 
"Integer" for the type, and "5" for the default value) can be entered. The 
compartment's value is obtained by concatenating the values of its sub-
compartments supplemented with the corresponding prefixes (like ":" 
and "=") and suffixes. See displayPrefix and displaySuffix attributes in 
CompartmentType. 
Note that to support the compartment hierarchy persistence beyond the 
element’s editing time as well, we have introduced a subCompartment link 
from GDMM’s Compartment class to itself in TDMM.

MultiLine 
ComplexType

Multi-line input field, where each line is a compartment of ComplexType.

In TDMM, there are diagram, element and compartment styles from GDMM 
connected to diagram, element and compartment types, determining how the diagrams, 
elements and compartments of the corresponding types are visualized (see Fig. 1 for style 
attributes). Apart from specifying the default style for diagram, element and compartment 
types, TDMM allows for the so-called optional styles of element and compartment 
types that can be triggered to become effective for a particular element/compartment, 
selecting a certain choice item in (possibly another) compartment of CheckBoxType or 
ComboBoxType (the links elemStyleByItem or compartStyleByItem from the ChoiceItem 
to the particular style instance are used). A classical application of this feature is putting 
or canceling the formatting of the class name compartment in italics depending on the 
value of class attribute isAbstract; however, this feature is much more useful.

Another form of dynamics supported by Core TDMM is adding compartments of 
new types to the elements depending on some compartment’s value selected in a combo-
box. This dynamics is implemented by defining instances of DynamicCompartTypes 
class as well as setting their dependencies from their triggering combo-box choice items, 
the position where the new compartments go, as well as the list of new compartment 
types themselves. This dynamics may be useful, for instance, in implementation of 
tagged values associated with stereotypes.

In TDMM we extend the GDMM Compartment class by the inputValue attribute, so 
that every compartment has both inputValue and value attributes. The value attribute to 
be displayed in the diagram is obtained from inputValue by prefixing it with compartment 
type’s displayPrefix and suffixing it with displaySuffix (an example of this construction 
is putting double angle brackets around the stereotype name). 

Besides the element and compartment types, every graph diagram type can have an 
associated toolbar consisting of toolbar elements. We consider only pre-defined (core) 
toolbar elements whose implementation is provided by GDE in Core TDMM. 

The graph diagram type has an associated palette to be shown with particular 
diagrams. Each of the palette elements are connected to one or more (in case of ports 
or lines) element types. This connection determines the type of element being created 
when a palette element is activated. If several line or port types are connected to one 
palette element (for instance, in class diagrams it may be convenient to use the same 
palette element for creating associations and links), the type of element is determined by 
the context of the corresponding NewLineEvent or NewPortEvent. If there is more than 
one possible alternative, the list of options is presented to the user.
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The context menus (ContextMenu instances) can be ascribed to element types as 
well as to graph diagram types. There may be different context menus for the same 
diagram depending on the existence of selected elements in the diagram; therefore, there 
are two associations – contextCollection and contextEmpty – from GraphDiagramType 
to ContextMenu. In Core TDMM we consider only items implemented by GDE (symbol 
style), or that are provided a universal implementation on the level of tool definition 
platform (“properties”, “copy”, “cut”, “paste”, “delete”, “refine”).

Similarly, we include a keyboard with universal keys in Core TDMM, allowing 
for standard editor functionality (e.g., Ctrl+C for “copy”, Ctrl+V for “paste”, etc), or 
serving as shortcuts for GDE services (e.g., Ctrl+> for “zoom in” etc).

Implementation of the tool definition framework is achieved by developing an 
interpreter that, relying on the existing implementation of GDE (Section 2), interprets 
a particular instance of TDMM in the way the corresponding tool reacts from the end 
user’s point of view. 

Regarding semantics of Core TDMM and its interpreter, we note that LClickEvent 
does not invoke a transformation, RClickEvent prepares and opens context menu (via 
ActivateContextMenuCmd), and L2ClickEvent opens a property dialog.

The interpreter also uses a property dialog engine (PDE) with a metamodel-
based interface (the property dialog metamodel, PDMM). This architecture allows the 
interpreter to be written as a collection of model transformations. The transformations 
have been created for all events of GDE, and they are responsible for the “business 
logic” of the tool that corresponds to the semantics of Core TDMM, outlined here. 
We have used the model transformation language L0+ [17] for our implementation; 
however, other “higher-level” transformation languages could have been used as well 
(e.g., the graphical model transformation language MOLA [18]).

An alternative approach to particular tool definition could be to write the 
transformations implementing the behavior of the tool directly against the events of 
GDMM. The possibility remains to replace some of the platform-defined transformations 
by tool-specific transformations (for instance, one may replace the “properties” 
transformation by “refine” transformation (navigate from the seed to the child) as a 
response to L2ClickEvent for some specific element types). Our approach to introducing 
tool-specific behavior (explained in Section 4), however, is via a mechanism of 
extending universal platform-level transformations instead of replacing them, so that 
the functionality present in the platform-level interpreter is efficiently retained.

As to the expressiveness of the proposed metamodel, a very wide range of graphical 
tools (inter alia an editor for EMOF [13] class diagrams and UML activity diagrams) can 
be defined as its instances.

We note that many popular and powerful meta-tools (see, for instance, MetaEdit [2, 
3]) do not present an explicit tool definition metamodel, but explain the tool behavior 
by means of some configuration facilities for the end user instead. Some meta-tools 
provide the possibility to use more powerful constraints in some constraint definition 
language. However, if we want to offer a really dynamic behavior, we have to do 
serious programming and to understand the implementation of the particular meta-tool 
thoroughly. In our approach, all information relevant to DST building and running is 
captured as an instance of an expressive yet sufficiently simple metamodel (Fig. 2), thus 
providing sufficiently easy means for tool functionality extensions. These extension 
opportunities are described in the next section.
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Fig. 2. The tool definition metamodel
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Fig. 3. Graph diagram type “Flowchart” and its context

3.1	 Instantiation of the Tool Definition Metamodel

In this sub-section, an example is given in a form of a simple flowchart editor, which 
is an instance of the tool definition metamodel. Since the instance graph turned out to be 
quite large and thus unreadable for humans, it has been divided into three parts here. The 
first part (Fig. 3) contains the top level type information – instance of GraphDiagramType 
representing the flowchart diagram type – and its context. Here, any Flowchart diagram 
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is to consist of four NodeTypes – Start, End, Action, and Branching. For each of them, 
the most important attributes are given. For example, for the Start element, it is said that 
only one element of this type is allowed in a flowchart (see attribute “multiplicity”). 
Also, some transformation names can be seen, e.g., a transformation “navigate” is to be 
called when user double-clicks an Action, while a transformation “elem_properties” is 
to be called when user double-clicks a node of some other type. Next, several EdgeTypes 
exist in order to offer an opportunity to draw a line between nodes of different types. 
However, all these edge types are connected to one PaletteEdge called “Flow”; thus, the 
user is not responsible for picking the right palette element for different flow types – they 
all look alike from the user’s point of view. Finally, NodeStyle and EdgeStyle instances 
are present as well. Due to the large number, all style attributes are not listed here.

The second part of the instance graph contains detailed information about the four 
node types sketched in the first part (Fig. 4 and 5). For every node type, a PropertyDiagram 
and a PopUpDiagram is depicted. The property diagram is a way to specify the property 
dialog window to be opened when the user, for example, double-clicks some element. 
Here, property diagrams of Action and Branching node types each consist of one 
PropertyRow being a simple text field (see attribute “rowType”) for entering and altering 
the values of the respective compartments (of CompartmentTypes “Expression” and 
“Condition”, respectively). The pop-up diagram contains PopUpElements to be shown 

Fig. 4. Flowchart node types “Start” and “Branching” and their context
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when the user, for example, clicks with the right mouse button on some element. Here, 
each pop-up menu contains four elements for standard actions “copy”, “cut”, “delete”, 
and “properties”. For each pop-up element, a calling transformation name is specified 
with the attribute “procedure_name”.

The third part of the instance graph contains detailed information on the edge types 
sketched in the first part (Fig. 6). The information to be specified for an edge type is 
approx. the same that needs to be specified for a node type. Thus, instances shown here 
are quite alike to those shown in Fig. 4 and 5.

4	 The Tool Definition Metamodel: Extensions
The implementation of Core TDMM, as described in Section 3, attached a fixed 

universal model transformation to every event of the presentation engine (GDE). 
However, there may be situations in advanced tool building when such standard universal 
functionality is not sufficient and a tool-specific behavior is required. For instance, there 
may be a need to synchronize the contents of the graphical editor with data in some other 
source (e.g., a domain model), or there may be some further restrictions or constraints 
to be observed regarding elements and values that can be introduced during the diagram 
editing process.

Fig. 5. Flowchart node types “End” and “Action” and their context
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Fig. 6. Flowchart edge types and their context

Since the tool to be defined by the tool definition platform conforms to the given tool 
definition metamodel, in principle, it is possible to allow the tool builder to write his/her 
own model transformations for handling certain events instead of the transformations 
in-built in the platform (these transformations can work in terms of the tool definition 
metamodel). However, our approach to the tool functionality extension is more refined 
in that we allow the tool builder willing to introduce the extended functionality to rely 
on the basic work done by the transformations implementing the platform nevertheless. 
This is achieved by extending Core TDMM with classes XElemType and XCompartType 
that are subclasses of ElemType and CompartType, respectively (Fig. 7). These classes 
contain attributes that correspond to certain call points at which the platform-level event 
processing transformation (which is to be adopted to respect these call points) may give 
control over to an external tool-specific transformation. 

The extended tool definition metamodel also contains classes AdvancedKey, 
AdvancedContextMenuItem and AdvancedToolBarItem that provide the tool constructor 
with more points where the tool-specific transformations can be attached.

In the remaining paper, we explain the semantics of particular call points – their 
placement in the tool interpretation process. We claim that this explanation, together 
with understanding of the tool definition metamodel, is sufficient to efficiently use 
the call point mechanism in advanced DST building. This is in sharp contrast with the 
amount of platform-specific implementation details required for developing advanced 
tools, for instance, in the Eclipse GMF platform [8].
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Fig. 7. The tool definition metamodel: extensions

Table 2 summarizes the call points in the XElementType class that arise in connection 
with element creation, content modification and deletion (if not specified otherwise, 
each transformation accepts a corresponding instance e:Element as its only argument; 
the call points are designed to have transformations that either do or do not have a 
(Boolean) return value). 

Table 2

Call points in XElementType

elementCreateCheck 
: Boolean

Called before creating an element (an instance of the Element class). 
If the function returns false, the element creation process is canceled. 
Recommended for initial correctness constraints (e.g., whether a 
new element of the given type is possible in the diagram).

elementCreated Called after creating the element, after elementCreateCheck, before 
adding compartments.

elementCheck 
: Boolean

Called upon completing value change of the element’s compartments. 
The result of the function is recorded in the element’s isCorrect 
attribute. The user is notified if the transformation returns false.

elementModified Called upon completing value change of the element’s compartments, 
after elementCheck.

elementDeleteCheck 
: Boolean

Called upon the user’s request to delete an element, after the system’s 
own checks for the possibility to delete are completed. If the return 
value is false, the “delete” action is canceled. 

elementDelete Called upon the user’s request to delete an element, after 
elementDeleteCheck, before (unconditional) deleting of the element.

lineStartMoveCheck  
(e, OldStart, NewStart: 
Element): Boolean

Called upon the user’s request to move the line’s start point, after the 
system’s own checks for the possibility of action are completed. If 
the procedure returns false, the action is canceled. 

lineStartMoved 
(e, OldStart, NewStart: 
Element)

Called after the line’s start point has been moved. 

lineEndMoveCheck 
(e, OldEnd, NewEnd: 
Element): Boolean

Called upon the user’s request to move the line’s end point, after the 
system’s own checks for the possibility of action are completed. 

If the procedure returns false, the action is canceled. 
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lineEndMoved 
(e, OldEnd, NewEnd: 
Element)

Called after the line’s end point has been moved.

containerChangeCheck 
(e:Element,oc:[Element], 
nc:[Element]) 
: Boolean

Called upon the user’s request to change the element’s container 
(e.g., to move a box in or out another box, or from one containing 
box to another), after the system’s own checks for the possibility of 
action are completed. 

[Element] denotes optional argument of type Element. 

If the procedure returns false, the action is canceled. 
containerChanged( 
e:Element,oc:[Element], 
nc:[Element])

Called after the element’s container has been changed. 

Note. Moving a line’s start or end point or changing a container do not invoke initial 
deletion and further creation of elements; therefore, the corresponding call points for 
element deletion and element and compartment creation are not activated.

Table 3 summarizes the call points in the XCompartmentType class (each 
transformation accepts a corresponding instance c:Compartment as its argument). 

Table 3

Call points in XCompartmentType

compartmentCreated Called after creating compartment and setting its context (link 
to the element or containing compartment), before setting up the 
compartment’s value and processing sub-compartments.

generateDisplayValue If specified, is used instead of the Core mechanisms for generating 
the compartment’s value (as seen in the diagram) from an input 
value (as entered in the property editor). Called after the input value 
of the compartment is prepared (e.g., in the property editor).

valueCheck: Boolean Called upon completing a value change of the compartment, after 
generateDisplayValue. The result of the procedure is recorded in 
the compartment’s isCorrect attribute. The user is notified if the 
transformation returns false.

compartmentModified Called upon completing a value change of the compartment, after 
valueCheck.

compartmentDeleteCheck  
: Boolean

Called upon the user’s request to delete the compartment, after the 
system’s own checks for possibility to delete are completed. 

If the procedure returns false, the action is canceled. 
compartmentDelete Called upon the user’s request to delete the compartment, after 

compartmentDeleteCheck, before (unconditional) deleting of the 
compartment.

generateComboValues Procedure for dynamic generation of values in the compartment’s 
combo box in the property editor. If unspecified, the combo box is 
filled up by means specified in the Core.

Note. The compartmentDeleteCheck and compartmentDelete transformations are 
not called when deleting a whole element.
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Note 2. The tool-specific transformations inserted at the call points are not 
automatically invoked in case of the user’s own manipulation of the model contents 
behind the platform’s event-processing transformations.

The introduced tool extension mechanism, albeit simple, is sufficient for a large 
range of tasks arising in DST building. We mention some of them here:

•	 synchronization with an abstract user-defined domain model,
•	 constraints of potentially arbitrary logical complexity,
•	 dynamic contents in the tool (e.g., drop-down values in a combo-box), 
•	 advanced dependencies in the tool’s presentation behavior,
•	 integration with other data engines (e.g., data from relational databases, provided 

the data access interface is created).
Synchronization of the contents of the model with a user-defined domain model can 

be performed by transformations elementCreated, elementModified and elementDelete, 
as well as compartmentCreated, compartmentModified and compartmentDelete that 
provide the tool builder the points at which a corresponding action can be defined in 
the domain model (e.g., creating, modifying or deleting a structure corresponding to an 
element or compartment on the presentation level). If necessary, the lineStartMoved, 
lineEndMoved and containerChanged transformations can also be used for this purpose. 

The constraints can be implemented in the tool by the transformations 
elementCreateCheck, elementCheck, elementDeleteCheck, lineStartMoveCheck, 
lineEndMoveCheck, containerChangeCheck, compartmentDeleteCheck and 
valueCheck. All these transformations, except elementCheck and valueCheck, cancel 
the action initiated by the user in case of returning false. The result of elementCheck 
and valueCheck transformations is placed in the element’s or compartment’s attribute 
isCorrect, and the user is notified to take a correcting action in the case if the result 
had been false. Note that both the structure of the model created in the editor (the 
presentation) and the tool-specific domain model information can be accessed by the 
procedures implementing the constraints.

Since the DST conforms to the (extended) tool definition metamodel (is an 
instance of this metamodel), the transformations attached to the call points as well as 
the event-processing transformations defined by the user (in case of AdvancedKey, 
AdvancedContextMenuItem and AdvancedToolBarItem) can be defined, in principle, in 
any high-level model transformation language. This means that we have reached a point 
when an advanced DST including user-defined extensions can be fully implemented 
within an MDE framework without the need to resort to structures and constructs typical 
of programming languages. With the extension mechanism, programmers are free to add 
a dynamic behavior to the tool being created without putting in too much effort. The 
simplest example is perhaps generation of combo box items dynamically – if needed, 
the transformation generateDisplayValue can do the job.

Furthermore, the definition of the call points in the tool interpretation process 
hides the details of the tool interpretation process from the user (it allows the user to 
seamlessly re-use the implemented process). It allows the user to focus just on adding 
the tool-specific advanced functionality and rely on the fact that transformations will be 
called at the right time and place. The only requirement for the tool builder (the writer 
of extension transformations) is not to introduce inconsistencies in the metamodel 
depicted in Fig. 2.
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5	 Conclusions
In this paper, we have presented a universal tool definition metamodel with an 

extension mechanism that allows us to construct advanced DSTs while staying within 
the MDE framework. The static part of the tool has to be first defined as an instance of 
the (extended) tool definition metamodel, and then the model transformations for tool-
specific operations as well as for defined call points can be provided. 

The definition of the static part of the tool can be performed by a model 
transformation, setting up the appropriate instances necessary for the work of the tool 
(these include instances of ElementType, CompartmentType, as well as ElementStyle and 
CompartmentStyle and their related classes). Nevertheless, our implementation of the 
platform also provides a configurator (as most of DST building platforms do) that can 
be used to set up the tool’s instances in a user-friendly way. All our test cases (including 
the UML 2.0 class diagram editor with a full support of attributes, stereotypes and 
tagged values) and practical applications of the platform (including several document 
flow and workflow modeling systems, e.g. [19]), have been successfully created using 
the configurator and providing the specific transformations at suitable extension points, 
where necessary.

We note that for a large range of tools, most of the tool functionality fits into Core 
TDMM and that the transformations at the call points tend to be rather small in size. We 
usually call them “mini-transformations”; however, we also recognize the potential of 
using more powerful transformations.

The MDE-based platform has allowed for building of modeling tools that are 
integrally incorporated into larger business information infrastructure where the 
graphical modeling of processes within a DST is coupled with the organization’s actual 
data residing, for instance, in a relational database (e.g., a transformation looking up 
values for a combo box drop-down list can be easily redirected to an external data 
source, or a copy of the system model can be easily transferred to a database where 
further analysis of it can be enabled, etc).

The tool architecture allows for both accessing the external data from the tool’s 
environment (provided suitable adapters for external data are created; we have 
elaborated on such architecture in [16]) and accessing the tool’s repository from an 
external application. The easy external access to the graphical contents of the tool’s 
model has proved useful, for instance, for visualizing feedback in the model from 
actually implemented systems.

In practice we also noticed that model migration between the tool and platform 
versions by model transformations works seamlessly from the end user’s point of view.

We are looking forward to new applications of our platform within the area of 
integrating modeling tools within larger information infrastructures as we believe in the 
MDE-based approach we have chosen as the basis for DST building.
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