
Towards a Semantic Execution Environment Testing
Model

Krišs Rauhvargers, J�nis Bi�evskis

University of Latvia, Rai�a blvd. 19, R�ga, Latvia
Kriss.Rauhvargers@bank.lv, Janis.Bicevskis@lu.lv

Abstract. The paper analyzes one component of "smart technologies" – a
model for program execution environment verification that employs software
meta-data descriptions of quality requirements to ensure the conformity of
characteristics of the surrounding environment to those necessary. The study
is based on practical software deployment and maintenance experience in ar-
eas where the production environment is inadequate and defies normal soft-
ware operation. The solution is to develop a "profile" for each software item
which would contain information about software requirements regarding its
execution, for instance, OS version, configuration file and registry entries, re-
gional settings, etc. The profile document is added to software deliverables
together with a set of tools capable of verifying the adequacy of the execution
environment according to the document. The profile document can be used in
both the installation and operational phases of software.

Keywords. Maintenance, Testing, Smart Technologies, Self-healing systems.

1 Introduction

As new computing paradigms, such as distributed computing, service-oriented archi-
tecture, and business process support are emerging, software becomes more complex
and more difficult to maintain. Quite much of the software being developed today is
aimed to serve a single business and the customers are willing to invest as little
funds as possible. Therefore, the software is built for a specific environmental plat-
form and may have strong bonds to it.

One of the core principles of developing "Smart Technology Compatible Soft-
ware" [1] is to create software that is able to analyze the external environment and,
like a cognitive being, adapt to it or at least to state that the environment is not suit-
able for normal existence. If this kind of software were feasible, the installation
process and maintenance would be greatly simplified.

The present paper analyzes the requirement stated in [1] and provides a method-
ology that, when properly implemented, solves the problem. Methodology discussed
in the paper is based on describing knowledge about software dependencies on ex-
ternal environment outside the executable code, and creating a human and computer-
readable document – a software profile document, based on the collected data. Using
the profile document, environment may then be checked during initial software de-
ployment and later in the software life-cycle.

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 38.–52. lpp.

LURaksti733-datorzin.indd 38LURaksti733-datorzin.indd 38 2008.03.31. 15:05:322008.03.31. 15:05:32

The paper is further organized as follows: the next chapter describes the back-
ground of the research and states the research questions. Chapter 3 discusses work in
related directions of software engineering. In chapter 4 we present our methodology
and aspects to consider when implementing the methodology. Chapter 5 is a short
report on first practical experiences already achieved.

2 Background

When a company reaches certain size or functional business area coverage, it may
need custom-tailored software applications to be able to handle its business func-
tions. Independently from the chosen software platform, there is a selection to be
made – whether to outsource the development from other company or to develop the
applications in-house. The former allows to “keep out of IT” by not requiring much
involvement of company’s staff in the development work, while the latter allows to
be more flexible in specifying requirements and maintenance since the software
code is available and can be modified upon request.

The historical basis of this paper is formed by an in-house solutions development
and maintenance model where security and safety are highly significant. Because of
such priorities in this model, the software is being “pushed” through testing and ac-
ceptance-testing environments before it may be installed in “live” environment. To
install software at a particular operational environment (that is, any environment
other than development), a special code compilation is carried out for the particular
environment and then it is installed manually according to instructions given by the
developers.

The manual installation model is reasonable in the particular case, since the soft-
ware is designed to be installed easily and the software applications are not distrib-
uted to many users. To be more precise, in the client-server architecture, the client
components are developed somewhat like “portable applications”, i.e. applications
that do not need client-side installation at all and are fetched from the server for exe-
cution. However, the server side of the applications has to be configured and in-
stalled manually.

All the instructions for setup and installation are prepared in textual form by the
developers and are executed by people authorized to do so (systems administrators).
The instructions typically include tasks such as compilation, copying executable
files and libraries to servers, registering and configuring components, altering oper-
ating system configuration.

The instructions also contain information that can be treated as requirements re-
garding the execution of the particular piece of software – needs for other specific
software items to be installed, configuration settings, file locations, specific tasks to
be performed before the installation – to be summarized as “execution require-
ments”.

The execution requirements hold through the lifetime of the particular software
application, i.e., they must be satisfied whenever the software application is exe-
cuted.

Upon software migration to another physical or logical environment – for in-
stance, moving to a newer server – a series of questions arises. For instance, what

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 39

LURaksti733-datorzin.indd 39LURaksti733-datorzin.indd 39 2008.03.31. 15:05:322008.03.31. 15:05:32

are the current execution requirements of system? What else directories should we
re-create in the new environment? Which configuration file does this system use?
Did we have to open any specific ports in the network firewall for this system?

2.1 Systems Interaction

In realistic environments, different software applications may be installed in the
same computer. The execution requirements may differ from system to system and
some of them may be contradictory. For instance, system A may require date format
setting as specified by ISO 8601:2001 (yyyy-mm-dd) and, at the same time, system
B may rely on American English date format (mm/dd/yyyy). Of course, work-
arounds exist for the situation described, if only the problem is known during the in-
stallation of whichever system is installed later.

Software systems' integration may be necessary to avoid data and functionality
duplication in systems. For instance, the organization's customer data may be shared
between the CRM (Customer Relationship Management) software system as the
“host” of the data and other “guest” systems such as inventory system, accountancy
system etc. The integration may be carried out by using public interfaces of the host-
ing system – an API (Advanced Programming Interface), if such exists or by using
internal mechanisms of the host system. The latter solution is technically possible
only in the in-house development model and may sometimes be used.

Of course, the interface that the host system provides and the guest systems are
dependent of may change by time. It is not a very likely scenario in the case of inte-
gration using public API, but quite likely when private interfaces are exploited. This
leads to unpredictable effects at maintaining the guest systems when updates for the
host system are deployed – in-depth regressive integration tests are required.

2.2 The Research Question

In many systems, typically those designed to support unique business process in-
stances rather than process outcomes (documents); it is not possible to perform a
“test run” of the system to verify that the system still works. Such tests could have
unpredictable effect on the business process. Hence, if business processes occur
rarely but are significant to their owners, there is a need for methods to verify the
software system configuration and to check if it is up-to-date without running the
business support applications.

Automated software installers are another option for software deployment. How-
ever, neither the maintenance model described here, nor the automated installers
provide a way for checking if execution requirements of different systems are not
contradictory and if all requirements are satisfied. The easiest known way is per-
forming manual checks of all requirements. Of course, in the real world it may ap-
pear too time-consuming.

Installation package wizards such as Macrovision InstallShield or NullSoft NSIS
offer features for checking pre-installation requirements. Also, they may provide a
“repair” feature if the system is known not to be malfunctioning. However, this does

40 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 40LURaksti733-datorzin.indd 40 2008.03.31. 15:05:322008.03.31. 15:05:32

not allow performing a preventive checking to find out if the configuration is still
acceptable.

The present paper is a study on formalization of system execution requirements
taking into account the semantic nature of every requirement.

The main questions of research are:
- Is it possible to automate the verification of execution requirements?
- If the process is automated, can the requirements still be human-readable?
- Can the verification process be unified throughout the enterprise?

3 Related Work

The field of automated software testing has been studied extensively; however
mainly research concentrates on testing the software internals, trying to verify that
the software is built according to the specification. Formal verification frameworks
such as Context UNIT and Mobile UNITY [2] have been described as well as practi-
cal implementations such as Java PathExplorer [3] are present.

The concept of an execution requirement indicates that the system under test is
not aware of the particular circumstance – it will work fine if the conditions are met.
The software system may have a built-in mechanism of self-protection, but it is not
intended to adapt the situation.

The present research concentrates on aspects of the execution environment that
the system is not aware of.

3.1 Self-Healing Systems and Built-In Tests

The topic of self-healing systems can be considered relatively close to the research
topic of this paper. Both research topics share the same goal – a system working at
an operating environment that is known not to be perfect.

A comprehensive study in the field of self-healing systems by D. Tosi [4] identi-
fies and analyzes the key elements of a self-healing system.

The concept of self-healing software is defined as a system that monitors the sur-
rounding environment at run-time, detects failures and, knowing its “normal” way of
operation, can “heal” itself. Such a system can then be called a “fully autonomic sys-
tem”, which is, according to classification of [5], the highest (5th) level AS (Auto-
nomic System). Such systems are far beyond the scope of current research which
concentrates on practical support for transition between 2nd level (Managed Level1)
and 3rd level (Predictive Level2) of autonomic systems.

1 Managed Level: At this level, system management technologies can be used to collect in-

formation from different systems. It helps administrators to collect and analyze information.
Most analysis is done by IT professionals. This is the starting point of automation of IT
tasks.

2 Predictive Level: At this level, individual components monitor themselves, analyze changes,
and offer advice. Therefore, dependency on persons is reduced and decision making is im-
proved.

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 41

LURaksti733-datorzin.indd 41LURaksti733-datorzin.indd 41 2008.03.31. 15:05:332008.03.31. 15:05:33

In D. Tosi’s paper [4], the self-management objective is decomposed into a num-
ber of dimensions: requirements (security, performance), monitoring/detection (in-
cludes self-adaptation, self-optimization, and self-healing), and repair. According to
this decomposition, the current paper is a research on monitoring and detection, spe-
cifically on system’s reaction to changes in the runtime environment.

The author of [4] also mentions the need for a knowledge base that describes the
“normal” environment of the system.

In [6] Wang et al. present a concept of software component with built-in tests. A
built-in test (BIT) is a set of code functions that perform verifications, if the compo-
nent is working as predicted. Authors of [6] suggest that a component should contain
one or more BITs that can be executed; and implement some specific interface to be
called when the system is run in maintenance mode. Here, the authors define a con-
cept of “maintenance mode” [6] for a software system, which is proposed as a spe-
cial execution mode of the system when built-in tests can be activated but the busi-
ness functionality of the system is not touched.

The authors of [7] propose a framework named Component+ that mainly focuses
on benefiting from the use of BITs in software components. Authors note that every
component implements its fixed interface which other components may rely on. This
can be called a „contract“ between components. Authors of the paper suggest that
BITs are used for testing, whether the component is capable of serving the defined
interfaces, i.e. if contracts between components are not violated. It is remarkable that
the authors mention the importance of „Quality of Service“ (QoS) testing for verifi-
cation of the operating environment, but their proposed model concentrates on test-
ing the contracts between the components, hence, QoS testing is a „by-product“.

3.2 Unit Testing and Test-Driven Development

At a first glance, the test-driven development [8] seems to be a good solution for the
research problem. Though unit testing technique has a great effect at improving
software quality and results at integration testing, trying to use the unit tests for vali-
dating the surrounding environment would be a misuse of the particular technology.
This is because unit testing is designed to focus on testing a single unit. According
to the guidelines, a unit test shouldn't pass the boundaries of the unit to be tested. To
overcome the need for “outside world” reactions during tests, the unit testing model
proposes the use of mock objects and fake objects [9]. Both kinds of objects are used
to simulate the interface of external units required by the unit under test. The use of
such substitute code indicates that unit testing may not be useful for integration be-
tween components, and, moreover, integration between the system and the surround-
ing environment.

3.3 Similar Ideas in Hardware Appliances

A similar topic has been investigated quite profoundly in hardware engineering.
Runtime checks of the surrounding environment seem to be natural and have been
studied extensively in hardware world. Research is being carried out in different ar-
eas – both on self-tests of internal state of the item, for instance, for a CPU or a

42 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 42LURaksti733-datorzin.indd 42 2008.03.31. 15:05:332008.03.31. 15:05:33

RAM module, during the stand-by time [10], and on overall inspections of the sur-
rounding environment, i.e. parts of the “hosting” system. A system embedded in a
car is a good example. Upon initialization, the central processor performs a compre-
hensive examination of all the distributed sensors and sub-processor units; if any of
them fails, it shows a warning sign to the driver or even does not allow starting the
engine.

Similarly to software systems, nowadays the hardware systems have also become
component-based. For instance, a digital photo camera relies upon a specific type of
interface for its memory chip (e.g. Compact Flash type I cards supported only).
Upon initialization, the camera checks whether the card is currently available, the
type and the capacity of the flash card. The user may be prompted “Error, wrong
card inserted!”, “CF full”. This can be compared to the “contract testing” described
in [7].

The idea of the current paper is similar to the methodology described here - veri-
fication if the external components the system under test relies on, fulfills their du-
ties.

4 The Proposed Model

4.1 Model Summary

Methodology proposed by this paper is based on describing knowledge about the
software system outside the executable code (as some sort of meta-data about the
system), and using the collected data for creation of a computer document – a soft-
ware „profile“. Such document is later used for execution requirement testing.

A software requirements profile document contains listings of both the internal
links between software components and dependencies on external services, facilities
and interfaces. Using appropriate tools, the profile document can be employed for
different purposes throughout the life-time of the system. The present paper de-
scribes the usage of software profile document as the core of execution environment
verification by external verification modules – small pieces of software aimed to
perform verification routines (further in text – EVM), but other applications may ex-
ist.

The following model is offered:
1. bonds of the program code with the environment are registered as software meta-

data during development;
2. upon finishing development of a particular software item, a software profile – a

document summarizing execution requirements for the particular item is gener-
ated from the code meta-data;

3. the software item is delivered into other execution environment together with its
profile document;

4. conformance of the execution environment is verified using data from the profile
document.

A summary of the model is shown in Figure 1

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 43

LURaksti733-datorzin.indd 43LURaksti733-datorzin.indd 43 2008.03.31. 15:05:332008.03.31. 15:05:33

The described situation applies to internally stable [1] systems. That is, the sys-
tem under test has already passed the integration tests in the development environ-
ment and is known to be working under certain circumstances.

There are two areas of software life-cycle where the software profile methodology is
useful – the initial verification of execution requirements during software installa-
tion into an environment where the software has not yet been used, and the routine
re-validation of run-time requirements every time the software application is exe-
cuted. Re-validations take place in the same way as initial validation; the only dif-
ference is that the user is not prompted for initiation data.

Development environment Another environment

Code

Databases Network
services

Configuration
files

Regional
settings

Software
libraries

Other
resources

Environment properties

Dependance

Execu-
table

Compilation

Profile
doc.

Databases Network
services

Configuration
files

Regional
settings

Software
libraries

Other
resources

Environment properties

D
el

iv
er

ab
le

s Execu-
table

Profile
doc.

Profile
generation

Dependance
extraction by tools

Installation Target
environment

Profile
validation

Information
gathering by

tools

Fig. 1. The Tool-Driven Process of Software Profile Generation it the Development Environ-
ment and Use in Other Environments.

4.2 Motivation for the Proposed Model

The model proposed in the paper helps overcome several shortcomings of other
related technologies that could possibly be used to achieve the same goals.

When compared to built-in tests, the software profile methodology has the advan-
tage of test descriptions not being encoded in the system itself. As a result, the
knowledge is not hidden from software maintainers and the list of known require-
ments may be supplemented without recompiling the software.

The contents of software profile document should rather be treated as descriptions
of software properties than test descriptions, and hence the tests can be more flexi-
ble.

It is possible to execute different tests per single requirement to verify different
aspects of the requirement. It is also possible to replace the test algorithm if and
when needed. The scenario is quite likely since the properties of environment may
change. For instance, the software may require that “Outgoing TCP traffic on 80
shall be allowed on the computer”. Verification of the requirement in a program-

44 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 44LURaksti733-datorzin.indd 44 2008.03.31. 15:05:342008.03.31. 15:05:34

matic manner relies heavily on the kind of firewall software installed on the particu-
lar computer and hence, upon changing the firewall software, the EVM should also
be replaced with an updated version.

4.3 General Architecture of Runtime Validation Framework

As recommended by [6, 7], runtime validation should not interrupt the regular work
of the system under test. Our model conforms with the thesis completely and is de-
signed to separate not only the regular and maintenance modes, but also the execu-
table code.

The software profile approach is different from a typical BIT architecture in a
way that the tests are actually not embedded in the system. To enable a component
for self-testing of the execution environment, only functionality for loading the
software profile validation runtime („loaders“) have to be encoded into the system.

When software is run in maintenance mode, the loader functions are used for
loading the verification runtime core and handing the execution control to it. As the
core is loaded, it looks for the software profile document of the system under test
and analyzes it. Knowing the EVMs currently available for testing specific require-
ments, the core parses the software profile document and invokes an appropriate test
routine using a specific EVM (or multiple modules) on each requirement listed in
the document.

Hence, the model relies strongly on the dynamic loading feature of the execution
environment. The feature is first employed to load the verification runtime core
module and later, to load the specific verification tools. The required effect can be
achieved easily in today's execution frameworks - using the reflection and dynamic
load feature of .Net framework, using the ClassLoader interface of Java, even easier
in scripting languages such as PHP or Python.

4.4 Execution Requirements and External Verification Modules

In the context of the paper, an execution requirement is a verifiable demand state-
ment about the execution environment that typically has some human-
understandable meaning and that holds through the lifetime of the system. For in-
stance, a requirement may be formulated as “TCP traffic to host 192.168.1.1 on port
21 must be allowed” or “Write access is necessary to directory
/home/$USERNAME”.

Other typical types of execution requirements include:
- Other components – versions, names, availability. An application typically

depends on one or more external code libraries to be available - for instance,
XML support, specific database drivers, MS Excel object model API etc.

- Configuration files – INI files, Windows registry, .Net framework configura-
tion files. The requirements of this kind typically ask for a configuration file
to be located at a specific location or for values to be set for specific keys.

- File system access – requirements regarding existence or non-existence of
specific nodes in the file system, permissions on file shares, etc.

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 45

LURaksti733-datorzin.indd 45LURaksti733-datorzin.indd 45 2008.03.31. 15:05:352008.03.31. 15:05:35

- Network dependencies – requirements on protocols, ports, required network
locations to be available.

- Relational data bases – requirements, specific to DB vendor, defining a de-
pendence of the software system upon a certain data base. The requirements
may include database locations, names, and requirements for existence of
certain DB objects (tables, stored procedures, functions) or even the interface
definitions of DB objects. For instance, one may require that a table
“CUSTOMERS” having a field “NAME” exists in the database.

This list can be continued and is by no means limited to kinds of requirements
listed here. Nearly every technology used in contemporary software development
has some properties that may be significant for a software component employing the
technology. For instance, both Microsoft’s COM+ or Java’s Hibernate (and of
course, other products, too) services allow the configuration of distributed transac-
tions’ isolation level to be set declaratively [11, 12]. In both cases, a component rely-
ing on the particular technology can claim for a specific setting for distributed trans-
action configuration. Such a claim can be formulated as an execution requirement.

It is also advisable to define business system-specific requirements, that is, re-
quirements that are useful only in the context of the system under test. For instance,
“at least one administrator account must be present in the users’ registry” or “all `in-
box` folders of the system should be user writable” are system-specific, as the con-
cepts of “administrator account”, “user’s registry” and „inbox folders” achieve their
semantic meaning only in the context of the system. One should also provide EVMs
that support verification of such requirements. This kind of EVM is actually a built-
in test that is externalized from the system, but it is more concerned to checking if
other components are in order rather than checking if the component itself is fulfill-
ing its contracts. The verification modules used for this kind of tests can be bundled
in the same code assemblies as the business system, and hence be versioned together
with the system. Such approach allows the tests focus more on the internal stability
[1] of the system and complies well with the component built-in testing as described
in [13].

A specific kind of requirements is the transitivity requirement which can be read
as “I will do my job if some other particular component does what it is supposed to
do”; that is, a requirement for another component or application to pass the verifica-
tion process successfully. For instance, in the client-server model, client components
may not be able to perform their duties if the server component is not configured
properly.

To complete the list of vital elements of the software profile framework (hereinaf-

ter - SWPF), one must mention the EVM – external verification modules.
An EVM is a small functional component that encapsulates logic for verifying

one or a few execution requirements. Technically, an EVM looks for evidences in
the execution environment and hence decides if the particular requirement is satis-
fied. The nature of an EVM should be similar to the way humans would verify the
requirements – first analyzing the requirement and deciding what evidences are re-
quired to be sure that the requirement is fulfilled, second – performing the verifica-
tion. Different kinds of evidences may exist and it is a task for the EVM developer
to decide which ones are satisfactory.

46 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 46LURaksti733-datorzin.indd 46 2008.03.31. 15:05:362008.03.31. 15:05:36

For instance, when developing an EVM that verifies if a specific Windows secu-
rity patch is installed in the system, the first idea would be to use Windows Man-
agement Instrumentation1 to read the list of all patches installed and then look
through the list to see if it contains the name of the needed patch. However, this may
be a bit tricky, because WMI may not be installed on the particular computer or may
not itself be updated and hence the specific function for reading the patch list may
not work. When looking for another approach, one will notice that every patch in-
stallation results in a new “uninstall” directory created in Windows installation di-
rectory, for instance “$NtUninstallKB825119$” where KB825119 MS is a knowl-
edge base number for the patch. Hence, one may consider that the existence of such
a directory is a good enough evidence for validation.

A clear distinction must be set between validating a requirement in whole and
validating the evidences for a requirement. There exists an N:N type of relation be-
tween the two (validating a requirement may mean looking for N evidences, a single
evidence may refer to different requirements). The resolution of requirements into
evidence searches is a task of the SWPF core, but technical implementation details
are out of the scope of the present paper and are a question of further research.

4.5 Kinds of Data Employed by the SWP Framework

To achieve the functionality described in the previous chapters, different kinds of
data are required for the software run in maintenance mode.

The most obvious knowledge base is the software profile document itself. It sup-
plements the system under test and is delivered into particular execution environ-
ment together with binary deliverables or source code. The knowledge – listings of
execution requirements - is first summarized by the developers and can later be
complemented by other parties involved. The data format for storing requirements is
not dictated by the methodology and may vary upon implementation; however a
possibility to store complex data structures is essential. Other requirements for the
description language are modularity and possibility to extend the available markup
as new kinds of requirements may appear. Hence, we propose the use of XML as the
carrier and XSD as a validation tool and reference. An in-depth study of the format
is a question of further research.

Another knowledge base employed by the methodology, is the „inventory“ list
that belongs to a particular execution environment. The list contains information
about the EVMs that can be used at the environment. Since the EVMs should be de-
signed to handle verification of requirements as specific as possible, the full spec-
trum of EVMs may be quite ample. For instance, it includes a wide variety of EVMs
that handle requirements specific to a single business system only (e.g., an EVM for
a requirement “Version 2.9.4 of the HR system shall not be present at the environ-
ment”). Not all the EVMs owned by the organization may be needed at every par-
ticular environment and hence “inventory list” should be bound to the environment.

1 Windows Management Instrumentation (WMI) is the Microsoft implementation of Web-

based Enterprise Management (WBEM), which is an industry initiative to develop a stan-
dard technology for accessing management information in an enterprise environment
(MSDN library, 2007)

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 47

LURaksti733-datorzin.indd 47LURaksti733-datorzin.indd 47 2008.03.31. 15:05:372008.03.31. 15:05:37

Another task for the inventory list is to tell the verification runtime, when to use the
particular EVM described in the list. That is, the list describes patterns to look for in
the software profile document that are related to the particular EVM. In the XML-
based form of software profile document, the names (and the namespaces) of the
XML elements recognized by the EVM should be depicted in the inventory list.

4.6 Creating a Software Profile Document

The software profile notion is essential for systems which are developed in a differ-
ent environment than the operational one (where the concept “operational environ-
ment” includes development, testing and/or acceptance testing environments, pro-
duction environment).

It is assumed that the system under test is internally stable, i.e. that system devel-
opers have assured that the system is functioning and have managed to run the sys-
tem in the development environment. This should be true in order to allow transition
to the testing phase. Since the satisfactory requirements are met in the development
environment, it can be a good sample for gathering the requirements.

The gathering of data required for generation of the software profile should be
begun as close to the beginning of information system life-cycle as possible in order
to minimize the documentation work to be done close to the delivery date.

A good time span for registering requirements is the coding phase when detailed
system design specification is transformed into executable code. All kinds of de-
pendencies become known to the developers during this phase: the ones dictated by
the business problem (declared in the requirements specification document), the
ones discovered during system planning (functional specification, class, and compo-
nent diagrams) and the technical limitations that have arisen due to development
methods, organizational standards, etc.

The methodology anticipates that requirement descriptions needed for the crea-
tion of the profile document are gathered from source code where it has been previ-
ously entered by the coders.

A substantial part of dependencies is known even before the coding phase i.e.,
during the design phase. If software is developed using model driven development
approach, requirements can be recorded at an earlier phase than development. De-
pendency information could be attached to the model as object stereotypes if a UML
model is used. During the PSM (platform specific model [14]) transformation to
program code, the stereotypes would be transformed into code meta-attributes as de-
scribed further in this chapter. Hence, the initial dependencies would be recorded
even before the coding phase begins.

.NET framework provides a convenient way for describing code meta-data. It is
called “declarative attributes” – a supplementary information block that is assigned
to a particular code class, function or the software assembly all together. The .NET
framework allows defining one’s own attribute classes to extend the set of available
declarative attributes.

Hence it is possible to define one or more declarative attribute classes for each
type of requirements and use the attributes to describe the code.

For instance, an attribute class “NetworkDependency” with parameters protocol,
direction, and port can be defined. When creating a program which depends on net-

48 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 48LURaksti733-datorzin.indd 48 2008.03.31. 15:05:372008.03.31. 15:05:37

work services, a function ReadData that accesses the network (or the class contain-
ing the ReadData function) can be assigned the declarative attribute:

<NetworkDependency(Protocol.TCP, Direction.Out, 80)> _
Public Function ReadData()

Upon preparing the system for delivery, a tool for dependency extraction would
scan the program code and find the meta-data attribute attached to the function ‘Re-
adData()’. As a result, a record line would be created in the software profile docu-
ment.

Most parts of the software profile document can be generated by using the fol-
lowing approach:

- data needed for the profile document header part are encoded as meta-
attributes of the whole .Net assembly (or analogous concept in different
platform, for instance, a component in terms of Java technology)

- dependencies on execution environment, i.e. requirements, are described as
declarative meta-attributes of the code object which demands particular de-
pendency, or at a higher hierarchical level if fine-grained requirements do
not matter. Part of the requirements may be generated using MDA tools.

- all requirements listed in the program code are gathered by help of specific
code analysis tools

- the requirements list is reviewed:
o dependencies that do not require more information are instantly

transformed into requirements
o for dependencies referencing the development environment (for

instance, a requirement “Short date format – the same as in devel-
opment environment”) specific tools are used to get the requested
information from the environment (in case of the example – a
function that queries the operating system for the short date for-
mat)

- the gathered list of requirements is merged with requirements from linked
code libraries’ profile documents, using the minimum supplement approach

- the obtained software profile document is reviewed by the developer to
eliminate redundant requirements and to add the missing items.

5 First Practical Experience

Initial practical development has already been carried out according to the method-
ology provided in the paper. The development has resulted in a fully functional
proof-of-concept version of the software profile verification toolset.

The demonstration software was developed using Microsoft .Net framework 2.0
platform. The chosen framework supports dynamic loading of modules from user
code, which is a significant requirement for a good implementation of SWPF.

The code was separated into code assemblies according to the architecture of
SWPF: the "business application program" which can be launched at maintenance

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 49

LURaksti733-datorzin.indd 49LURaksti733-datorzin.indd 49 2008.03.31. 15:05:372008.03.31. 15:05:37

mode (1), core module of SWPF (2), and an assembly containing implementations
of some typical verification modules (3).

When the program (1) is loaded, it enters the “maintenance” mode and performs
environment testing. To do the testing, it loads the SWPF core assembly (2) which
further handles the tests. The SWPF core looks for an adequate software profile
document. It considers that the software profile file is located in the same directory
as the (1) executable files and named according to format <executablefile>.swp.

The SWP file is an XML file containing assembly identification information (for
ensuring that the application currently under test is the correct one) and a listing of
requirements each described using an XML element. The profile document used in
the experiment was created manually.

When the SWP document is loaded, it is parsed into individual requirements. In
the conceptual model we have introduced support only for two very simple, but po-
tentially useful used requirement types:

- Regional settings – short date format requirement. In Latvian grammar, the
format “dd.mm.yyyy” is advised. However, in Microsoft Windows the de-
fault locale settings are different and short date format is provided as
“yyyy.mm.dd”. The format string is frequently being changed during instal-
lation of the OS to the grammatically correct one; hence the actual setting in
deployment environment may vary. In an isolated enterprise environment,
the setting is typically the same on all computers and therefore the systems
developed in-house are more likely not to be aware of the possible differ-
ences.

- File system – checking if specific path exists. In our experiment, the path ex-
istence evidence was used to check if “Windows XP service pack 2” is pre-
sent in the system. The service pack was known to install itself at a specific
location in the file system.

To find the appropriate tool for testing a particular requirement, the SWPF uses
an “inventory list” – another XML file describing locations of EVMs. The concep-
tual model does not introduce distinction between requirements and requirement
evidences; it assumes a 1:1 relation between requirements and EVMs (an EVM may
handle one type of requirements). Therefore, items in the inventory list have a prop-
erty describing the name of the requirement XML node that the current EVM can
handle. When an appropriate EVM is found for evaluating a requirement, the as-
sembly containing EVM’s code is loaded and the requirement information is handed
to the EVM object which further evaluates the requirement.

A test run of the application was performed on several computers in different en-

vironments and it was found out that even such a trivial environmental test may
show inadequacies on some computers. Some of the computers tested did not have
the required short date format, all had Windows XP SP 2 installed.

50 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 50LURaksti733-datorzin.indd 50 2008.03.31. 15:05:382008.03.31. 15:05:38

6 Conclusion

The paradigm of the software execution profile document is a step towards the de-
velopment of smart technology compatible software. The methodology can be
adapted in a fully manual manner – by composing the requirements profile docu-
ment based on the know-how obtained during development and later using the
document to check if the installation environment conforms to the requirements (this
process can be reduced to textual installation descriptions as used by classical meth-
ods). However, the full power of the methodology provided can be gained when
specific tools are used to generate the profile document and to validate the execution
environment.

The use of the software profile concept described in the paper – verification of
execution environment during installation and at run-time – is not the only one pos-
sible. Some of the other applications are:
� documentation used for systems maintenance
� discovery of cross-system bonds without inspecting the environment
� environment clean-up upon disposal of an outdated system (or previous version

of the system)
� by creating a centralized registry of software execution profiles, it can automati-

cally be perceived as a registry of available resources which allows answers to
maintenance questions such as “Is this database still in use?”, “Why do we have
to have port 80 open on the external firewall?”

� the ideology of the software execution profile can be applied not only to executa-
ble code programs and libraries, but also, for instance, SQL “applications”
The solution for testing execution environment provided in the paper can be im-

plemented incrementally – by expanding the set of resource types that can be veri-
fied.

The first practical experience in applying the described methodology has already
been achieved and indicates that the approach is suitable for practical use.

Acknowledgements

The research is supported by the European Social Fund (ESF).

References

1. Bi�evska Z., Bi�evskis J.: Smart Technologies in Software Life Cycle. In: Münch J.,

Abrahamsson P. (eds.): Product-Focused Software Process Improvement. Lecture Notes in
Computer Science, Vol. 4589. Springer-Verlag, Berlin Heidelberg (2007)

2. Roman, G.-C., Julien, C., Payton, J.: A Formal Treatment of Context-Awareness. In: Wer-
melinger, M., Margaria-Steffen, T. (eds.): Proceedings of the 7th International Conference
on Fundamental Approaches to Software Engineering. Lecture Notes in Computer Sci-
ence, Vol. 2984. Springer-Verlag, Berlin (2004)

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 51

LURaksti733-datorzin.indd 51LURaksti733-datorzin.indd 51 2008.03.31. 15:05:382008.03.31. 15:05:38

3. Havelund, K., Rosu, G.: An Overview of the Runtime Verification Tool Java PathEx-
plorer. Formal Methods in System Design Vol. 24(2), pp 189-215 (2004)

4. Tosi, D.: Research Perspectives in Self-Healing Systems. Report of the University of Mi-
lano-Bieocca (2004)

5. Nami, M., R., Bertels, K.: A Survey of Autonomic Computing Systems. In: ICAS '07: Pro-
ceedings of the Third International Conference on Autonomic and Autonomous Systems.
IEEE Computer Society. Washington, DC, USA. (2007)

6. Wang, Y., King, G. Wickburg, H.: A Method for Built-in Tests in Component-based Soft-
ware Maintenance. In: Proceedings of the Third European Conference on Software Main-
tenance and Reengineering, IEEE Computer Society, Washington, DC, USA. (1999)

7. Barbier, F., Belloir, N.: Component Behavior Prediction and Monitoring through Built-In
Test. In: 10th IEEE International Conference and Workshop on the Engineering of Com-
puter-Based Systems (ECBS'03). IEEE Computer Society, Los Alamitos, CA, USA (2003)

8. Janzen, D. Saiedian H.: Test-Driven Development: Concepts, Taxonomy, and Future Di-
rection. IEEE Computer. September 2005 (Vol. 38, No. 9) pp. 43-50 (2005)

9. Kim, T., Park, C., Wu, C.: Mock Object Models for Test Driven Development. In: SERA
'06: Proceedings of the Fourth International Conference on Software Engineering Re-
search, Management and Applications. IEEE Computer Society. Washington, DC, USA
(2006)

10. Shamshiri, S., Esmaeilzadeh, H., Navabi, Z.: Instruction Level Test Methodology for CPU
Core Software-Based Self-Testing. In: HLDVT '04: Proceedings of the High-Level Design
Validation and Test Workshop, 2004. Ninth IEEE International. IEEE Computer Society.
Washington, DC, USA (2004)

11. Troelsen, A.: Developer's Workshop to COM and ATL 3.0. Worldwide publishing, 2000
12. Hibernate Reference Documentation http://www.hibernate.org/hib_docs/reference/en

/html/session-configuration.html
13. Beydeda, S.: Research in Testing COTS Components - Built-in Testing Approaches. In:

ACS/IEEE 2005 International Conference on Computer Systems and Applications. Bonn,
Germany (2005)

14. Kleppe, A., Warmer, J. Bast, W.: MDA Explained: The Model Driven Architecture--
Practice and Promise. Addison Wesley, (2003)

52 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 52LURaksti733-datorzin.indd 52 2008.03.31. 15:05:392008.03.31. 15:05:39

