Non-invasive optical skin evaluation device for cancer screening

Marta Lange, Dmitrijs Bliznuks, Alexey Lihachev, Emilija Vija Plorina, Ilze Lihacova, Janis Spigulis

Univeristy of Latvia

Riga, Latvia, April 12 – 13, 2018
Challenge

To create a screening device, that is inexpensive, available in regional clinics and at primary care physician in order to evaluate the suspicious malformations fast, non-invasive and quantitative.
Method

525nm, 405nm (AF), 660nm, 940nm
First device prototype

a) First prototype with the wide end (70mm)
b) 3D designed model with the improved cone tip

Photocredit & design: Dmitrijs Bliznuks
Development of the tip

Flat walls
- Sharp tip
- Big diameter (70mm)
- Not centered ROI

Cone shape
- Flat walls
- Smooth tip
- Better centered ROI

Cone shape
- Flat walls
- Smooth tip – silicone filament
- Better ROI
- Step-type internal walls

Cone shape
- Smooth tip – silicone filament
- Better ROI
- Step-type internal walls to improve light polarisation (2nd prototype)

Step-like internal structure allows redirecting reflected light that has lost its linear polarization away from the skin.
Second prototype

+ Lighter
+ smaller, more compact in size
+ White LEDs
+ Case: easier assembling for repairs
+ better support for the camera, improved 3D printed case
+ Handle with battery

Photocredit & design: Dmitrijs Bliznaks
Figure 9. Full prototype printout. Uppercase with lens and camera attached (a), back view with opened upper case (b), attached case without LED holder cone (c), assembled case (d).
Conclusions

• With the developed screening device it is possible to evaluate skin malformations by imaging at various wavelengths.

• During the development of 1st and 2nd prototype, a lot of improvement have been achieved, for instance:

 + precise, centered tip with ROI imaging;
 + designed a silicone filament for patient comfort;
 + wireless battery solution;
 + added white LED illumination and one-button switch for each LED light;
 + wireless image transformation to the cloud with 4G modem.

• It is possible to distinguish such malformations: melanoma, basal cell carcinoma (both cancers), hyperkeratoses, melanocytic nevi and hemangioma (benign).
Thank you!

Marta Laņģe
Biophotonics Lab
Institute of Atomic Physics and Spectroscopy
e-mail: marta.lange.rtu@gmail.com

This work was supported by grant “Portable Device for Non-contact Early Diagnostics of Skin Cancer” (No. 1.1.1.1/16/A/197).

This study has been approved by Ethics Comitee, the research has been conducted in accordance with the Declaration of Helsinki, as well as with the Oviedo Convention.