
 𝜓(0) =  𝜓𝑆𝑇
𝑎  −  (𝑐𝑖𝑗 − 1)𝑎 𝑖, 𝑗 

𝑖,𝑗∈ 𝑀
𝑗~𝑖

 

Then our initial state can be written as a sum of the stationary state and another component ( 𝜓𝑁𝑆𝑇 ) 
which will change during the evolution, 
 
 
 
 
 
The probability of finding a marked vertex is maximized when the amplitudes in the changing part will 
be distributed over the marked vertices only.  
 
 
 
 
 
 
 
 
 
Then, we obtain that, for any number of steps t,  
 
 
 
 
 
 
 
 
 
 
 
 
  

Let 𝐺 = (𝑉, 𝐸) be a graph with a connected set of marked vertices 𝑀. According to Ref. [6], the 
existence of a stationary state depends on whether a marked connected component is bipartite or not, 
that is, 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Suppose we have a graph with a marked connected 
component satisfying the aforementioned conditions.  
It has a stationary state 

 𝜓𝑆𝑇
𝑎  =  𝑎 𝑖, 𝑗 

𝑖,𝑗∈ 𝑉
𝑖~𝑗

+  (𝑐𝑖𝑗 − 1)𝑎 𝑖, 𝑗 

𝑖,𝑗∈ 𝑀
𝑖~𝑗

 

where 𝑗~𝑖 means there is an edge connecting vertex 𝑗 to 
vertex 𝑖.  
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2 .  E xc e p t i o n a l  c o n f i g u ra t i o n s  

We have seen that a placement of marked vertices on a graph can form a stationary state. However, 
having a stationary state does not automatically mean that the quantum search will not be able to find a 
marked vertex faster than classically. That is why we need to understand how the probability of finding a 
marked vertex behaves during the evolution. We proved that the probability is upper bounded by a 
function on the amplitudes of the stationary state and on the structure of the marked components.  
It is still an open problem to find which stationary state gives the minimum probability to find a marked 
vertex. In this way, we can obtain a tighter bound on the probability. Another interesting question, is 
whether we can find applications for the exceptional configurations. 
 
 

Finding a marked vertex in a graph can be a complicated task when using quantum walks. Recent results 
show that for two or more adjacent marked vertices search by quantum walk with Grover's coin may 
have no speed-up over classical exhaustive search.  
In this work, we analyze the probability of finding a marked vertex for a set of connected components of 
marked vertices. We prove two upper bounds on the probability of finding a marked vertex and sketch 
further research directions. 
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We consider the coined quantum walk with evolution operator:  
𝑈 = 𝑆. 𝐶 

where 𝐶 is the coin operator given by Grover’s diffusion operator and 𝑆 is the flip-flop shift. 
 
For searching, we add a query operator, 𝑄, which flips the sign of the marked vertices, that is,  

𝑈′ = 𝑆. 𝐶. 𝑄 
The initial state is the equal superposition over all vertex-direction pairs: 

 𝜓(0) =
1

2𝑚
   𝑣, 𝑐 

𝑑𝑣−1

𝑐=0

𝑛−1

𝑣=0

 

Where 𝑛 is the number of vertices, 𝑚 is the number of edges and 𝑑𝑣 is the degree of vertex 𝑣. 

C o i n e d  Q u a n t u m  W a l k  

1. All amplitudes of unmarked 
vertices are equal. 

2. The sum of the amplitudes 
of any marked vertex is 0. 

3. The amplitudes of two 
adjacent vertices pointing to 
each other are equal. 

1 2 

3 

This bipartite marked component of 
vertices (in red) has a stationary state.  

Note that 𝑑1
𝑀 = 2, 𝑑2

𝑀 = 3 and 𝑑3
𝑀 = 1. 
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Stationary state 

An example of the application of the evolution operator 𝑈′ = 𝑆. 𝐶. 𝑄 to a cycle of 5 vertices 
with two marked vertices (M = {3,4}). Labels on edges represent directional amplitudes of a 
vertex.  
The state on the left side is a stationary state. The amplitudes of marked vertices pointing to 
each other are equal to −𝑎, all other amplitudes are equal to 𝑎. In this case, the application of 
the query operator (Q) and the coin operator (C) will flip the sign of amplitudes in the marked 
vertices. 

 A bipartite marked connected component has a stationary state if and 

only if the sums of 𝑑𝑖
𝑀  for each bipartite set are equal.  

 
A non-bipartite marked connected component always has a stationary 
state. 

𝑑𝑖
𝑀  is the number of 

edges from the vertex 
𝑖 to vertices in 𝑉\M. 

(𝑑𝑖 = 𝑑𝑖
𝑀 + 𝑑𝑖

𝑀 ) 

3 .  B o u n d s  o n  t h e  p r o b a b i l i t y  

A state  𝜓  with the following properties is a stationary state of the quantum search algorithm, that is, 
𝑈′ 𝜓 =  𝜓  : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

The sum of the directional  amplitudes of a 
marked vertex must be equal to zero. 
Therefore, the amplitudes 𝑐𝑖𝑗 should satisfy 

 𝑐𝑖𝑗
𝑗 ∈ 𝑀
𝑖~𝑗

= 𝑑𝑖
𝑀      ∀ 𝑖 ∈ 𝑀 

Consider we have a disjoint set of k marked connected components M = 𝑀1 ∪𝑀2 ∪⋯∪𝑀𝑘 .  Let 𝐸𝑀𝑙 

be the set of edges with endpoints belonging to the marked component 𝑀𝑙 and let 𝑑𝑖
𝑀𝑙 be the number 

of edges from the vertex 𝑖 to vertices in 𝑉\𝑀𝑙 . Then, it follows that 
 
 
 
 
 
 
 
 
 
 
  

𝑝𝑀 ≤
2

𝑚
 𝑐𝑖𝑗

2 + 2
𝑖,𝑗∈ 𝑀
𝑗~𝑖

𝐷𝑀 + 2 𝐸𝑀  
𝐸𝑀 is the set of edges 
between marked vertices and 

𝐷𝑀 =  𝑑𝑖
𝑀 

𝑖 ∈𝑀 . 

𝑝𝑀 ≤
2

𝑚
  𝑐𝑖𝑗

2 + 2
𝑖,𝑗∈ 𝑀𝑙
𝑗~𝑖

𝐷𝑀𝑙 + 2 𝐸𝑀𝑙

𝑘

𝑙=1

 

 

where 𝐷𝑀𝑙 =  𝑑𝑖
𝑀𝑙

𝑖 ∈𝑀  

𝑚 is the number of edges 
of the graph. 

G e n e r a l i z i n g  f o r  m u l t i p l e  m a r k e d  c o m p o n e n t s  

For example, if we consider a 𝑑-regular graph with a 
set of marked vertices which consist of 𝑘 pairs of 
adjacent marked vertices  (i.e. 𝑀1 = 𝑀2 = ⋯ =
𝑀𝑘 = 2).  Then, the probability of finding a marked 

vertex, for any number of steps 𝑡, is 𝑂
𝑘𝑑2

𝑚
. Note 

that 𝐷𝑀𝑙 = 2(𝑑 − 1) and 𝐸𝑀𝑙 = 1 for all 𝑙 =

1, … , 𝑘. 
 
 
 
 
 
 
 
 
 
  

For 𝑎 = 1/ 2𝑚 

𝑝𝑀 =  𝑎 + 𝛼 2 +
𝑗∈𝑉\M
𝑗~𝑖

 𝑐𝑖𝑗𝑎 + 𝛼𝑖𝑗
2

𝑗∈M
𝑗~𝑖

𝑖𝜖𝑀

 

  𝛼2 +
𝑗∈𝑉\M
𝑗~𝑖

 𝛼𝑖𝑗
2

𝑗∈M
𝑗~𝑖

=  𝜓𝑁𝑆𝑇 
2

𝑖𝜖𝑀

 

 𝜓𝑁𝑆𝑇  

Our task is to maximize 

Subject to 

4 .  A p p l i c a t i o n s  

We consider the problem of deciding if a bipartite graph 𝐺 = (𝑉, 𝐸) has a perfect matching. It is known 
that the bipartite matching problem can be treated as a network flow problem.  Using this fact, we claim 
that if a bipartite graph has a perfect matching then its configuration of marked vertices embedded in 
the 2D-grid forms a stationary state. A sketch of the algorithm is below. 

Algorithm: 
1. Embed the bipartite graph into a 2D-grid and set its 

vertices as marked 
2. Run the Quantum Walk for 𝑡 time steps 
3. Measurement of the vertex register:  
             If the vertex is not marked, we have a matching.  
             Otherwise, we don’t have a matching. 
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Example of embedding 


