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This is an ongoing work. So far, we showed how decoherence inspired by percolation can be modeled on 
staggered quantum walks.  Removing vertices seems to not increase the tessellation number, and also 
preserve the “general structure” of the tessellations. Removing edges can be harder and it would be 
interesting if we could find a class of graphs where we can handle the removal of an arbitrary edge. Also 
it would be interesting to obtain analytical results on the range of probability in which we still have a 
speedup for the search algorithm. Since some instances of the coined model are included in the 
staggered model (Ref. [5]), we can establish a comparison of how the decoherence affects both models. 

When implementing quantum systems, decoherence problems are inevitable. These generally undesired 
effects are present in quantum walk implementations. Hence, it is crucial to understand how  
decoherence affects them. Decoherence inspired by percolation allows removing of vertices and/or 
edges in the graph. This type of decoherence was analyzed in many papers [2, 3, 4], using the discrete-
time (coined and Szegedy's model) and the continuous-time quantum walk models. Our goal is to 
analyze decoherence inspired by percolation on Staggered quantum walks [1]. 
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The added polygons are necessary to maintain the property that the tessellation should cover 
all vertices of the graph. If we don't add them, we will use partial tessellations like in the 
search algorithm (which is not our goal here). 

Removing a 
polygon 

Remove the edges inside the clique 
contained by the polygon. And a new 

polygon is added for each vertex in the 
clique. 

Special case of 
removing 

edges 

New tessellations may 
need to be created. 

Removing a 
vertex 

We should remove the vertex from the polygons which contains 
it. Small arrangements in the tessellations are needed.  
Since, each polygon is a clique, by removing one of its vertices it 
continues to be a clique. 

It seems removing a vertex does not increase the tessellation number, 
and also preserve the “general structure” of the tessellations. 

If we consider the staggered model obtained from the coined model. The 
equivalence of removing a vertex will be “almost” as removing an edge in the 
coined version. Only if we remove the two adjacent vertices which belongs to the 
polygon associated to the shift operator, then it will be equivalent to removing an 
edge in the coined version. 
 

Removing an 
edge 

Removing edges in the graph may not be simple. Each polygon 
contains a clique. By removing an edge, the polygon will not 
contain a clique anymore. In order to fulfill the required 
properties, new tessellations may be needed. This makes the 
process non-trivial and it will strictly depend on the structure of 
the graph. 

• A quantum walk model have an evolution operator based on local unitary operators.  
• Local operators obey the graph structure in the sense that if a particle is on a vertex v, it can move 

only to its adjacent vertices. 
• The Staggered Quantum Walk is obtained by partitioning the vertices into cliques. 
• An element of the partition is called a polygon; The union of polygons is called a tessellation; Usually 

we can define a quantum walk with two tessellations, but depending on the graph more tessellations 
can be required. 

• The Hilbert space is spanned by the vertices of the graph. 
 
 The recipe to build the SQW 

on the graph below is 

Make a partition of the vertices 
so that each element of the 
partition is a clique. • An element of the partition is 

called a polygon (it is always a 
clique, but not necessarily a 
maximal clique); 

• The polygons do not overlap and 
their union contain all vertices; 

• The polygon union is called a 
tessellation; 

Since we have covered all edges of the 
graph, the evolution operator is 

𝑈 = 𝑈1 ∙ 𝑈0 

STEP 1 

Associate a unit vector to each polygon, 
for example: 

 𝛼0 =
1

2
 0 +  1 +  2 +  3  

 𝛼1 =  4  

And we have the local unitary operator 
𝑈0 = 2 𝛼0  𝛼0 + 2 𝛼1  𝛼1 − 𝐼 

STEP 2 

Make a second vertex partition 
in order to cover the edges not 
included in the first tessellation. 

We may need to use more 
than two tessellations. 

STEP 3 

Associate a unit vector in the subspace 
spanned by the polygon vertices, for 
example: 

 𝛽0 =
1

2
 0 +  1  

 𝛽1 =
1

3
 2 +  3 +  4  

And we have the local unitary operator 
𝑈1 = 2 𝛽0  𝛽0 + 2 𝛽1  𝛽1 − 𝐼 

STEP 4 
STEP 5 

1. Introduction 

S t a g g e r e d  Q u a n t u m  W a l k s  

2. D e c o h e r e n c e  M o d e l s  ( i n s p i r e d  o n  p e rc o l a t i o n )  

R e m o v i n g  Ve r t i c e s  

R e m o v i n g  E d g e s  

R e m o v i n g  P o l y g o n s  

3. F i n a l  Re m a r k s  

We numerically obtained the success probability of finding a marked 8-clique in the following graph 
when we randomly remove polygons in the graph with some probability.   It would be interesting to 
obtain the range of  probability in which we still have a speedup for the search algorithm. 

Average over 
100 runs of 

the algorithm. 
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For details, refer to [6]. 


