

DISPERSION ENGINEERING OF WHISPERING GALLERY MODE RESONATORS FOR FREQUENCY COMB GENERATION AND TELECOMMUNICATION APPLICATIONS

(1)University of Latvia, Institute of Atomic Physics and Spectrscopy;

(2) AFFOC Solutions

Kristians Draguns(1,2), Inga Brice(1), Toms Salgals(2), Janis Alnis(1)

kristians.draguns@lu.lv

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Whispering Gallery in St Paul's Cathedral [1,2]

Whispering Gallery Mode Resonators (WGMRs) [3]

Coupling WGMR with light using evanescent field

 $2\pi Rn = m\lambda$

Different WGMR types

Material dispersion, Sellmeier's equation (for SiO₂)

R& 965 tin (Elia de Da Inhilia)

6

Maliffaond silica

5

4

$$n^2 - 1 = \frac{0.6961663\lambda^2}{\lambda^2 - 0.0684043^2} + \frac{0.4079426\lambda^2}{\lambda^2 - 0.1162414^2} + \frac{0.8974794\lambda^2}{\lambda^2 - 9.896161^2}$$

1.6

Material dispersion, Sellmeier's equation (for SiO₂)

Geometric dispersion

Geometric dispersion

Dispersion analysis using Finite Element Method (FEM) simulations

Expression	Unit	Description	
ewfd.freq	Hz	Frequency	
ewfd.neff/r1	1/m	Refractive index n	
Esq^2/Equa	um^2	Mode area	
Esqr/Esq	μm	Effective radius	
ewfd.neff*2*pi*ewfd.freq/c_const	1/m	m	

$$FSR = D_1 = \frac{\partial \omega}{\partial m} \Big|_{m_0} [rad/s]$$

$$D_2 = \frac{\partial^2 \omega}{\partial m^2} \bigg|_{m_0} [rad/s]$$

freq	n	Aeff	Reff	m
1E+14	1.3187878	31.39729	317.362	917.639695
1.04E+14	1.3238103	29.66119	317.7076	958.731791
1.08E+14	1.3283721	28.09027	318.0327	999.762435
1.12E+14	1.3325382	26.66243	318.3391	1040.74308
1.16E+14	1.3363614	25.35935	318.6285	1081.68292
1.2E+14	1.3398857	24.1657	318.9025	1122.58941
1.24E+14	1.3431473	23.06855	319.1623	1163.46863
1.29E+14	1.3461771	22.05695	319.409	1204.32561
1.33E+14	1.3490008	21.12151	319.6438	1245.16456
1.37E+14	1.3516407	20.25418	319.8674	1285.98895
1.41E+14	1.3541157	19.44801	320.0809	1326.80177
1.45E+14	1.3564423	18.69692	320.2848	1367.60551
1.49E+14	1.3586347	17.99563	320.4799	1408.40232
1.53E+14	1.3607053	17.3395	320.6667	1449.19403
1.57E+14	1.3626652	16.72445	320.8459	1489.98223
1.61E+14	1.3645240	16.14687	321.0179	1530.76829
1.65E+14	1.3662902	15.60355	321.1832	1571.55341
1.69E+14	1.3679713	15.09162	321.3421	1612.33864
1.73E+14	1.3695742	14.60855	321.4952	1653.12488
1.78E+14	1.3711048	14.15204	321.6427	1693.91296

OPEN READINGS

OPEN READINGS

Four Wave Mixing (FWM), anomalous dispersion [4, 5, 6]

Dispersion engineering

Dispersion engineering

Modeling combs in pyLLE [7]

Modeling combs in pyLLE

[1] https://www.anglicannews.org/ImageGen.ashx?image=/media/1863503/garry-knight-flickr_st-paulscathedral-london-england_700x467.jpg

[2] https://www.standard.co.uk/s3fs-public/thumbnails/image/2017/10/11/15/stpaulsinterior1110b.jpg

[3] Pongruengkiat W, Pechprasarn S. (2017) Whispering-Gallery Mode Resonators for Detecting Cancer. Sensors.; 17(9):2095.

[4] Chembo, Y. K. (2016). Kerr optical frequency combs: Theory, applications and perspectives. *Nanophotonics*, *5*(2), 214–230.

[5] Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L., & Lipson, M. (2018). Battery-operated integrated frequency comb generator. *Nature*, *562*(7727), 401–405. https://doi.org/10.1038/s41586-018-0598-9

[6] S. Fujii, T. Tanabe, (2020) Dispersion engineering and measurement of whispering gallery mode

microresonator for Kerr frequency comb generation, Nanophotonics 9, 1087–1104

[7] Moille, G., Li, Q., Lu, X., & Srinivasan, K. (2019). Pylle: A fast and user friendly lugiato-lefever equation solver. *Journal of Research of the National Institute of Standards and Technology*, *124*(124012).

OPEN READINGS 2021

Thank you for attention!

Kristians.draguns@lu.lv

Funding: ERDF project Nr. <u>1.1.1/18/A/155</u>

IEGULDĪJUMS TAVĀ NĀKOTNĒ

