Geometry optimization and soliton comb formation inside whispering gallery mode resonators

Draguns Kristians, Atvars Aigars, Veilande Rita, Alnis Janis

Frequency comb applications

Whispering gallery mode resonators (microresonators)

[Schunk, G., Furst, J. U., Fortsch, M., Strekalov, D. V., Vogl, U., Sedlmeir, F., Schwefel, H. G. L., Leuchs, G., Marquardt, C., Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern, Opt. Express 22(25), 30795–30806 (2014)]

High intensity \rightarrow nonlinear effects

Dispersion

[https://refractiveindex.info/?shelf=main&book=Ta2O5&page=Rodriguez-de_Marcos]

Non-lorentzian resonance shape

Detuning

[Herr, T., Brasch, V., Jost, J. D., Wang, C. Y., Kondratiev, N. M., Gorodetsky, M. L., & Kippenberg, T. J. (2014). Temporal solitons in optical microresonators. *Nature Photonics*, *8*(2), 145–152. https://doi.org/10.1038/nphoton.2013.343]

Soliton formation

A soliton is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium.

Chembo, Y. K. (2016). Kerr optical frequency combs: Theory, applications and perspectives. *Nanophotonics*, *5*(2), 214–230. https://doi.org/10.1515/nanoph-2016-0013

Lugiato-Lefever equation

FEM solver COMSOL

$$D = -\frac{2\pi c}{\lambda^2} \frac{\partial^2 k}{\partial \omega^2} \left[\frac{ps}{nm \ km} \right]$$

m	λ <i>,</i> μm	Frequency, Hz	neff	reff, m	Aeff, μm²
1600	1.613964	185749204925205	1.406245	0.00029226237019	3.33276793
1601	1.613099	185848744960256	1.406372	0.00029226207363	3.33146485
1602	1.612236	185948290218364	1.406498	0.00029226177662	3.33016082
1603	1.611373	186047840685406	1.406624	0.00029226147916	3.32885584
1604	1.610511	186147396350256	1.406751	0.00029226118125	3.32754990
1605	1.60965	186246957197855	1.406877	0.00029226088288	3.32624297
1606	1.60879	186346523216125	1.407002	0.00029226058406	3.32493507
1607	1.607931	186446094392028	1.407128	0.00029226028479	3.32362616

Dispersion parameter 500 400 400 200 100 0 -100 1100 1200 1300 1400 1500 λ [nm]

Ta_2O_5 resonator geometry optimisation process

- 1) Initial geometry
- 2) Parametric sweep m
- 3) Calculate dispersion
- 4) Change geometry, repeat

python pyLLE

End result

Thank you for attention!

kristians.draguns@lu.lv

Funding from project ERDF No. 1.1.1.1/18/A/155

IEGULDĪJUMS TAVĀ NĀKOTNĒ