ČUKSTOŠĀS GALERIJAS MODAS SILĪCIJA DIOKSĪDA MIKROSFĒRAS REZONATORU PIELIETOJUMI BIOSENSOROS UN OPTISKO FREKVENČU ĶEMMĒM

LATVIJAS UNIVERSITĀTE ATOMFIZIKAS UN SPEKTROSKOPIJAS INSTITŪTS Promocijas darba priekšaizstāvēšana

Inga Brice 17.06.2021.

Saturs

- levads
 - Motivācija
 - ČGMR ģeometrija
 - Gaismas ievadīšana ČGMR
 - Raksturošana ar labuma (Q) faktoru
 - ČGMR pielietojumi
 - Tēzes
- Čukstošās galerijas modu rezonatoru biosensori
- Optiskās frekvenču ķemmes ģenerēšana mikrosfērās
- Nobeigums

Motivācija

ČGMR ģeometrija

Gaismas ievadīšana ČGMR

- Brīvtelpas sapārošana
 - Efektivitāte ~10%
- Sapārošanas prizma
 - Efektivitāte ~85%
- Trapecveida šķiedra
 - Efektivitāte ~95%

Raksturošana ar labuma (Q) faktoru

Tēzes

- ČGMR virsmas pārklāšana ar funkcionējošo slāni samazina Q faktoru, jo slānis galvenokārt palielina virsmas izkliedes zudumus.
- ČGMR/Au-NPs/GOx struktūrā Au NPs paplašināja virsmas viļņa gaistošo lauku ar LSP rezonanšu palīdzību un palielināja ČGMR glikozes sensora jutīgumu.
- ČGMR/ZnO/BLV/BSA struktūrā ZnO nanoslāņu virsma ir vislabāk piemērota pārklājumam uz ČGMR, un tās optimālais biezums ir 10 - 20 nm un Q faktors 5 · 10⁶.
- Mikrosfēras izmērs nosaka attālumu starp ģenerētajām WComb līnijām, kas ļauj pielāgot tās pielietojumam WDM ITU-T G.694.1 datu pārraides tīklam. Piemērots mikrosfēras diametrs, lai attālums starp WComb līnijām būtu atbilstošs, bija 166 µm, kas ģenerēja 400 GHz (1 FSR) un 800 GHz (2 FSR) WComb.
- WComb ilgtermiņa stabilitāti ietekmē temperatūra, kas var mainīt gan sapārošanas apstākļus, gan lāzera polarizāciju.

WComb – ar ČGM rezonatoru ģenerēta optiskā frekvenču ķemme

Saturs

- levads
- Čukstošās galerijas modu rezoantoru biosensori
 - Biosensori
 - Testēšnas iekārta
 - Glikozes sensora modelis
 - Glikozes sensora modeļa testēšana
 - Toksīna sensora modelis
 - ZnO pārklājumi
 - Toksīna sensora modeļa testēšana
 - leteikumi turpmākajiem pētījumiem
- Optiskās frekvenču ķemmes ģenerēšana mikrosfērās
- Nobeigums

Čukstošās galerijas modu rezonatoru biosensori

- Prasības
 - Jutīgums
 - Stabilitāte
 - Selektivitāte
- Jutības mehānismi
 - Rezonanses frekvence
 - Rezonanses līnijas platums
- Virsmas funkcionalizācija

Testēšanas iekārtas

Iekārta sensora atbildes reakcijas testēšanai – šķidruma pilienā

Iekārta raksturošanai - gaisā

photodiode

Testa iekārtas problēmas

Temperatūras jutība

Glikozes sensora modelis

Glikozes sensora modelis

Au NPs uz liektas ČGMR virsmas

Glikozes sensora modeļa testēšana

Jutīguma palielināšana, izmantojot Au NPs

LSP rezonanses – lokālās virsmas plazmonu rezonanses

Glikozes sensora modeļa testēšana

Glikozes - GOx reakcijas pārbaude

Glikozes sensora modeļa testēšana

Glikozes koncentrācijas ietekme

Toksīna sensora modelis

BLV – antigēns govju leikēmijas vīruss BSA – liellopu seruma albumīns

Toksīna sensora modeļa testēšana

Q faktors salīdzināms ar glikozes sensora modeli, taču izmantojamo paraugu daudzums zems. Reģistrēta sensora atbildes reakcija, taču netika veikti dažādi kontroles mērījumi.

leteikums turpmākajiem pētījumiem

- Iespējams uzlabot ZnO nanokristālu slāņa kvalitāti vai izmantot ZnO nanoslāņus
- Toksīna sensoram jāveic kontroles mērījumi
- Pāriet uz čipa izgatavotu ČGMR kopā ar mikrofluidikas tehnoloģijām

Jāpeivieno bilde ar čipeim

Saturs

- levads
- Čukstošās galerijas modu rezonatoru biosensori
- Optiskās frekvenču ķemmes ģenerēšana mikrosfērās
 - Pielietojums viļņgarumdales multipleksēšanā
 - Nelineārie procesi ČGMR mikrosfērā
 - lekārta WComb ģenerēšanai
 - Ierosinātās WComb
 - Pumpējošā lāzera skenēšana pāri 32 C-joslas kanāliem
 - Cirkulējošā jauda
 - WComb stabilitāte
 - leteikums turpmākajiem pētījumiem
- Nobeigums

Optiskās frekvenču ķemmes ģenerēšana mikrosfērās λ.....

c-josla

- Lai ģenerētu optisko frekvenču ķemmi ČGMR (WComb) nepieciešami nelineāri procesi
 - Četru viļņu sajaukšanās
 - Kerra efekts
- Pielietojums viļņgarumdales multipleksēšanai telekomunikāciju datu pārraidei

Silīcija dioksīda mikrosfēra

Nelineārie procesi ČGMR mikrosfērās

Četru viļņu sajaukšanās

Kerra efekts

Iekārta WComb ģenerēšanai

Ierosinātās WComb

d, µm izmērīts	f _{FSR} , GHz izmērīts	f _{FSR} , GHz aprēķināts
270 ± 10	288 ± 15	246 ± 9
120 ± 5	538 ± 12	553 ± 23
166 ± 5	397 ± 10	400 ± 12
170 ± 5	392 ± 5	390 ± 11

Pumpējošā lāzera skenēšana pāri 32 C-joslas kanāliem

Cirkulējošā jauda

$$P_{\text{circ}} = \frac{\lambda Q_{intr}}{\pi^2 n R} \frac{K}{(K+1)^2}$$
$$I_{\text{circ}} = \frac{P_{\text{circ}}}{A_{eff}}$$

R, µm	Q·107	Т	К	Q _{intr} ·10 ⁷	P _{circ} , W	Α _{eff} , μm²	I _{circ} , GW/cm²
135	2,0	0,17	1,69	5,4	1016	36,15	2,8
60	1,2	0,26	2,05	3,7	1486	18,45	8,0
85	4,6	0,54	3,89	22,0	4671	24,62	19,0
83	3,7	0,14	1,61	9,7	3000	24,14	12,4

Literatūrā pieminēts, lai ģenerētos WComb, jāsasniedz cirkulējošā intensitāte ČGMR ar kārtu GW/cm²

WComb stabilitāte

- Katra ķemmes zoba intensitāte mainās neatkarīgi
- Temperatūra var mainīt:
 - sapārošanas apstākļus
 - ČGM rezonanses frekvenci
 - ČGMR un trapecveida šķiedras pozīciju
 - lāzera polarizāciju, kuru ietekmē pievades šķiedra

leteikums turpmākajiem pētījumiem

• Izvēlēties citu ČGMR ģeometriju, kurai ir vairākas iespējamas parametru variācijas

Saturs

- levads
- Čukstošās galerijas modu rezoantoru biosensori
- Optiskās frekvenču ķemmes ģenerēšana mikrosfērās
- Nobeigums
 - Galvenie secinājumi
 - Publikācijas
 - Konferences
 - Pateicība

Galvenie secinājumi – glikozes sensors

- ČGMR virsmas funkcionalizācijas katrs slānis samazina Q faktoru, palielinot izkliedes zudumus uz ČGMR mikrosfēras virsmas.
- GOx tika izvēlēts kā selektīvais slānis glikozes sensoram, jo tas oksidē glikozi. Kontroles mērījumi apstiprināja ČGM rezonanses nobīdi tikai tad, kad paraugam bija gan uzklāts GOx slānis, gan testa šķidruma pilienā bija glikoze.
- Au NPs tika tika uzklāts uz ČGMR virsmas, lai paplašinātu virsmas viļņa gaistošo lauku ar LSP rezonansēm un palielinātu ČGMR jutīgumu. Kontroles mērījumi apstiprināja jutīguma pieaugumu paraugiem pārklātiem gan ar Au NP, gan ar GOx, salīdzinot ar paraugiem pārklātiem tikai ar GOx.

Galvenie secinājumi – toksīna sensors

- Selektivitātei tika izvēlēta antigēna/antivielu BLV reakcija.
- No pārbaudītajām ZnO struktūrām vislabākā kvalitāte bija ALD nanoslānim ar optimālo 10 - 20 nm biezumu. ZnO nanovadu struktūra bija pārāk raupja, lai novērotu ČGM rezonanses, savukārt, tikai 50% ZnO nanokristālu paraugu bija piemēroti turpmākai pārklāšanai.

Galvenie secinājumi – WComb

- Bija iespējams ģenerēt WComb, izmantojot stikla ČGMR mikrosfēru.
- Sfēras rādiuss noteica attālumu starp ķemmes līnijām. Lai FSR pielāgotu WDM tīklam ar 100 vai 50 GHz attālumu starp kanāliem, jāpārbauda lielākas mikrosfēras.
- Temperatūras stabilitāte ietekmē WComb ģenerēšanas ilgtermiņa stabilitāti mikrosfēras rezonatoros.

Publikācijas

[P1] Inga Brice, Karlis Grundsteins, Aigars Atvars, Janis Alnis, and Roman Viter. "Whispering gallery mode resonators coated with Au nanoparticles." In: Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVI. Ed. by André-Jean Attias and Balaji Panchapakesan. SPIE, 2019, p. 65. doi: 10.1117/12.2528677

Autora ieguldījums 80%.

 [P2] Inga Brice, Karlis Grundsteins, Aigars Atvars, Janis Alnis, Roman Viter, and Arunas Ramanavicius.
"Whispering gallery mode resonator and glucose oxidase based glucose biosensor." In: Sensors and Actuators B: Chemical 318 (2020), p. 128004. doi: 10.1016/j.snb.2020.128004

Autora ieguldījums 70%.

[P3] Inga Brice, Roman Viter, Kristians Draguns, Karlis Grundsteins, Aigars Atvars, Janis Alnis, Emerson Coy, and Igor Iatsunskyi. "Whispering gallery mode resonators covered by a ZnO nanolayer." In: Optik 219 (2020), p. 165296. doi: 10.1016/j.ijleo.2020.165296

Autora ieguldījums 60%.

[P4] Inga Brice, Karlis Grundsteins, Arvids Sedulis, Toms Salgals, Sandis Spolitis, Vjaceslavs Bobrovs, and Janis Alnis. "Frequency comb generation in whispering gallery mode silica microsphere resonators." In: Laser Resonators, Microresonators, and Beam Control XXIII. Ed. by Andrea M. Armani, Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko, and Julia V. Sheldakova. Vol. 11672. SPIE, 2021, p. 1167213. doi: 10.1117/12.2577148

Autora ieguldījums 70%.

Publikācijas

- [P5] Janis Alnis, Inga Brice, Andra Pirktina, Alma Ubele, Karlis Grundsteins, Aigars Atvars, and Roman Viter. "Development of optical ČGM resonators for biosensors." In: Biophotonics—Riga 2017. Ed. by Janis Spigulis. Vol. 10592. 105920B. SPIE, 2017, p. 19. doi: 10.1117/12.2297551
- [P6] J. Braunfelds, R. Murnieks, T. Salgals, I. Brice, T. Sharashidze, I. Lyashuk, A. Ostrovskis, S. Spolitis, J. Alnis, J. Porins, and V. Bobrovs. "Frequency comb generation in ČGM microsphere based generators for telecommunication applications." In: Quantum Electronics 50 (2020), p. 1043–1049. doi: 10.1070/QEL17409
- [P7] Toms Salgals, Janis Alnis, Rihards Murnieks, Inga Brice, Jurgis Porins, Alexey Andrianov, Elena Anashkina, Sandis Spolitis, and Vjaceslavs Bobrovs. "Demonstration of fiber optical communication system employing silica microsphere-based OFC source." In: Optics Express 27 (2021), p. 10903. doi: 10.1364/OE.41954
- [P8] Kristians Draguns, Inga Brice, Aigars Atvars, and Jānis Alnis. "Computer modelling of ČGM microresonators with a zinc oxide nanolayer using COMSOL multiphysics software." In: Laser Resonators, Microresonators, and Beam Control XXIII. Ed. by Andrea M. Armani, Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko, and Julia V. Sheldakova. Vol. 11672. March. SPIE, 2021, p. 1167216. doi: 10.1117/12.2578210
- [P9] Roberts Berkis, Janis Alnis, Aigars Atvars, Inga Brice, Kristians Draguns, and Karlis Grundsteins. "Quality Factor Measurements for PMMA WGM Microsphere Resonators Using Fixed Wavelength Laser and Temperature Changes." In: 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2019, 01P05–1–01P05–4. doi: 10.1109/NAP47236.2019.219072.
- [P10] Roberts Berkis, Janis Alnis, Inga Brice, Aigars Atvars, Kristians Draguns, Kārlis Grundšteins, and Pauls Kristaps Reinis. "Mode family analysis for PMMA WGM micro resonators using spot intensity changes." In: Laser Resonators, Microresonators, and Beam Control XXIII. Ed. by Andrea M. Armani, Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko, and Julia V. Sheldakova. Vol. 11672. March. SPIE, 2021, p. 1167217. doi: 10.1117/12.2577025
- [P11] Pauls Kristaps Reinis, Lase Milgrave, Kristians Draguns, Inga Brice, Janis Alnis, and Aigars Atvars. "High-Sensitivity Whispering Gallery Mode Humidity Sensor Based on Glycerol Microdroplet Volumetric Expansion." In: Sensors 21 (2021), p. 1746. doi: 10.3390/s21051746
- [P12] Elena A. Anashkina, Vjaceslavs Bobrovs, Toms Salgals, Inga Brice, Janis Alnis, and Alexey V. Andrianov. "Kerr Optical Frequency Combs With Multi-FSR Mode Spacing in Silica Microspheres." In: IEEE Photonics Technology Letters 33 (2021), pp. 453–456. doi: 10.1109/LPT.2021.3068373.

Konferences

- [C1] 1st International Conference "Biophotonics Riga 2013", Rīga, Latvija (29.-31. augusts, 2013), plakāts "Towards Skin Fluorescence Diagnostics Using Femtosecond Frequency Comb Laser" I.Brice, I.Ferulova, J.Spigulis, J.Alnis
- [C2] 1st International Conference "Nocturnal Atmosphere, Remote Sensing and Laser Ranging: NOCTURNAL Riga 2014" Rīga, Latvija (17. oktobtis, 2014), plakāts "GNSS More Than a Tool for Navigation", I. Brice, J. Alnis
- [C3] 11th International Young Scientist conference "Developments in Optics and Communications" Rīga, Latvija (8.-10. aprīlis, 2015), plakāts "GNSS More Than A Simple Tool For Navigation", Inga Brice, Janis Alnis, p. 26 (2015)
- [C4] Fifth International School and Conference on Photonics "Photonica 2015" Belgrada, Serbija, (24.-28. augusts, 2015), poster presentation "Measurements of Rb hyperfine splitting with a femtosecond optical frequency comb", I. Brice, J. Alnis, J. Rutkis, p. 98 (2015)
- [C5] 12th International Young Scientist conference "Developments in Optics and Communications Riga", Rīga, Latvija (21.-23. marts, 2016), plakāts "Measurements of Rb 5S-5P Transition with a femtosecond optical frequency comb", Inga Brice, Janis Alnis, Jazeps Rutkis, p. 11 (2016)
- [C6] 60th International Conference for Students of Physics and Natural Sciences "Open readings 2017" Viļņa, Lietuva (14.-17. marts, 2017), plakāts "TOWARDS WGM RESONATOR STABILISED ON Rb 5S-5P TRANSITION LINES" Inga Brice, Antons Pribitoks, Janis Alnis, p. 212 (2017)
- [C7] 2nd International Conference "Biophotocis Riga 2017" Rīga, Latvija (27.-29. augusts, 2017), plakāts "Development of Optical WGM Resonators for Biosensors", I. Brice, A. Pirktina, A. Ubele, K. Grundsteins, A. Atvars, R. Viter, J. Alnis, p. 34 (2017)
- [C8] International conference "Nanomaterials for biosensors and biomedical applications" Jūrmala, Latvija (2.-4. jūlijs, 2019), plakāts "WGMR coated with Au NPs to enhance the sensitivity" I. Brice, K. Grundsteins, A. Atvars, R. Viter, J. Alnis, p. 62 (2019)
- [C9] 10th Optoelectronics and Photonics Winter School:NLP2019-Nonlinear Photonics, Trenta-Andalo, Itālija (20.-26. janvāris, 2019), plakāts "Temperature scanning the WGMR resonances in air and water" I. Brice, D. Damberga, K. Grundsteins, U. Berzins, A. Atvars, R. Viter, J. Alnis
- [C10] "SPIE Optics + Photonics 2019" Sandjēgo, ASV (11.-15. augusts, 2019), plakāts "Whispering gallery mode resonators coated with Au nanoparticles", I. Brice K. Grundsteins, A. Atvars, J. Alnis, R. Viter, Proceedings of SPIE: Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVI. Vol. 110892019 p. 110891T (2019)
- [C11] Third edition of Photonics Online Meet-up "POM2021" ASV tiešsaites pasākums (11.-14. janvāris, 2021), plakāts "Optical frequency comb generated inside silica microsphere for WDM Data Transmission System" Inga Brice, Karlis Grundsteins, Toms Salgals, Janis Alnis, p. 132 (2021)
- [C12] "SPIE Photonics West 2021" Sanfrancisko, ASV tiešsaites pasākums (6.-11. marts, 2021), plakāts "Frequency comb generation in whispering gallery mode silica microsphere resonators" Inga Brice, Karlis Grundsteins, Arvids Sedulis, Toms Salgals, Sandis Spolitis, Vjaceslavs Bobrovs, Janis Alnis, Proceedings of SPIE: Laser Resonators, Microresonators, and Beam Control XXIII. Vol. 11672, p. 1167213 (2021)
- [C13] International Conference "Quantum Optics and Photonics 2021" Rīga, Latvija tiešsaites pasākums (22.-23. aprīlis, 2021), plakāts "Whispering gallery mode silica microsphere resonator applications for biosensing and communications" Inga Brice, Toms Salgals, Vjaceslavs Bobrovs, Roman Viter, Janis Alnis, p. 35 (2021)

Pateicība

Paldies

- promocijas darba vadītājam Jānim Alnim
- Roman Viter un Arunas Ramanavicius ČGMR biosensoru pētījumi
- LU ASI
- sadarbības partneriem

Promocijas darba pētījumu rezultāti izmantoti zinātniski pētniecisko projektu realizācijai:

- ERAF Nr. 1.1.1.1/16/A/259 "Jaunu čukstošās galerijas modu mikrorezonatoru izstrāde optisko frekvenču standartu un biosensoru pielietojumiem, un to raksturošana ar femtosekunžu optisko frekvenču ķemmi";
- ERAF Nr. 1.1.1.1/18/A/155 "Uz čukstošās galerijas modas mikrorezonatora bāzes veidota optisko frekvenču ķemmes ģeneratora izstrāde un tā pielietojumi telekomunikācijās";
- LZP Nr. Lzp-2018/1-0510 "Optiski čukstošās galerijas modu mikrorezonatoru sensori".

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Paldies par uzmanību!