B1t-Commitment and Coin
Flipping in a Device-Independent
Setting
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Outline of Talk

4 Introduction: Device-independent (DI) approach to quantum cryptography, bit-
commitment (BC), the GHZ paradox.

4 A DI quantum BC protocol.
- 4 Comparison with device-dependent (DD) version of protocol.
+ Implications for quantum coin flipping (CF).

Generalization of protocols to maximally nonlocal post-quantum theories

Summary

Upen questions



Device-Independent Approach to
Quantum Cryptography

4 The power of quantum cryptography is that security is guaranteed by the laws of
physics irrespectively of the capabilities of an adversary, 1.e. his computational
power, etc.

4 Still, quantum protocols call for assumptions on the capabilities of honest
participants:
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i Havmg secure labs source of trusted randomness and assiinlptlons on the I
inner workings of the p physical setup. €.g. Hllbert’space'dlmensmn'of the

quantum information carriers, etc.

4 DI approach’s aim is to base security on a minimum # of assumptions by
eliminating any assumptions on the inner workings
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Achieved by basing security on nonlocality and no-signaling (Barrett et al. 05)
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4 Reason no such assumptions are needed is because security is evaluated by
observing nonlocal correlations between no-signaling devices. For example:

4+ In DI QKD high violation of CHSH inequality implies, via monogamy of
entanglement, that Eve has no information of (processed) key (Acin et al.
07).
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* Contrastw1th~the entanglement-oaséd Ver51on of BB84 protocol KWhere 1f source S
dispenses qudits instead of qul qubits mﬁy is utterly breached (Acin et al

06). = Need to know Hilbert space dimension.

4 Scope of approach is so broad, it covers not only malfunctions but allows for the
physical setup to have been fabricated by an adversary




4 Approach is also useful for non-cryptographic applications, ¢.g. RNG (Colbeck
06, Pironio et al. 10), self-testing devices (Mayers & Yao 04), and certification of
genuine multi-partite entanglement (Bancal et al. 11).

4 Latter work contains instructive example showing how tilting by € one
measurement axis of one device, i.e. o, — cosfo, + sinfo,, can result in the
DD genume tr1 partlte entanglement w1tness

falsely classifying bi-separable states as genuinely tri-partite entangled. = Need
for DI witnesses




Device-Independent Distrustful
Cryptography

4 Distrustful cryptography refers to cryptographic protocols where the participants
don’t trust each other.

4 Example is CF where two parties wish to agree on the value of a bit but each
party doesn’t trust the other not to cheat, i.e. deviate from protocol.

4 It 1sn’t a priori clear if such protocols admit a DI formulation, since in contrast to
e D LOK DS Where the parties trust each other and collaborate to (statlstlcally) TR I

| cert1fy amount of B%“nlocahty preseni”:ﬁ'd resultlﬁ'glﬁél of security - honest

only trust themselves

4 However, as we’ll see, statistical estimation of amount of nonlocality isn’t an
essential building block of DI approach

4 Specifically, we’ll show that BC and CF admit a DI formulation with cheating
probabilities reasonably close to optimal ones ot the DD setting



Bit-Commitment

4 In BC Alice must commit a bit to Bob, such that she cannot change it once
she committed, and Bob cannot learn it until she reveals it.

4 BC incorporates two phases:
4+ Commit phase - where Alice commits to a bit by sending Bob a token.
Sk e s i 4 Reveal phase ‘where Allce reveals the b1t A S i R
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impossible, i.e. dishonest party can cheat perfectly

Using quantum resources, perfect BC 1s impossible (Mayers 96, Lo & Chau.
06), but imperfect protocols exist (Ambainis 01, Spekkens & Rudolph 01)

Optimal quantum protocol: 0.739 cheating probability for both parties

(Chailloux & Kerenidis



The GHZ paradox

4 GHZ paradox is another example of nonlocality of QM. Paradox is easily
explained as a three-player game:

4+ Before start of game Alice, Bob and Claire may communicate and share
resources, but afterwards they cannot.

+ Game starts with player ¢ receiving a binary input ;. Inputs must
;.,;satlsfy s EB 32 EB 8;;, = 1 w1th dlfferent combmatlons equally probable R do
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4 Classically game cannot always be won. Easy to see by representing outputs
correspondingto s; =0, s; =1 by y;, = (—1)", =z, =(-1)",
respectively. Winning conditions then read




4 The GHZ state |000) 4+ |111) has property that it’s an eigenstate with
eigenvalues -1 and 1, respectively, of
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4 Strategy 1s then to measure when receiving

respectively. = (ame 1S always won



The Assumptions Behind the Setup

4 Each party has (‘black’) boxes with knobs to choose (classical) inputs s; and
registers for (classical) outputs 7; . Entering an input always results in an
output.

4 Boxes can’t communicate with one another, implying that if II, |S are an
- honest party S POVM elements correspondmg to 1nputt1ng eS8 and i e i e
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outputting then

(A dishonest party can select and

I'he parties have a trusted source of randomness

NO Information leaks out of an honest party's lab

1 J A
he parties are restricted by OV



Device-Independent Bit-Commitment
Protocol

4 Alice has box 1 and Bob has boxes 2 and 3. The
boxes are supposed to satisfy GHZ paradox.

4 Commit phase:

+ Alice inputs into her box her commitment s;.

4 She randomly pleS a b1t a and s‘ends |

Aﬁﬁr )1[1 \ ,;)//4
Alice sends Bob He checks if

or It not. he aborts
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Bob’s Security: Dishonest Alice’s
Strategy

4 Since Bob sends Alice no information WNLOG we may assume she
sends ¢ =0 as her token, and accordingly prepares Bob’s boxes.

4 It’s then straightforward to show that Alice’s cheating probability is given by

it

7 [P (@12223 = 1) + P (2132ys = —1) + P (22y3 = —1) + P (233 = —1)]
I (Wher outputs correspondlng to mputtmg sz = O sz = 1 are denoted bk i
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probability in the CHSH game

® Alice s strategy 1S to prepare bob 'S boxes 1n a maximally entangled 2-qubit state

1114 N1S ACVICCS SUCn tnat tnat tncy maxiimiailiy [014dlC U1C 101 Inequality



Alice’s Security: Dishonest Bob’s
Strategy

4 Bob’s most general strategy is to entangle Alice’s box with an ancilla and after
receiving ¢ (dependent on its value) measure a dichotomic operator on the
ancilla, whose outcome is his guess of the bit.

4 Bob’s maximum cheating probability obtains by maximizing
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4 Bound can be obtained using classical strategy

4+ Bob programs Alice’s box such that and guesses for the

commuitted bit. Since Alice 1S honest /5% o1 time



Device-Dependent Version of Protocol

4 In the DD version of protocol:

+ (Honest) Alice prepares a 3-qubit GHZ state and sends Bob two of the
qublts bt ae o
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[t turns out that the DD version doesn’t give rise to lower cheating
probabilities than the DI version. = DD optimal cheating strategies are alsa

optimal 1n the DI case



Coin Flipping

4 In CF remote Alice and Bob wish to agree on a bit, but they don’t trust each
other.

4 Like BC, classically, CF is impossible.

ot & Usmg quantum resources story : 1s dlfferent (Aharonv et al 00 Ambalms 01 e i st

Spe s & Rudolph 01).



Device-Indpendent Coin Flipping
Protocol

4 Standard way to construct CF using BC is to have Bob send Alice a random
bit after commit phase. The outcome is the XOR of their bits.

4 Cheating probabilities are identical to those of BC protocol.

4 Imbalance in cheating probabilities can be used to construct another CF
- protocol with cheating probabilities evened out through repetition:
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Device-Independent Distrustful
Cryptography in Post-Quantum Theories

4 It’s interesting to inquire whether our protocols are secure in post-quantum
theories (1.e. no-signaling theories leading to a greater violation of CHSH
inequality then Tsirelson’s bound).

4 In the BC protocol Alice’s security is based only on no-signaling but Bob’s is
determined by Tsirelson’s bound. = Protocol is secure in all post-quantum
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Post-Quantum Device-Independent Bit-
Commitment & Coin Flipping

4 GHZ paradox plays a crucial role in our protocol in that it determines Bob’s test
for checking 1f Alice 1s a dishonest.

4 Like in GHZ paradox, PR box also gives rise to psuedo-telepathic correlations:
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+ GHZ

¥ Similarity o1 correlations suggests possioility ot generalizing protocols to
Naxindlly noniocal post-qudntui thcorics.
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Security of Protocol

4 Similarly to GHZ-based protocol, Alice’s maximum cheating probability is now
obtained by maximizing (¢ = 0):

Hence, Alice cheats with probability 0.75

Protocol is now balanced, since clearly Bob’s cheating probability (and strategy)

1S unchanged
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Summary

4 At least some protocols in the distrustful cryptography class admit DI
formulation.
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A bove statement holds a]so 1n max1mally ndnlocal post

phase. Alice’s security Tollows
Muwm: w.-m-)ss s wm Isirelson’s bound.

¥ DD version o1 protocol doesn t afford more security and 1S theretore D1,



Open Questions

4 Is every protocol in the distrustful cryptography class which is amenable to a
secure DD formulation also amenable to a DI formulation?
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¥ Do there exist quantum DI BL and CF protocols secure also agamst post-
[Uantum adversarics, as 15 tne €asce witlh DI UKD (IVIaSdnes, UY)
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