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Outline of Talk

✦ Introduction: Device-independent (DI) approach to quantum cryptography, bit-
commitment (BC), the GHZ paradox.

✦ A DI quantum BC protocol.

✦ Comparison with device-dependent (DD) version of protocol.

✦ Implications for quantum coin flipping (CF).

✦ Generalization of protocols to maximally nonlocal post-quantum theories.

✦ Summary.

✦ Open questions.



Device-Independent Approach to 
Quantum Cryptography

✦ The power of quantum cryptography is that security is guaranteed by the laws of 
physics irrespectively of the capabilities of an adversary, i.e. his computational 
power, etc.

✦ Still, quantum protocols call for assumptions on the capabilities of honest 
participants:

✦ Having secure labs, source of trusted randomness, and assumptions on the 
inner workings of the physical setup, e.g. Hilbert space dimension of the 
quantum information carriers, etc. 

✦ DI approach’s aim is to base security on a minimum # of assumptions by 
eliminating any assumptions on the inner workings.

✦ Achieved by basing security on nonlocality and no-signaling (Barrett et al. 05).



✦ Reason no such assumptions are needed is because security is evaluated by 
observing nonlocal correlations between no-signaling devices. For example:

✦ In DI QKD high violation of CHSH inequality implies, via monogamy of 
entanglement, that Eve has no information of (processed) key (Acín et al. 
07).

✦ Contrast with the entanglement-based version of BB84 protocol, where if source 
dispenses qudits instead of qubits, security is utterly breached (Acín et al.       
06). ⇒ Need to know Hilbert space dimension.

✦ Scope of approach is so broad, it covers not only malfunctions but allows for the 
physical setup to have been fabricated by an adversary.



✦ Approach is also useful for non-cryptographic applications, e.g. RNG (Colbeck 
06, Pironio et al. 10), self-testing devices (Mayers & Yao 04), and certification of 
genuine multi-partite entanglement (Bancal et al. 11).

✦ Latter work contains instructive example showing how tilting by      one 
measurement axis of one device, i.e.                                           , can result in the 
DD genuine tri-partite entanglement witness 

falsely classifying bi-separable states as genuinely tri-partite entangled. ⇒ Need 
for DI witnesses.
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Device-Independent Distrustful  
Cryptography

✦ Distrustful cryptography refers to cryptographic protocols where the participants 
don’t trust each other.

✦ Example is CF where two parties wish to agree on the value of a bit but each 
party doesn’t trust the other not to cheat, i.e. deviate from protocol.

✦ It isn’t a priori clear if such protocols admit a DI formulation, since in contrast to 
DI QKD - where the parties trust each other and collaborate to (statistically) 
certify amount of nonlocality present and resulting level of security - honest 
parties can now only trust themselves.

✦ However, as we’ll see, statistical estimation of amount of nonlocality isn’t an 
essential building block of DI approach.

✦ Specifically, we’ll show that BC and CF admit a DI formulation with cheating 
probabilities reasonably close to optimal ones of the DD setting.



Bit-Commitment

✦ In BC Alice must commit a bit to Bob, such that she cannot change it once 
she committed, and Bob cannot learn it until she reveals it.

✦ BC incorporates two phases:

✦ Commit phase - where Alice commits to a bit by sending Bob a token.

✦ Reveal phase - where Alice reveals the bit.

✦ Classically, if there are no restrictions on computational power, BC is 
impossible, i.e. dishonest party can cheat perfectly.

✦ Using quantum resources, perfect BC is impossible (Mayers 96, Lo & Chau, 
96), but imperfect protocols exist (Ambainis 01, Spekkens & Rudolph 01).

✦ Optimal quantum protocol: 0.739 cheating probability for both parties 
(Chailloux & Kerenidis 11).



The GHZ paradox

✦ GHZ paradox is another example of nonlocality of QM. Paradox is easily 
explained as a three-player game:

✦ Before start of game Alice, Bob and Claire may communicate and share 
resources, but afterwards they cannot.

✦ Game starts with player         receiving a binary input      . Inputs must  
satisfy                                       with different combinations equally probable.

✦ Game is won iff players’ outputs satisfy                                                        .

s1 ⊕ s2 ⊕ s3 = 1
si

r1 ⊕ r2 ⊕ r3 = s1 · s2 · s3 ⊕ 1
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✦ Classically game cannot always be won. Easy to see by representing outputs 
corresponding to               ,                by                       ,                       ,         
respectively. Winning conditions then read

 

✦ Taking the product of all four equations we get that

✦ In fact, game can be won with probability 0.75 at most.

yi = (−1)ri xi = (−1)risi = 0 si = 1

y1 · y2 · x3 = −1 , y1 · x2 · y3 = −1 , x1 · y2 · y3 = −1 , x1 · x2 · x3 = 1

x2
1 · y21 · x2

2 · y22 · x2
3 · y23 = −1



✦ The GHZ state                            has property that it’s an eigenstate with 
eigenvalues -1 and 1, respectively, of 

and

✦ Strategy is then to measure         ,          when receiving                ,              , 
respectively. ⇒ Game is always won.
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The Assumptions Behind the Setup

✦ Each party has (‘black’) boxes with knobs to choose (classical) inputs        and 
registers for (classical) outputs       . Entering an input always results in an 
output.

✦ Boxes can’t communicate with one another, implying that if                are an 
honest party’s POVM elements corresponding to inputting        and 
outputting       , then 

(A dishonest party can select                and      .)

✦ The parties have a trusted source of randomness.

✦ No information leaks out of an honest party’s lab.

✦ The parties are restricted by QM.
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Device-Independent Bit-Commitment 
Protocol

✦ Alice has box 1 and Bob has boxes 2 and 3. The 
boxes are supposed to satisfy GHZ paradox.

✦ Commit phase:

✦ Alice inputs into her box her commitment      . 

✦ She randomly picks a bit       and sends 
Bob                              .  

✦ Reveal phase: 

✦ Alice sends Bob      ,     . He checks if                         
or                      . If not, he aborts. 

✦ Else he randomly picks inputs       ,       
satisfying                                    and checks 
if                                                 . If not, he 
aborts.

Alice’s lab

Bob’s lab
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a
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r1 ⊕ r2 ⊕ r3 = s1s2s3 ⊕ 1
s2 ⊕ s3 = 1⊕ s1



Bob’s Security: Dishonest Alice’s 
Strategy

✦ Since Bob sends Alice no information WNLOG we may assume she            
sends               as her token, and accordingly prepares Bob’s boxes.

✦ It’s then straightforward to show that Alice’s cheating probability is given by

 

(where outputs corresponding to inputting               ,               are denoted                        
by                       ,                        ).

✦ It can be shown that since Alice’s side admits a single input, maximum obtains 
when         is deterministic. Cheating probability then reduces to the winning 
probability in the CHSH game:

✦ Alice’s strategy is to prepare Bob’s boxes in a maximally entangled 2-qubit state 
and his devices such that that they maximally violate the CHSH inequality.
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Alice’s Security: Dishonest Bob’s 
Strategy

✦ Bob’s most general strategy is to entangle Alice’s box with an ancilla and after 
receiving        (dependent on its value) measure a dichotomic operator on the 
ancilla, whose outcome is his guess of the bit.

✦ Bob’s maximum cheating probability obtains by maximizing 

✦ where         and          label Bob’s input and output and to obtain the inequality 
we’ve made use of the no-signaling conditions 

✦ Bound can be obtained using classical strategy:

✦ Bob programs Alice’s box such that                , and guesses        for the 
committed bit. Since Alice is honest                75% of time.
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Device-Dependent Version of Protocol

✦ In the DD version of protocol:

✦ (Honest) Alice prepares a 3-qubit GHZ state and sends Bob two of the 
qubits.

✦ Honest parties can trust their devices to measure        ,        when 
inputting 0, 1.

✦ It turns out that the DD version doesn’t give rise to lower cheating 
probabilities than the DI version. ⇒ DD optimal cheating strategies are also 
optimal in the DI case.                                                                                           

σy σx



Coin Flipping

✦ In CF remote Alice and Bob wish to agree on a bit, but they don’t trust each 
other.

✦ Like BC, classically, CF is impossible.

✦ Using quantum resources story is different (Aharonv et al. 00, Ambainis 01,  
Spekkens & Rudolph 01).

✦ Optimal quantum protocol: 0.707 cheating probability for both parties 
(Kitaev 02, Chailloux & Kerenidis 10).

✦ Weaker version of CF, where Alice and Bob have known, opposite 
preferences for the outcome, allows arbitrarily small cheating probability 
(Mochon 07).



Device-Indpendent Coin Flipping 
Protocol

✦ Standard way to construct CF using BC is to have Bob send Alice a random 
bit after commit phase. The outcome is the XOR of their bits.

✦ Cheating probabilities are identical to those of BC protocol.

✦ Imbalance in cheating probabilities can be used to construct another CF 
protocol with cheating probabilities evened out through repetition:

✦ Protocol consists of N repetitions. The outcome of the nth determines 
who commits in the n+1th.

✦ Outcome of protocol is the outcome of the Nth repetition.

✦ Protocol aborts iff one of the BC subroutines aborts.

✦ Using our DI BC, we get a DI CF protocol with                                .P ∗
A, P

∗
B � 0.836



✦ It’s interesting to inquire whether our protocols are secure in post-quantum 
theories (i.e. no-signaling theories leading to a greater violation of CHSH 
inequality then Tsirelson’s bound).

✦ In the BC protocol Alice’s security is based only on no-signaling but Bob’s is 
determined by Tsirelson’s bound. ⇒ Protocol is secure in all post-quantum 
theories except maximally nonlocal ones.

✦ Is DI BC possible in maximally nonlocal post-quantum theories?

✦ If yes, does there exist a quantum protocol secure against maximally 
nonlocal post-quantum cheaters?

✦ Note that perfect BC is possible under the assumption that PR boxes are 
available but cannot be tampered with (Buhrman et al. 06).

Device-Independent Distrustful 
Cryptography in Post-Quantum Theories



✦ GHZ paradox plays a crucial role in our protocol in that it determines Bob’s test 
for checking if Alice is a dishonest.

✦ Like in GHZ paradox, PR box also gives rise to psuedo-telepathic correlations:

✦ PR:

✦ GHZ:                                                                  (                               )

✦ Similarity of correlations suggests possibility of generalizing protocols to 
maximally nonlocal post-quantum theories.

✦ Indeed, only change is that Bob now has one box instead of two.

Post-Quantum Device-Independent Bit-
Commitment & Coin Flipping

r1 ⊕ r2 = s1 · s2

r1 ⊕ r2 ⊕ r3 = s1 · s2 · s3 ⊕ 1 s1 ⊕ s2 ⊕ s3 = 1



Security of Protocol

✦ Similarly to GHZ-based protocol, Alice’s maximum cheating probability is now 
obtained by maximizing (          ):

Hence, Alice cheats with probability 0.75.

✦ Protocol is now balanced, since clearly Bob’s cheating probability (and strategy) 
is unchanged.
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4
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Summary

✦ At least some protocols in the distrustful cryptography class admit DI 
formulation.

✦ Above statement holds also in maximally nonlocal post-quantum theories,

✦ Our protocols include no statistical estimation phase. Alice’s security follows 
from no-signaling and Bob’s is determined by Tsirelson’s bound.

✦ DD version of protocol doesn’t afford more security and is therefore DI.



Open Questions

✦ Is every protocol in the distrustful cryptography class which is amenable to a 
secure DD formulation also amenable to a DI formulation?

✦ If so, can it give the same security?

✦ How much more resources would that entail?

✦ Do there exist quantum DI BC and CF protocols secure also against post-
quantum adversaries, as is the case with DI QKD (Masanes, 09)?



Thank you.
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