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Talk outline 

1. New version of amplitude amplification; 

2. Quantum algorithm for testing if A is 
singular; 

3. Quantum algorithm for solving Ax=b (as 
in HHL08). 



Variable time amplitude amplification 



Amplitude amplification 
[Brassard, Hoyer, Mosca, Tapp, 00] 

 Algorithm A that succeeds with probability 
>0. 

 Success is verifiable. 

 Increasing success probability to 3/4: 

 Classically: O(1/). 

 Quantumly: O(1/√). 



Search [Grover, 96]  

 

 
? ? ? ... ? ? 

 Find an object with a certain property. 

 

Success probability 3/4: 

 O(1/√)=O(√N) repetitions. 

Check a random object:  

success probability 1/N. 



Variable time quantum 
algorithms 

 Algorithm that stops at one of several 
times T1, ..., Tk, with probabilities p1, ..., 
pk. 
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Amplitude amplification 
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Basic idea 

 3 outcomes: “success”, 
“failure”, “did not stop” 

 Amplify “success” and “did not 
stop”. 

 Amplified version A’1. 
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Basic idea (2) 

 3 outcomes: “success”, 
“failure”, “did not stop” 

 Amplify “success” and “did 
not stop”. 

 Amplified version A’2. 

A’1 

... 
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... 



Difficulties 

 Amplitude amplification repeated k times; 

 If one amplification loses a factor of c, 
then k amplifications lose a factor of ck. 

 We need a very precise analysis of 
amplitude amplification. 



Testing if a matrix is singular 



Singularity testing 

 Matrix A; 

 Promise A is singular or all singular values 
of A are at least min. 

 Task: distinguish between the two cases. 



The natural algorithm 

 Replace A by 

 

 If A has singular value , B has 
eigenvalues . 

 Implement B as a Hamiltonian. 

 Use eigenvalue estimation for B. 
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Eigenvalue estimation 

 Input: Hamiltonian B, state |: 
B|=|. 

 Output: estimate for . 

 Assume that ||1. 

 To obtain estimate ’ with |’- |, it 
suffices to use B for time O(1/). 



Eigenvalue estimation 

 Input: Hamiltonian B, random state |. 

 Output: estimate for a random , with  

 |’- |  . 

 

 

 



The natural algorithm (2) 

 B is either singular or has ||min for all 
eigenvalues .  

 To test B for singularity: 

 Choose  = min/3; 

 Eigenvalue estimation on random |. 

 If B singular, ’  min/3, with probability 1/N. 

 If B nonsingular, ’  2min /3.  

 Amplify ’  min/3. 



Running time 

 O(1/min) for eigenvalue estimation; 

 Amplification: N repetitions; 

 Total O(N/min). 

Can we do better if most eigenvalues are 
substantially more than min? 



Our improvement 

 Let 1, 2, ..., N be the eigenvalues of B. 

 Theorem There is a quantum algorithm for 
singularity with running time          where  
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The algorithm 

 Generate a random state |. 

 Run eigenvalue estimation several times, 
with precision  = 1/3, 1/6, ..., min/3. 

 If estimate ’ satisfies |’| >, stop, output 
“0”. 

 If all estimates satisfy |’| , output “=0”.  



Running time 

 If >0, the algorithm stops after first 
eigenvalue estimation with  < /2. 

 O(1/) steps. 

 If =0, the eigenvalue estimation is run 
until  = min/3. 

 O(1/min) steps. 
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Average running time: 



Solving systems of linear equations 



The problem 

 Given aij and bi, find xi. 

 Best classical algorithm: O(N2.37...). 
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Obstacles to quantum algorithm 

 Obstacle 1: takes time O(N2) to read all aij. 

 

NNNNNN

NN

NN

bxaxaxa

bxaxaxa

bxaxaxa







...

...

...

...

2211

22222121

11212111

 Solution: query access to aij.  

 Grover: search N items with O(N) quantum queries. 

 
 Obstacle 2: takes time O(N) to output all xi. 

 



Harrow, Hassidim, Lloyd, 2008 

Output =  
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 Measurement  i with probability xi
2. 

 Estimating c1x1+c2x2+...+cNxN. 

 Seems to be difficult classically. 



Harrow, Hassidim, Lloyd, 2008 

 Running time for producing            : 
O(logc N), but with dependence on two 
other parameters. 
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Running time 

1. Size of system N  O(logc N). 

2. Time to implement A – O(1) for sparse 
matrices A, O(N) generally. 

3. Condition number of A. 

min

max




k

max and min – biggest 
and smallest singular 
values of A 
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Example 1 

 Ax = b, A – random 1 matrix; 

 Largest singular value: O(√N); 

 Smallest singular value: Ω(1/√N). 

 Condition number: O(N). 

 Running time of HHL: O(2 logc N) =     

O(N2 logc N). 

 



Example 2 

 Ax = b, A – Laplacian of d-dimensional 

grid; 

 

 

 Condition number: O(N2/d). 

 HHL running time: O(2 logc N) =        

O(N4/d logc N).  
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Our result 

 Theorem There is a quantum algorithm for 
generating   in time O(k1+o(1) logc N). 

 

 [HHL, 2008]: (k1-o(1)) time required, 
unless BQP=PSPACE. 




N

i
i
ix

1



The main ideas 

Easy-to-prepare Solution 
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The main ideas 
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The main ideas 

bAx 1
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 We design a physical system with 
Hamiltonian A. 

 Unitary eiA. 

 eiA  A-1 via eigenvalue estimation. 



The main ideas 
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Let vi and i be the eigenvectors  
and eigenvalues of A. 



Eigenvalue estimation 
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Not unitary. 
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Solution: perform 

Amplify. 



Our algorithm 

 Observation: suffices to have ’ such that  
|’- |   . 

 Run eigenvalue estimation several times, 
with precision  = 1/3, 1/6, ..., min/3. 

 Stop when  ’ < . 
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Amplify. 



Open problem 

 What problems can we reduce to systems 
of linear equations (with  as the 
answer)? 
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 Examples: 

 Search; 

 Perfect matchings in a graph; 

 Graph bipartiteness. 

 

Biggest issue: condition number. 


