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Abstract
The majority of recent works investigating the link between non-locality and
randomness, e.g. in the context of device-independent cryptography, do so with
respect to some specific Bell inequality, usually the CHSH inequality. However,
the joint probabilities characterizing the measurement outcomes of a Bell test
are richer than just the degree of violation of a single Bell inequality. In this
work we show how to take this extra information into account in a systematic
manner in order to optimally evaluate the randomness that can be certified from
non-local correlations. We further show that taking into account the complete
set of outcome probabilities is equivalent to optimizing over all possible Bell
inequalities, thereby allowing us to determine the optimal Bell inequality for
certifying the maximal amount of randomness from a given set of non-local
correlations.

1. Introduction

In the context of any non-signaling theory, and in particular in the context of quantum
theory, outcomes of measurements on separate systems leading to a Bell violation cannot be
completely pre-determined, i.e. the violation of a Bell inequality guarantees the presence of
genuine randomness. This link between non-locality [1] and randomness is interesting on the
fundamental level [2, 3], but is also the main ingredient behind device-independent randomness
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generation (DIRG) [4–8], randomness amplification [9, 10] and device-independent quantum
key distribution (DIQKD) [11–17].

At the basis of such developments lies a quantitative relation between the amount
of randomness that is necessarily produced in a Bell experiment and the degree of
violation of a certain Bell inequality, such as the CHSH inequality [5, 18], the chained
inequality [9, 11, 19, 20] or a Mermin-type inequality [4, 10, 21]. However, the set of data
obtained in a Bell experiment is much richer than just the value of the violation of some
Bell inequality. For example, in a CHSH experiment there are eight independent probabilities
that determine the single number corresponding to the amount of CHSH violation. Moreover,
in [3] it was shown that there exist two-input two-output Bell inequalities that can allow for
the certification of more randomness than the CHSH inequality. Similar examples have been
provided in [22]. Such results imply that taking into account extra data beyond the value of a
single Bell violation can be useful, but leave open the questions of just how useful and how to
do so in a systematic manner.

These questions are especially relevant now that the detection loophole has been closed
(albeit re-opening the locality loophole) with entangled photons [23, 24], opening the door for
high rate DIRG. Nevertheless, there is still work to be done on the theoretical level before
we can realize this goal efficiently. In particular, low detection efficiencies (∼0.75) necessitate
using states of low entanglement (for efficiencies below ' 0.82 the CHSH inequality cannot be
violated using maximally entangled two-qubit states [25]), for which the CHSH inequality is
not optimal with respect to randomness certification [3].

In this work we show how to evaluate the randomness produced in a Bell test, or,
more specifically, how to obtain the device-independent guessing probability (DIGP) by
systematically taking into account the complete non-local behavior, rather than just the violation
of some pre-specified Bell inequality. We also show that for any set of non-local correlations,
there exists a Bell inequality that is optimal for certifying the maximal amount of randomness
given these correlations. Regarding this, we note that while the protocols in [5–7, 14, 15, 17] are
general in the sense that they are not formulated with respect to some specific Bell inequality,
they do not tell us the optimal Bell inequality to use given the measurement data. We then show
how the optimal value of the DIGP and the associated optimal Bell inequality can be computed
using the semidefinite programming (SDP) hierarchy introduced in [26]. Finally, we study three
numerical examples illustrating the advantage in taking into account the complete non-local
behavior, as opposed to taking into account only the violation of a specific Bell inequality.

2. Background: the device-independent guessing probability

We consider the following setting. Alice has access to a pair of quantum devices, or boxes,
A and B, which she can prevent from communicating at will, and whose internal state
may be correlated with a system in the possession of an adversary Eve (or equivalently
to the environment). The joint state of the boxes and Eve’s system is described by a quantum
state ρABE ∈HA⊗HB⊗HE . Alice introduces inputs x and y, each chosen at random from the
finite set {1, . . . , n} into boxes A and B and obtains outputs a and b, respectively, each taking
one of the values {1, . . . , d}. This process is described by a pair of POVMs with elements
{Ma|x} and {Mb|y}, each acting on HA and HB, respectively. The joint probability that the
outputs a and b are obtained given the inputs x and y is pAB(ab|xy)= tr(ρABMa|x ⊗ Mb|y),
where ρAB = trE(ρABE). There are a total of d2n2 such joint probabilities, which we view as the
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components of a vector p = {pAB(ab|xy)} ∈ Rd2n2
. We refer to this vector as the (non-local)

behavior characterizing Alice’s devices.
We refer to a specific state ρABE and sets of measurement operators {Ma|x} and {Mb|y},

yielding the behavior p, as a quantum realization Q of p. We denote by Q the convex set of all
types of behavior p ∈ Rd2n2

that admit a valid quantum realization Q. In the following, it will
be useful to consider measurements on unnormalized quantum states ρ̃AB (i.e. tr (ρ̃AB)> 0). We
denote the corresponding behavior by p̃ and define the norm as tr(p̃)= tr(ρ̃AB). We denote by
Q̃ the corresponding set of unnormalized quantum behavior, which is a convex cone.

In general, different quantum realizations Q are possible for given behavior p. Our aim is
to quantify the randomness generated by the boxes from p alone, independently of the possible
underlying quantum realizations Q compatible with p. To simplify the notation, we describe in
the following how to quantify the local randomness associated with box A’s output a when a
certain input x = x∗ is used. The global randomness associated with both boxes’ outputs a and
b for a given pair of inputs x = x∗ and y = y∗ can be treated analogously.

To begin, let us fix a specific quantum realization Q compatible with p. This quantum
realization defines an initial state ρABE and sets of projectors {Ma|x} and {Mb|y}

2. After Alice’s
measurement the correlations between her classical output a and the quantum information held
by Eve are described by the classical–quantum state

∑
a pA(a|x∗)|a〉〈a| ⊗ ρax∗

E , where ρax∗

E is
the reduced state of Eve given that Alice performed measurement x∗ and obtained outcome
a. The randomness of box A’s output given this side information can be quantified by the
guessing probability [3, 27]: the average probability that Eve correctly guesses box A’s output
using an optimal strategy. Such an optimal strategy is described by a d-element POVM {Ma|z}

that Eve performs on her system; if she obtains the output a, which happens with probability
pE(a|z, a′, x∗, Q)= tr(ρa′x∗

E Ma|z) when her system is in the reduced state ρa′x∗

E , she guesses
that box A’s output was a. Optimizing over all possible measurements, her average probability
of guessing correctly is thus given by

G(A|E, x∗, Q)= max
{Ma|z}

∑
a

pA(a|x∗, Q)pE(a|z, a, x∗, Q) . (1)

The above expression defines the guessing probability, which is related to the quantum min-
entropy Hmin(A|E, x∗, Q) through G(A|E, x∗, Q)= 2−Hmin(A|E, x∗, Q) [27].3 Note that in the
above definition we made the dependence on Q explicit to stress that we are considering a given
quantum realization Q. Since our aim is to obtain a bound on the randomness of the outputs that
depends only on p, but not on a specific quantum realization Q of p, we must further maximize
G(A|E, x∗, Q) over all Q compatible with p:

G(A|E, x∗)= max
Q, {Ma|z}

∑
a

pA(a|x∗, Q)pE(a|z, a, x∗, Q) . (2)

This defines the DIGP, the quantity which interests us in this work.

2 We can always restrict to projectors by increasing the dimension of the Hilbert space. No loss of generality will
be incurred by this, since we will be working in device-independent settings.
3 The guessing probability or equivalently the min-entropy is an operational measure of randomness: if ρKE =∑d

k=1 p(k)|k〉〈k| ⊗ ρk
E is a cq-state with guessing probability G(K |E)6 2−t , then a randomness extractor can be

used to map k ∈ {1, . . . , d} to a t-bit string K ′
∈ {1, . . . , g} that is close to being uniformly random and uncorrelated

to the adversary, that is ρK′E is close in trace-distance to the state
∑2−t

k ′=1 2−t
|k ′

〉〈k ′
| ⊗ σE [27].

3
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3. The device-independent guessing probability as a conic linear program

We have expressed the guessing probability as an average over Eve’s probabilities conditioned
on box A’s outputs, but we can also express it, using Bayes’ rule, as an average over Alice’s
probabilities conditioned on Eve’s outcomes:

G(A|E, x∗)= max
Q, {Ma|z}

∑
a

pE(a|z, Q)pA(a|x∗, a, z, Q) . (3)

Here pE(a|z, Q) is the probability that Eve obtains the outcome a and pA(a′
|x∗, a, z, Q) is

the probability that box A outputs a′ conditioned on that event. More generally, conditioning
on Eve’s outcomes defines a family of types of behavior pazQ for boxes A and B, or
more conveniently of unnormalized behavior p̃azQ

= pE(a|z, Q)pazQ
∈ Q̃. Note that averaging

over these types of behavior yields back the given behavior characterizing the boxes:∑
a p̃azQ

= p. Every choice of Q and {Ma|z} defines a family of types of quantum behavior
satisfying this property. Conversely, it is not difficult to see that any set of types of behavior
p̃a

∈ Q̃ satisfying
∑

a p̃a
= p can be interpreted as describing the conditional joint output

probabilities of boxes A and B for some quantum realization Q and POVM {Ma|z} performed
by Eve. In terms of unnormalized behavior, we can write equation (3) as G(A|E, x∗)=

maxQ, {Ma|z}

∑
a p̃A(a|x∗, a, z, Q) and thus the DIGP associated with p is the solution to the

following optimization problem

G(A|E, x∗)= max
{p̃a

}

∑
a

p̃a(a|x∗) s.t.
∑

a

p̃a
= p , p̃a

∈ Q̃ , a = 1, . . . , d, (4)

where the p̃as are the optimization variables. This is a typical instance of a conic linear
program [28], i.e. the optimization of a linear objective function (

∑
a p̃a(a|x∗)) subject to linear

constraints (
∑

a p̃a
= p) and to the constraint that the optimization variables belong to a convex

cone (the constraints p̃a
∈ Q̃, since Q̃ is a closed convex cone).

The program (4) has a simple physical interpretation. Any feasible point corresponds to
a possible quantum decomposition p =

∑
a p̃a of the behavior p. From the point of view of

an adversary, such a decomposition can be understood as a strategy where with probability
tr (p̃a

) the adversary guesses that box A’s output was a and prepares the quantum behavior
pa

= p̃a
/tr (p̃a

). The probability of correctly guessing box A’s output in this strategy is∑
a p̃a(a|x∗). The program (4) simply searches for the optimal quantum strategy that maximizes

this expression.

4. Dual formulation and optimal Bell expressions

Every conic linear program admits a dual formulation (see, e.g., [28]), which in the case of
equation (4) is readily seen to be

D(A|E, x∗)= min
f

f · p s.t. p′(a|x∗)6Q f · p′ , a = 1, . . . , d . (5)

In the above problem the optimization variable is the vector f ∈ Rd2n2
. It can be interpreted

as defining a Bell expression whose expectation value is f · p =
∑

a, b, x, y fabxy pAB(ab|xy).
That is, it defines a linear form in the behavior p. The constraint p′(a|x∗)6Q f · p′ means that
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p′(a|x∗)6 f · p′ should hold for all p′
∈Q. Whenever f satisfies this constraint, the expectation

value f · p provides an upper bound on the guessing probability since

G(A|E, x∗)= max
{p̃a

}

∑
a

p̃a(a|x∗)

6 max
{p̃a

}

∑
a

f · p̃a

= max
{p̃a

}

f ·

(∑
a

p̃a
)

= f · p. (6)

In particular, given a fixed Bell expression, such as the CHSH expression c, one can determine
coefficients α and β (effectively defining a new linear form f = α c +β) such that p(a|x∗)6Q
α c · p +β and thus G(A|E, x∗)6 α c · p +β. Such bounds on the DIGP are the ones that are
used in most works related to DIRG or DIQKD, see e.g. [5–8, 29] and [14–17], respectively.
The program (5) goes further since it does not assume a fixed Bell expression, but determines the
linear form that yields the lowest upper-bound D(A|E, x∗) on the DIGP for given behavior p.

The fact that the dual optimal solution D(A|E, x∗)> G(A|E, x∗) yields an upper bound
on the primal optimal solution is a general result that holds between any primal and dual
conic linear program pairs. Provided that one of the two programs admits a strictly feasible
solution, it further holds that there is no gap between the primal and dual optimal solutions,
i.e. G(A|E, x∗)= D(A|E, x∗). This is the case here since the form f, defined by fabxy = 1 for
all a, b, x , and y, satisfies f · p = n2, and consequently p(a|x∗) <Q f · p, and so represents a
strictly feasible point of the dual problem.

The programs (4) and (5) are equivalent but have different interpretations. As we have
explained above, the feasible points of the primal program correspond to explicit strategies for
the adversary. Any such strategy yields a lower bound on the DIGP. The primal program (4)
searches for the optimal strategy that maximizes the guessing probability. On the other hand,
any feasible point of the dual program corresponds to a Bell expression, which certifies that a
certain amount of randomness is present in the given behavior p, and yields an upper bound on
the DIGP. The dual program (5) searches for the Bell expression which certifies the maximal
amount of randomness. The duality theorem of conic linear programming tells us that the
optimal solutions of both programs are identical, and thus that for every type of behavior p
there exists a Bell expression, which certifies the full amount of randomness present in the
correlations.

5. Semidefinite programming relaxations

The above conic linear programming formulations of the DIGP are in general difficult to
implement exactly. However, they can be relaxed using the SDP method introduced in [26, 30].
This method introduces a hierarchy of convex sets Q̃1 ⊇ Q̃2 ⊇ · · · ⊇ Q̃, which approximate the
quantum set Q̃ from the outside4. The hierarchy of programs

Gk(A|E, x∗)= max
{p̃a

}

∑
a

p̃a(a|x∗) s.t.
∑

a

p̃a
= p , p̃a

∈ Q̃k , a = 1, . . . , d (7)

4 The hierarchy as presented in [26, 30] applies to normalized behavior p ∈Q, but it can be trivially adapted to the
unnormalized behavior p̃ ∈ Q̃ by removing the normalization constraint, e.g. 011 = 1 in the notation of [26, 30].

5
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therefore provides a sequence of relaxations to equation (4), which yields upper bounds
G1(A|E, x∗)> G2(A|E, x∗)> · · ·> G(A|E, x∗) on the DIGP. In this approach behavior p̃
belongs to Q̃k if and only if there exists a positive semidefinite matrix 0k < 0 satisfying a series
of linear constraints of the form tr (G 0k)= h · p̃ (see [30, 33] for details). Since the objective
function and the first set of constraints in equation (7) are also linear, the problems (7) can be
cast as SDP problems for which efficient algorithms are available.

This SDP hierarchy can also be understood from the perspective of the dual problem
equation (5). To see this, we note that the constraint p′(a|x∗)6Q f · p′ in equation (5) is
equivalent to 〈ψ |Fa|ψ〉> 0 for all possible quantum states |ψ〉 and all possible Fa of the
form Fa =

∑
abxy fabxy Ma|x ⊗ Mb|y − Ma|x∗ ⊗ I, where {Ma|x} and {Mb|y} are valid sets of

measurement operators. This in turn is equivalent to Fa � 0 for all Fa =
∑

abxy fabxy Ma|x ⊗

Mb|y − Ma|x∗ ⊗ I. We say that Fa admits a sum of squares (SOS) decomposition of degree 2k,
and write Fa = SOSk if there exists a set {S i

a} of polynomials of degree k in the operators
{Ma|x ⊗ I, I⊗ Mb|y} such thatFa =

∑
i S i

a
†S i

a holds for any sets of valid measurement operators
{Ma|x} and {Mb|y}. If this is the case, it clearly follows that Fa =

∑
i S i

a
†S i

a � 0. Therefore, the
series of problems

Gk(A|E, x∗)= min
f

f · p s.t. Fa = SOSk , a = 1, . . . , d . (8)

represents a sequence of relaxations of the dual problem (5) yielding upper bounds
G1(A|E, x∗)> G2(A|E, x∗)> · · ·> G(A|E, x∗) on the DIGP.

It is well known that an SOS constraint of the form Fa = SOSk can be represented as an
SDP constraint [31] and thus that the relaxations (8) are SDP problems. Such SDP relaxations
turn out to be nothing but the dual formulation of the SDP relaxations (7) [30, 32] (see [33] for
more details on the relation between the primal and dual of the SDP hierarchy).

Even though the primal and dual SDP relaxations (7) and (8) are equivalent, like the
original programs, they have different interpretations. Feasible points of the primal programs
correspond to decompositions of p in terms of supra-quantum behavior in Qk . They can be
understood as characterizing the strategies available to an adversary who is able to prepare
supra-quantum behavior. Such strategies are not necessarily always available in a purely
quantum setting and thus the associated values Gk(A|E, x∗) represent upper bounds on the
DIGP. The dual programs, on the other hand, return explicit Bell expressions certifying that
the DIGP cannot be higher than a certain value Gk(A|E, x∗). Such bounds are valid—and
optimal—for any strategy in Qk and thus are also valid—though not necessarily optimal—for
any quantum strategy in Q. In other words, the SDP relaxations (7) and (8) not only give a
bound on the DIGP, but also return explicit Bell expressions that can be used in any analysis
based on a quantitative relation between the amount of Bell violation and randomness, such as
in [5–10, 14, 16, 17].

6. Numerical examples

In this section we present three numerical examples demonstrating the advantage in taking into
account the complete non-local behavior.

In the first two examples, we consider a two-input two-output Bell scenario. We
introduce the eight parameters 〈Ax〉 =

∑
a=±1 a pA(a|x), 〈By〉 =

∑
b=±1 b pB(b|y), 〈Ax By〉 =∑

a,b=±1 ab pAB(ab|xy), where x, y = 1, 2, knowledge of which is equivalent to knowledge of
the complete set of probabilities pAB(ab|xy).

6
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Figure 1. Global randomness G(A, B|E, 1, 1) as a function of the visibility v for
optimally violating CHSH correlations in the presence of white noise. The dashed curve
was obtained by taking into account only the CHSH value (i.e. 2

√
2v), while the solid

curve was obtained by taking into account the full non-local behavior. Both curves were
obtained using the second order relaxation of the SDP hierarchy and are actually optimal
up to the numerical precision of 10−6 used (we have verified optimality by finding
explicit states and measurements saturating the bounds given by the SDP programs).
Except when v = 1, i.e. when there is no noise, we see that there is a small advantage in
taking into account the full non-local behavior.

6.1. CHSH correlations in the presence of white noise

We first consider the randomness that can be extracted from a mixture of maximally violating
CHSH correlations plus white noise, i.e. correlations of the form v q + (1 − v)r, where q are the
quantum correlations yielding the maximal CHSH violation of 2

√
2 and r denotes completely

random correlations for which pAB(ab|xy)= 1/4 for all a, b, x and y. As a function of the
‘visibility’ v the CHSH violation is thus given by 2

√
2 v. Naively, one would expect that in

such a simple example of knowledge of the full non-local behavior is of no greater utility than
knowledge of the CHSH violation alone. Surprisingly, figure 1 shows that this is not the case,
although the improvement that we get by considering the full non-local behavior is modest. We
have determined numerically the corresponding optimal Bell inequalities as a function of v by
solving explicitly the dual programs. We find that these inequalities all have the form

f11〈A1 B1〉 + 〈A1 B2〉 + 〈A2 B1〉 − f22〈A2 B2〉, (9)

where the coefficients f11 and f22 are given in figure 2. The case f11 = f22 = 1 corresponds to
the CHSH inequality and only arises in the case of perfect visibility (v = 1). This shows that
in any real experiment, in which the visibility is necessarily imperfect (i.e. v < 1), the optimal
Bell inequality for randomness certification is not always the CHSH inequality.

7
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Figure 2. Coefficients of the optimal Bell inequalities equation (9) as a function of v.
The CHSH inequality corresponds to the case f11 = f22 = 1 and is optimal only for
perfect visibility v = 1 (and trivially v = 1/

√
2).

6.2. Randomness from partially entangled states

In the second example, we consider the following set of correlations

〈A1 B1〉 = 〈A1 B2〉 = v cosµ,

〈A2 B1〉 = − 〈A2 B2〉 = v sin 2θ sinµ , (10)

〈A1〉 = v cos 2θ, 〈A2〉 = 0, 〈B1〉 = 〈B2〉 = v cos 2θ cosµ ,

where tanµ= sin 2θ . For v = 1 these correlations are obtained by measuring a partially
entangled state of the form |9〉 = cos θ |00〉 + sin θ |11〉 and give rise to a maximal violation
of the I β1 inequality [3] (I β1 = ICHSH +β〈A1〉6 2 +β) with β = 2 cos(2θ)/

√
1 + sin2(2θ). A

value of v < 1 corresponds to a mixture of these correlations with completely white noise
in the respective fractions of v and 1 − v. Figure 3 presents bounds on the global DIGP
G(A, B|E, 2, 1) corresponding to the pair of outcomes associated with the measurements
A2 and B1 as a function of θ for v = 0.99. We see that taking into account complete sets of
correlations can provide a very significant advantage, not only as compared with taking into
account only the violation of a single Bell inequality, but also violations of two independent
Bell inequalities.

It is interesting to see what the optimal Bell inequalities, obtained via the dual formulation
of the SDP programs, look like. The significant advantage obtained in figure 2 by taking into
account complete data suggests that the corresponding optimal Bell inequalities would be more
than mere tweaks of any of the Bell inequalities that have thus far been investigated for the
purposes of DIRG (essentially the I βα inequalities of [3]). This intuition is indeed backed up

8
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Figure 3. G(A, B|E, 2, 1) as a function of θ computed by taking into account partial
or complete non-local data for v = 0.99. The dashed curve was obtained by constraining
only the value of the I β1 expression, the dotted curve by constraining only the value of
the CHSH expression, the dashed-dotted curve by constraining the values of both I β1
and the CHSH expressions, and the solid curve by taking into account the values of
all correlators in accordance with equation (10). These curves were obtained using the
third order relaxation of the SDP hierarchy. The dashed-dotted curve is optimal up to a
precision of 10−6.

by the numerics. For example, for θ = 27π/200 (G(A, B|E, 2, 1)' 0.609) we obtain the Bell
expression

2.74 〈A1 B1〉 + 2.60 〈A1 B2〉 + 2.35 〈A2 B1〉 − 3.86 〈A2 B2〉

+ 1.36 〈A1〉 + 1.51 〈A2〉 − 0.390 〈B1〉 + 2.05 〈B2〉 , (11)

whose local bound is 8.36.

6.3. Randomness from entangled qutrits

As the last example, we consider the two-input, three-ouput Bell-CGLMP scenario [34].
Specifically, we consider correlations which violate the CGLMP inequality and which arise
by performing the measurements specified in [34] on the family of states

α|00〉 +
√

1 − 2α2|11〉 +α|22〉 , (12)

with 06 α 6 1/
√

2. For α = 0 the state is a product state, for α = 1/
√

3 it is a maximally
entangled two-qutrit state, while for α = 1/

√
2 it is a maximally entangled two-qubit state. For

α ' 0.6169 the CGLMP inequality is maximally violated [35], while no violation is obtained
for α 6

√
3/22 ' 0.3693 using the set of measurements considered. Figure 4 presents bounds

on the randomness G(A|E, 1), which can be certified in this scenario, for
√

3/226 α 6 1/
√

2,
taking into account only the CGLMP violation or the full non-local behavior. Unsuprisingly, at
the point of maximal violation of the CGLMP inequality, we can certify one trit of randomness,
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Figure 4. Local DIGP G(A|E, 1) as a function of the parameter α defined in
equation (12). The dashed curve is obtained by taking into account only the CGLMP
value, and the solid one the complete behavior. Both curves were obtained using the
second order relaxation of the SDP hierarchy, and the dashed one has been verified to
be optimal up to a numerical precision of 10−5.

i.e. G(A|E, 1)= 1/3. However, taking into account the complete behavior, a large interval of
values of α yields G(A|E, 1)= 1/3, including values for which the CGLMP violation is small.
These results have been obtained using the second order relaxation of the SDP hierarchy. The
range of values of α for which G(A|E, 1)= 1/3 may thus turn out to be larger when going to
higher order SDP relaxations or using different measurements from those specified in [34].

7. Conclusion

We have shown how the device-independent guessing probability can be evaluated by taking
into account in a systematic way the complete non-local behavior characterizing a Bell test
and not only the violation of a pre-specified Bell inequality. We have also shown that for any
given non-local correlations, there exists an optimal Bell inequality that can certify the maximal
amount of randomness compatible with such correlations. Explicit upper bounds on the device-
independent guessing probability and their associated Bell inequalities can be computed by
adapting the SDP hierarchy introduced in [26]. Low order relaxations, as is often the case
with applications of the SDP hierarchy, usually already yield the optimal value of the guessing
probability.

Our approach can be straightforwardly adapted to quantify randomness in purely non-
signaling settings (i.e. without requiring the validity of quantum theory). The corresponding
programs are simply the analogues of equations (4) and (5), where the constraints p̃a

∈ Q̃
and p′(a|x∗)6Q f · p′ are replaced by p̃a

∈ ÑS and p′(a|x∗)6NS f · p′, respectively, with
NS denoting the set of non-signaling behavior. Since NS is entirely characterized by linear
constraints (the no-signaling constraints [36] and the positivity of probabilities), these programs
can be solved using linear programming.
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We expect that the tools that we have presented will contribute to advancing our
fundamental understanding of the relation between non-locality and randomness, and its
cryptographic applications. In particular, the simple examples that we have studied (especially
figures 1, 2 and 4) already yield unexpected results that motivate further investigations. Finally,
it would be interesting to understand what is the optimal way to incorporate directly our method
in protocols for DIRG and DIQDKD taking into account finite statistics effects.
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