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Clifford gates are a winsome class of quantum operations combining mathematical el-

egance with physical significance. The Gottesman-Knill theorem asserts that Clifford
computations can be classically efficiently simulated but this is true only in a suitably

restricted setting. Here we consider Clifford computations with a variety of additional

ingredients: (a) strong vs. weak simulation, (b) inputs being computational basis states
vs. general product states, (c) adaptive vs. non-adaptive choices of gates for circuits

involving intermediate measurements, (d) single line outputs vs. multi-line outputs. We

consider the classical simulation complexity of all combinations of these ingredients and
show that many are not classically efficiently simulatable (subject to common complexity

assumptions such as P not equal to NP). Our results reveal a surprising proximity of
classical to quantum computing power viz. a class of classically simulatable quantum

circuits which yields universal quantum computation if extended by a purely classical

additional ingredient that does not extend the class of quantum processes occurring.
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1. Introduction

The notion of classical simulation of quantum computation provides a mathematically precise

tool for studying fundamental questions that are often only vaguely formulated – questions of

the relationship between classical and quantum computing power and the computational pos-

sibilities engendered by particular kinds of quantum resources. We may consider a restricted

class A of quantum circuits defined by specified limited quantum ingredients and ask whether

it can be classically efficiently simulated or not. Computational hardness is notoriously diffi-

cult to establish and in the latter case we are generally content to establish that the efficient

simulation of A would imply some further property such as P=NP, that is widely regarded as

implausible. In the former case of A being classically efficiently simulatable we may consider

enlarging A to A′ by inclusion of some extra specific quantum ingredient P and investigating

the resulting change in classical simulation complexity. If for example, A′ allows universal

quantum computation then in this mathematically precise sense, P may be regarded as an
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“essential resource for quantum computational power” (relative to a background of quantum

effects that are “computationally lame”). Below we will see examples of seemingly quite mod-

est expansions of resources leading to dramatic changes in simulation complexity, indicating

that the computational landscape between classical and quantum computing power is a richly

complex one.

Fig. 1. Classical simulation complexities for sets of Clifford computational tasks. The acronyms

are as defined in the main body of the text. The seven cases containing numbered theorems are
proved in section 4. All other cases are easily seen to be implied by these seven cases.

This paper is devoted to developing a case study of simulation of Clifford circuits sup-

plemented with a variety of extra ingredients. The choice of Clifford circuits is a particu-

larly interesting and relevant one for a variety of reasons. Clifford computations provide one

of the earliest significant examples of classically simulatable quantum computations in the

Gottesman-Knill theorem [1] (see also [2, 3, 4, 5, 6]), showing in particular that the presence

of non-trivial entanglements in a quantum computation is not necessarily a signature of com-

putational speed-up. Clifford gates also have a rich associated pure mathematical theory that

may be drawn upon in the study of simulation properties, as well as having a rich physical
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and practical significance in the theory and implementation of quantum computation. For

example Clifford operations feature prominently in the theory of quantum error correction

and fault tolerance [7, 2, 8] and in measurement-based quantum computation [9, 10].

It is well known that the Clifford gates supplemented with any non-Clifford operation gen-

erate a dense subgroup of U(2n) and are hence universal for quantum computation [11, 12].

Here we will consider extensions of Clifford circuits of a different, perhaps seemingly more

innocuous kind. More precisely we will characterise the classical simulation complexity of

sixteen cases of extended Clifford circuits that are defined by four binary choices. Our main

results are summarised in figure 1. The acronyms in figure 1 that define the extensions and

their classical simulation complexities are all explained in detail in section 2 below, and briefly

they are as follows: IN(BITS) and IN(PROD) refer to allowing computational basis states

and general product states as inputs. OUT(1) and OUT(MANY) refer to having single bit

and multi-bit outputs. NONADAPT and ADAPT refer to circuits with intermediate mea-

surements, with the circuit gates being respectively fixed or chosen adaptively as a function

of previous measurement outcomes. WEAK and STRONG refer to two notions of classical

simulation that provide respectively a sample of the output distribution and a calculation

of actual probability values. In the body of the tables, Cl-P denotes that classical efficient

simulation is possible, QC-hard denotes that universal quantum computation is possible, and

#P-hard asserts that classical simulation could be used to solve arbitrary problems in the

classical class #P (and hence NP too).

These results demonstrate a remarkable sensitivity of the classical simulation complexity of

Clifford circuits under various small modifications. In section 3 we highlight some interesting

comparisons amongst these simulation complexities. In particular the issue of the last sentence

of the abstract above is discussed in Example 2 of section 3. Finally in section 4 we provide

proofs of all results given in figure 1. For completeness we indicate proofs for all sixteen cases.

Some cases were previously known (cf references in our text) but to the best of our knowledge

others have not previously been given in the literature.

Finally we mention here some related work on the classical simulation complexity of var-

ious extensions and generalizations of Clifford circuits. See [4] for simulation of Clifford

circuits supplemented with few non-stabilizer (pure or mixed) inputs and/or few non-Clifford

gates; see [8] for quantum computing with adaptive Clifford circuits with product state in-

puts (we will revisit this scenario as one of the sixteen cases in figure 1); see [13, 14] for

simulations of Clifford circuits supplemented with certain non-Clifford gates by restricting

the circuit structure; see [15, 16, 17, 18, 19] for generalizations of the Gottesman-Knill the-

orem to higher-dimensional systems; see [20] for generalizations of Clifford circuits based on

projective normalisers of finite unitary groups.

2. Preliminary definitions and notations

2.1. Clifford circuits: NONADAPT and ADAPT

Let I,X, Y, Z denote the standard 1-qubit Pauli matrices [2] (amongst which we include the

identity matrix). An n-qubit Pauli operator is any operator of the form P = γP1 ⊗ . . . ⊗ Pn
where γ ∈ {±1,±i} and each Pi is a Pauli matrix.

An n-qubit unitary operation C is called a Clifford operation if the set of all Pauli operators
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is preserved under conjugation by C i.e. for any n-qubit Pauli operator P , P ′ = CPC† is

again a Pauli operator. It is known that C is Clifford iff C can be expressed as a circuit of

the following gates (cf [2]): the 1-qubit Hadamard gate H, the phase gate S = diag(1, i) and

the 2-qubit controlled-Z gate CZ, which we call basic Clifford gates. Moreover any n-qubit

Clifford operation can be expressed as a circuit of O(n2) basic Clifford gates (see [3] and

theorem 10.6 of [2]).

A unitary Clifford circuit is a circuit comprising only the basic Clifford gates. The size of

the circuit is the number of gates of which it consists.

As a further extension we will allow measurements in the body of the circuit. The term

measurement will always mean a single qubit measurement in the computational basis. Let

Mi(x) denote a measurement of the ith qubit line with outcome x ∈ {0, 1}. Then a Clifford

circuit with K intermediate measurements has the form

C0Mi1(x1)C1Mi2(x2)C2 . . . MiK (xiK )CK (1)

where Ci are unitary Clifford circuits (possibly of size zero). We assume that measurements

are non-destructive and the measured qubit, set to the designated post-measurement state,

may generally be an input into subsequent operations e.g. Mi1(x1) sets qubit line i1 to |x1〉
which may then be input into C1.

A non-adaptive Clifford circuit is a Clifford circuit with intermediate measurements in

which the choice of operations in the circuit does not depend on the outcomes of (previous)

measurements. Hence such a circuit is fully defined by eq. (1) where the Cj ’s and measurement

line labels ij ’s are fixed a priori.

By the term adaptive Clifford circuit we will mean a process of the form eq. (1) in which

the choice of operations is allowed to depend on previous measurement outcomes. To make

this dependency explicit we can expand the notation of eq. (1) as

C0Mi1(x1)C1(x1)Mi2(x1)(x2)C2(x1, x2) . . . MiK(x1,...xK−1)(xk)CK(x1, . . . , xK). (2)

Note that the size of the circuits Cj(x1, . . . , xj) may vary with x1, . . . , xj . The total number

N of operations in the adaptive circuit eq. (2) is defined to be the maximum number of ele-

mentary Clifford gates and measurements over all possible choices of measurement outcomes

x1, . . . , xK . Alternatively we could uniformise the size of each Cj by including additional iden-

tity gates to make its size independent of x1, . . . , xj . Similarly to uniformise the number of

intermediate measurements in the adaptive process (as a function of measurement outcomes)

we could formally allow ij+1(i1, . . . , ij) to be zero (for qubit lines labelled 1 to n) to indicate

that a measurement is not performed, but replaced by an identity gate.

The scenarios of non-adaptive and adaptive Clifford circuits will be denoted respectively

by the acronyms NONADAPT and ADAPT.

We mention here two elementary simplifications of circuit structures that will be useful in

proofs of classical simulation properties. Stated informally we have the following facts (with

formal statements and proofs given in lemmas 2 and 3 in section 4 below):

(i) without loss of generality (wlog) non-adaptive circuits may be assumed to be unitary;

(ii) in (adaptive or non-adaptive) circuits with intermediate measurements, wlog the mea-

sured qubits may be assumed to always be discarded after measurement (and not used in
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subsequent operations). Furthermore for adaptive circuits the choice of lines for intermediate

measurements may be assumed to be non-adaptive.

2.2. Inputs and outputs: IN(BITS), IN(PROD), OUT(1) and OUT(MANY)

In addition to the circuit itself there are two further ingredients for the full specification of

a computational process viz. specification of the input and of the output. We will distin-

guish two classes of input states – computational basis input states, denoted by the acronym

IN(BITS), and general product state inputs, denoted IN(PROD). For outputs we will distin-

guish the scenarios of a single bit output (resulting from a specified final 1-qubit measure-

ment), denoted OUT(1), and the scenario of a many-bit output, denoted OUT(MANY). In

the latter case, for an n-qubit circuit the output yj1 . . . yjl results from a final measurement

on a specified set 1 ≤ j1 < . . . < jl ≤ n of l lines and generally we can have l = O(n).

2.3. Classical simulations: WEAK, STRONG and Cl-P

A description of a Clifford computational task T with N operations on n qubits is made up

of the following ingredients:

(i) a description of an (adaptive, non-adaptive or unitary) Clifford circuit on n lines comprising

N operations. For unitary or non-adaptive circuits we give a list of N basic Clifford gates

and intermediate measurements on specified qubit lines; for adaptive circuits (cf eq. (2))

we require that each Cj(x1, . . . , xj) and ij+1(i1, . . . , ij) is given as a function computable in

classical poly(N) time;

(ii) specification of an input state |ψ〉 which we always take to be either a computational basis

state or a general product state;

(iii) specification of one or more output measurement lines 1 ≤ j1 < . . . < jl ≤ n.

Let p(yj1 , . . . , yjl) denote the output probability distribution of the corresponding quantum

process.

We will consider sets of computational tasks subject to the restrictions introduced above

viz. the eight combinations of ADAPT vs. NONADAPT, IN(BITS) vs. IN(PROD) and

OUT(1) vs. OUT(MANY). In each case it is natural to assume that the total length (as

a classical bit string) of the full description (i), (ii) and (iii) of the computational task is

O(poly(N)). In particular we assume that there are no extraneous qubit lines that are not

acted upon (so n = O(N)) and we assume that input product states are specified with

O(poly(N)) bits. The latter technical issue of accuracy (for our later purposes of simulation

complexity characterisations) may be addressed by setting up a suitable notion of approxi-

mation, but we do not elaborate it here for sake of clarity and conceptual transparency.

We introduce two notions of classical simulation for Clifford computational tasks. A weak

classical simulation for a set of computational tasks is a classical randomised computation

which, given a description of a task T as input, outputs a sample of the output distribution

p(yj1 , . . . , yjl) of T . A strong classical simulation for a set of tasks is a classical computation

whose input is a description of a task T and bit values for a subset of its output lines. The

output is the value of the corresponding marginal probability of the output distribution of T

i.e. we have a classical computation of any desired output probability or marginal probability

of T .

A weak or strong classical simulation is called efficient if the corresponding classical com-
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putation runs in classical poly(N) time. (Again here for strong simulation, as previously

noted for IN(PROD), there is a further technical issue of precision and more formally we

would require the output probability or marginal to be computed to k bits of precision in

poly(N, k) time).

We will use the acronyms WEAK (resp. STRONG) to indicate that we are considering

a weak (resp. strong) classical simulation for a set of tasks. We will use the acronym Cl-P

(“classical poly time”) to assert that the associated simulation is efficient.

If the computational task T is implemented as a quantum process it will require O(N)

quantum computational steps so existence of an efficient weak classical simulation implies

that T offers no quantum computational time benefit over classical computation (up to the

usual polynomial overheads of resources commonly accepted in complexity theory).

In the case of OUT(MANY) there are generally exponentially many output probabilities

p(yj1 , . . . , yjl) (as l may be O(n)) so in strong efficient simulation we cannot ask for a com-

putation of them all. The inclusion of computation of marginals in the definition of strong

simulation guarantees the following eponymously desirable result.

Lemma 1 Let p(x1, . . . , xn) be a probability distribution over n binary variables. Suppose

that each of the n marginals p(x1), p(x1, x2), . . . , p(x1, . . . , xn) may be efficiently classically

computed for any choice of values x1, . . . , xn, and suppose that any 1-bit distribution {po, 1−
po} with p0 efficiently computable, may be efficiently sampled. Then p(x1, . . . , xn) may be

efficiently sampled.

Hence for any set of computational tasks, efficient strong classical simulation implies efficient

weak classical simulation.

For a proof see proposition 1 of [21].

Note that in lemma 1 we only assume that a small designated subset of n marginals (out

of all 2n possible marginals) may be efficiently classically computed, and this suffices to show

that the total distribution p(x1, . . . , xn) may be efficiently sampled. This will be a crucial

ingredient in the proof of theorem 5 below.

For completeness we mention that there are also notions of weak simulations which in-

corporate various types of approximations [14, 22]; these will however not be relevant for the

present work.

2.4. Complexity measures: QC-hardness and #P-hardness

We will also be interested in establishing that some sets of Clifford computational tasks are

unlikely to have efficient classical simulations and for this purpose we introduce some further

complexity notions.

Consider the following classical computational task called #SAT (cf [23]):

Input: a Boolean function f from n bits to one bit (given say as a bit string encoding a

formula in standard 3-cnf form [23]).

Problem: determine the number #f of n-bit strings x with f(x) = 1.

Note that #SAT is a generalisation of the well known NP-complete problem SAT [23] (which

asks only if #f is non-zero) so it is very unlikely that #SAT has a poly time classical algorithm;

indeed the latter would imply equality of the complexity classes P and NP, and also that any

problem in #P may be computed in poly time [23].
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Strong classical simulation of a set A of Clifford computational tasks T is called #P-hard

if an efficient strong simulation would give rise to an efficient classical solution of #SAT. More

precisely the strong simulation of A is #P-hard if given any input f of size N for the #SAT

problem, it may be converted by a classical poly(N) time computation φ into (a description

of) a task φ(f) in A with the following property: #f may be computed by a classical poly(N)

time algorithm from the results of strong classical simulation of φ(f). Hence efficient strong

classical simulation of A would imply P=NP and that #P is computable in poly time.

Finally we introduce a notion of QC-universality for a set A of Clifford computational

tasks and QC-hardness for its weak classical simulation. This will be used to indicate that

A is unlikely to have an efficient weak classical simulation. Broadly speaking A will be QC-

universal (“quantum computing universal”) if it is rich enough to encode universal quantum

computation, so then efficient classical weak simulation of A would imply that all quantum

computation could be classically efficiently simulated. More precisely we will adopt the fol-

lowing definitions. Let G be the set of basic unitary Clifford gates together with the phase

gate T = diag(1, eiπ/4). It is known [2] that G is a universal set of gates for quantum com-

putation. Let C be any circuit of gates from G with a specified computational basis state

input and 1-bit output from measurement of a specified output line. Then A is QC-universal

if any such C may be simulated by a member φ(C) of A i.e. T = φ(C) has 1-bit output

whose probability distribution for the given computational basis input coincides with that of

C. Here as before, φ is a poly time translation of the description of C into the description of

a member of A. Hence efficient weak classical simulation of A would imply efficient classical

simulation of universal quantum computing. We define the weak classical simulation of a set

A to be QC-hard if A itself is QC-universal.

3. Main results – statement and discussion

We now consider the sixteen cases of Clifford computational tasks defined by all combinations

of the following four binary choices

(i) NONADAPT vs. ADAPT

(ii) IN(BITS) vs. IN(PROD)

(iii) OUT(1) vs. OUT(MANY)

(iv) WEAK vs. STRONG.

The corresponding simulation complexities that we will prove, are summarised in figure 1.

The original Gottesman-Knill theorem [1] asserts that efficient classical simulations exist

for the case ADAPT, IN(BITS), OUT(MANY) and WEAK (cf. theorem 5 below). In con-

trast, we find here that eight of the sixteen cases of extended Clifford circuits are not (likely

to be) classically efficiently simulatable.

We draw attention to some examples of extreme changes of simulation complexity resulting

from seemingly modest modifications in the defining computational resources. Perhaps the

most significant such comparisons for issues of computing power will be cases involving only

weak simulations, since implementing the circuit itself as a quantum process yields only

one sample of the output probability distribution, in contrast to the far greater information

resulting from strong simulation (cf. [6, 14]).

Example 1. For the case of non-adaptive (or equivalently, unitary) circuits with general
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product state inputs, we have that 1-bit outputs are classically efficiently simulatable in both

weak and strong senses. However allowing just many bit outputs results in #P hardness

for strong simulation and a more subtle certification of hardness (related to PH collapse)

for weak simulation. This indicates a significant increase of computational power associated

to the passage from OUT(1) to OUT(MANY) i.e. merely sampling more lines of the same

class of quantum processes (and see also [22] where a similar phenomenon is observed for

computational processes defined by commuting quantum circuits).

On the other hand, in the case of adaptive circuits with computational basis inputs the passage

from one to many output lines remains classically efficiently simulatable in the weak sense

(all other adaptive cases already being QC-hard or #P-hard).

Note also that in our definitions of classical simulation we ask for simulation only of the

output distribution of the computational task, and not of intermediate measurement distri-

butions (if there are any). Indeed inclusion of the latter could elevate an OUT(1) scenario

to OUT(MANY) via consideration of intermediate measurement outcomes together with the

single bit output of the task, and the associated simulation complexity could radically change

(cf. e.g. the case of non-adaptive circuits with general product state inputs, as discussed

above). 2

Example 2. Another particularly interesting comparison is that of weak simulation for gen-

eral product state inputs and single bit outputs, with the transition from non-adaptive to

adaptive circuits i.e. we compare

Case A: IN(PROD), OUT(1), WEAK, NONADAPT to

Case B: IN(PROD), OUT(1), WEAK, ADAPT.

Case A admits efficient weak classical simulation whereas case B is QC-hard. But now note

that the passage from Case A to Case B involves the inclusion of a purely classical extra

resource viz. classical adaptive choice of gates, without introducing any new gates. Further-

more the class of quantum processes occurring in runs of Case B is exactly the same as the

class occurring in runs of Case A, since any single actual run of an adaptive circuit can occur

as a run of a non-adaptive circuit (that non-adaptively prescribes the sequence of gates that

were adaptively chosen). Indeed from an experimentalist’s point of view cases A and B may

be claimed to be totally indistinguishable in the following sense: suppose an experimentalist

E has the ability to implement basic Clifford gates and measurements. A theorist T directs E
by announcing one by one, a sequence of basic gates and measurements, which E successively

implements. For each measurement instruction E announces the measurement outcome before

further instructions from T . Then E cannot tell whether T is choosing gates adaptively (Case

B) or not (Case A) – the demands on E ’s laboratory are exactly the same, and case B re-

sults in no new quantum processes. Yet Case B can perform universal quantum computation

whereas Case A is fully classically efficiently simulatable. 2

The sixteen cases of extended Clifford circuits give rise to a rich landscape of simulation

complexities. Apart from Cl-P, QC-hardness and #P-hardness, we will see in the course of

the proofs that connections to other major complexity classes appear as well. For example (cf.

remark below theorem 5), uniform families of adaptive Clifford circuits with computational

basis inputs have precisely the same power as a universal randomised classical computation.

Thus the class of languages decidable by such Clifford processes in poly-time with bounded

error, is precisely BPP. What is more, just changing from computational basis inputs to
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arbitrary product state inputs (and keeping the other parameters equal) yields universal

quantum computation, so in the same poly-time bounded error setting, these Clifford processes

now give precisely BQP [8]. We will also find that post-selected non-adaptive Clifford circuits

with product state inputs have the same power as BQP with postselection (cf. theorem 7 and

[8]), which is known to coincide with the class PP [24]. Finally we recall that the simulation

complexity of non-adaptive Clifford circuits with computational basis inputs and single bit

outputs is known to be characterized by the class ⊕L ⊆ P [4].

4. Proofs of main results

In this section we give proofs of theorems 1 to 7 that appear as seven of the sixteen cases

depicted in figure 1. For the remaining cases it may be easily checked that they all follow

from the seven basic cases using the following simple facts:

(i) if classical simulation of a set of tasks is Cl-P then any subset is Cl-P too;

(ii) if classical simulation of a subset of tasks is QC-hard or #P-hard then the full set is

QC-hard or #P-hard too;

(iii) replacing IN(BITS) by IN(PROD), or replacing OUT(1) by OUT(MANY), increases the

set of computational tasks;

(iv) by lemma 1, if strong simulation is Cl-P, then weak simulation is Cl-P too (keeping all

other resource choices unchanged).

We will use the following notations relating to bit strings and Pauli operators. For any n-

bit strings a = a1 . . . an and b = b1 . . . bn, c = a+b will denote the n-bit string with ci = ai⊕bi
(and ⊕ being addition mod 2), and a · b = a1b1 ⊕ . . . ⊕ anbn will denote the mod 2 inner

product. We will also use the notation X(a) = Xa1⊗. . .⊗Xan and Z(a) = Za1⊗. . .⊗Zan . |a〉
will denote the computational basis state corresponding to a. Then the following properties

are easily verified for any n-bit strings x,a,a′:

X(a) |x〉 = |x + a〉 , Z(a) |x〉 = (−1)x·a |x〉 ,
X(a)X(a′) = X(a + a′), Z(a)Z(a′) = Z(a + a′)

X(a)Z(a′) = (−1)a·a
′
Z(a′)X(a).

(3)

Since Y = iXZ, any Pauli operator P can be written uniquely as P = αX(a)Z(b) for some

α ∈ {±1,±i} and n-bit strings a and b. Labelling the α values by 2-bit strings r1r2, we

call the (2n+ 2)-bit string (r1r2,a,b) the label of P and α the phase of P . If G is any basic

Clifford gate (acting on specified qubit line(s), and extended by I on all other lines), and P

is any n-qubit Pauli operator, then the label of P ′ = GPG† can be easily computed from the

label of P in O(n) time. In fact only the phase of P and the label entries pertaining to the

line(s) of action of the basic Clifford gate are modified.

We begin by proving two elementary simplifications of circuit structures that were men-

tioned in section 2. To formally establish these we use the following construction: let C be

any (adaptive or non-adaptive) circuit on n lines with K intermediate measurements, input

state |ψ〉 and final output measurements on lines 1 ≤ j1 . . . < jl ≤ n. Introduce an enlarged

unitary circuit C∗ on n+K lines defined as follows. For each intermediate measurement Mi

on line i of C introduce an extra ancilla qubit (line n + i) in state |0〉 and replace the mea-

surement operation by the unitary Clifford operation CXi,n+i (where CXj,k is the 2-qubit

controlled-X operation with source j and target k).
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Lemma 2 Suppose C with input and output as above is a non-adaptive circuit with K inter-

mediate measurements. Then there is a unitary circuit C ′ on n+K lines which is equivalent

to C in the following sense: if C ′ has input |ψ〉 |0〉 . . . |0〉 then measurement of lines j1, . . . jl
of C ′ will result in the same probability distribution of outputs as C on |ψ〉.
Proof. We just take C ′ to be C∗ as defined above. 2

Lemma 3 Suppose C as above is an adaptive circuit. Then there is an adaptive circuit C̃ on

n+K lines which is equivalent to C (in the sense given in lemma 2 above) and

(i) in C̃ after each intermediate measurement Mi(xi) the line i and its post-measurement state

are not further used in any subsequent operations of C̃. Furthermore the choice of line i here

is always non-adaptive i.e. independent of previous measurement outcomes.

(ii) In C̃ the set of output lines {j1, . . . , jl} is disjoint from the set of intermediate measured

lines.

Proof. To construct C̃ we take C∗ as above, but after each extra CXi,n+i operation we im-

mediately measure line n+i, and use its output as the result of the intermediate measurement

Mi of C, for subsequent adaptations. 2

We are now ready to prove our seven theorems.

4.1. NONADAPT, IN(PROD), OUT(1) and STRONG: Cl-P

Theorem 1 Let A be the set of computational tasks defined by non-adaptive Clifford cir-

cuits, general product state inputs and single bit outputs. Then A may be strongly efficiently

classically simulated.

Proof. This result has been proved in [20] and we summarise the argument here. Using

lemma 2 we may assume wlog that the Clifford circuit is unitary. Let C = CN . . . C1 be a

unitary Clifford circuit with product state input |α〉 = |α1〉 . . . |αn〉. Write |β〉 = C |α〉. We

may assume that the output, with probabilities p0, p1 is obtained from line 1 (as the swap gate

is Clifford). Let A = Z ⊗ I ⊗ I . . .⊗ I. Then p0 − p1 = 〈β|A |β〉 = 〈α|C†AC |α〉. Now A is a

Pauli operator so after successive conjugations by the Ci’s we get C†AC = γP1⊗. . .⊗Pn where

the label of the latter is easily computed in poly(N) time. Thus p0 − p1 = γ
∏n
i=1 〈αi|Pi |αi〉

and the latter expression, being a product of n 2 × 2 matrix expectation values, is readily

computable in poly(N) time, providing the efficient strong classical simulation (as p0 +p1 = 1

too). 2

Remark. The simple method of the above proof does not generalise to the case of OUT(MANY)

with O(n) output lines. Indeed we will see (cf theorems 4 and 6 below) that this case is #P-

hard but remains classically efficiently strongly simulatable if we restrict the input states to

just computational basis states i.e. to IN(BITS).

4.2. ADAPT, IN(BITS), OUT(1) and STRONG: #P-hard

Theorem 2 Let A be the set of computational tasks defined by adaptive Clifford circuits,

computational basis state inputs and single bit outputs. Then the strong classical simulation

of A is #P-hard.

Proof. With the availability of adaptation we are able to apply the gate CXjk or the identity

gate Ijk (on lines j and k) chosen conditionally according to the result of a measurement on

another line i. Thus if these lines are promised to be in computational basis states we can
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apply the Toffoli gate. (Note however that we cannot by this method apply the Toffoli gate

coherently on general quantum states because the adaptation requires a measurement on

line i). Then with the availability of computational basis state inputs, using X and this

Toffoli construction, we can efficiently implement universal classical computation. Thus if

f is any Boolean function from n bits to one bit, we can implement the transformation

Af : |x〉 |0〉 → |x〉 |f(x)〉 (so long as the input is a computational basis state). Consider now

the following process which is allowed in A: starting with n qubits each in state |0〉, apply

H to each and measure each to generate a uniformly random n-qubit computational basis

state |x〉. Then apply Af and finally measure the qubit line of |f(x)〉 to give a single bit

output. Clearly the probability of obtaining 1 is #f/2n so strong simulation of this process

is #P-hard. 2

4.3. ADAPT, IN(PROD), OUT(1) and WEAK: QC-hard

Theorem 3 Let A be the set of computational tasks defined by adaptive Clifford circuits,

general product state inputs and single bit outputs. Then the weak classical simulation of A
is QC-hard.

Proof. This result is well known, see e.g. [8]. It suffices to show that within the given resource

constraints, the phase gate T = diag(1, eiπ/4) may be implemented on any desired qubit line.

This is achieved by introducing an extra ancilla qubit labelled a, in state
∣∣π
4

〉
= 1√

2
(|0〉 +

eiπ/4 |1〉) (respecting availability of product state inputs) and then applying the process of

lemma 4 below, and finally applying the Clifford gate S = T 2 to line i conditionally on the

value of the ancilla measurement outcome (which is possible since adaptation is available). 2

Lemma 4 Let |ψ〉1...n be an n-qubit state on lines 1 to n and let T = diag(1, eiπ/4). Let∣∣π
4

〉
a

= 1√
2
(|0〉+ eiπ/4 |1〉) be an extra ancillary qubit. Then

Ma(x)CXai |ψ〉
∣∣π
4

〉
a

results in

{
Ti |ψ〉 |0〉a if x = 0

eiπ/4T−1i |ψ〉 |1〉a if x = 1

where Ti denotes the application of T to qubit i, and CXai is the application of CX to lines

a and i with i as target line.

Proof of lemma. A straightforward calculation. 2

4.4. NONADAPT, IN(BITS), OUT(MANY) and STRONG: Cl-P

Theorem 4 Let A be the set of computational tasks defined by non-adaptive Clifford circuits,

computational basis state inputs and multiple bit outputs. Then A may be strongly efficiently

classically simulated.

Proof. The techniques of [3] and alternatively [6] may be used to prove theorem 4. Here we

give a proof using a third method. Let C be a non-adaptive Clifford circuit with computational

basis input |x1 . . . xn〉 and let j1, . . . , jm be any subset of the output lines. We will show that

the corresponding marginal probability p(y1, . . . , ym) may be efficiently classically computed.

We may assume the following standardised situation:

(i) C is unitary (by lemma 2);

(ii) x1 . . . xn = 00 . . . 0 and y1 . . . ym = 00 . . . 0 (since we can pre- and post- include extra X
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gates on lines where xi or yj are 1);

(iii) j1, . . . , jm = 1, . . . ,m for m ≤ n (since swap gates are Clifford operations).

Thus for C unitary with input |0n〉 = |00 . . . 0〉 let p = prob(0 . . . 0) be the probability of

obtaining 0 from measurement of each of the lines 1 to m. Using |0〉 〈0| = (I + Z)/2 and

writing t = t1 . . . tm for m-bit strings we have

p = 1
2m 〈0

n|C† (I1 + Z1)⊗ . . .⊗ (Im + Zm)⊗ Im+1 ⊗ . . .⊗ In C |0n〉
= 1

2m

∑
t∈Zm

2
〈0n|C† Z̃(t) C |0n〉

where Z̃(t) is the n-qubit Pauli operator Z(t)⊗ I . . .⊗ I obtained by extending the m-qubit

operator Z(t) by (n−m) I’s. This is a sum with potentially exponentially many terms (e.g. if

m = O(n)) yet it can be evaluated in poly(n) time as follows. Using the Clifford conjugation

relations we have

Γ(t) ≡ C† Z̃(t)C = σ(t)X(a(t))Z(b(t)) (4)

with σ(t) ∈ {±1,±i} and a(t),b(t) ∈ Zn2 . Furthermore, for each t these labels can be

computed efficiently.

Next, introduce basis vectors ej = 0 . . . 010 . . . 0 in Zm2 (having 1 in the jth slot) for

j = 1, . . . ,m. Then since t =
∑
i tiei and Z̃(t) = Z̃(e1)t1 . . . Z̃(em)tm we have

a(t) =

m∑
i=1

ti a(ei). (5)

Next note that since 〈0|X |0〉 = 0 we have

〈0n|Γ(t) |0n〉 6= 0 iff a(t) = 0n.

Furthermore if a(t) = 0n then

Γ(t) = σ(t)Z(b(t)) (6)

and since Γ(t)2 = I = Z(b(t))2 we must have σ(t) ∈ {±1}, so that

σ(t) = (−1)u(t) (7)

with u(t) ∈ {0, 1}. Furthermore, using 〈0|Z |0〉 = 〈0| I |0〉 = 1 we get

〈0n|Γ(t) |0n〉 = σ(t) if a(t) = 0n.

Introducing T0 = {t : a(t) = 0n} ⊆ Zm2 we thus get

p =
1

2m

∑
t∈T0

(−1)u(t).

Next we characterise T0. We have t ∈ T0 iff a(t) = 0n so by eq. (5), T0 is the subspace of

Zm2 given by the solution space of At = 0 where A is the n ×m sized matrix with a(ei) for

i = 1, . . .m as the columns. Using the label update rules for Clifford conjugations, all a(ei)’s

can be computed in poly(n) time. Thus we can compute a basis {c1, . . . , cl} of T0 (and hence
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also the information of its dimension l) in poly(n) time. Then t ∈ T0 iff t =
∑l
i=1 sici for

s = s1 . . . sl ∈ Zl2 and

p =
1

2m

∑
s∈Zl

2

(−1)u(
∑
sici).

Finally recalling that Z(t + t′) = Z(t)Z(t′) we see from eqs (6) and (7) that u(t) is a linear

function of t, so writing u(ci) = ki and k = k1 . . . kl we have

p =
1

2m

∑
s∈Zl

2

(−1)k·s.

Now g(s) = (−1)k·s is a balanced function for k 6= 0l (i.e. taking values ±1 equally often) so

p =

{
2l/2m if k = 0l

0 if k 6= 0l

concluding our efficient classical computation of p.

To summarise: given the description of the circuit C we first compute a(ei) for i = 1, . . .m

(from the Clifford conjugation relations) giving the matrix A via columns. Then we compute

any basis {c1, . . . , cl} of ker(A), and compute the l-bit string k = u(c1) . . . u(cl) (again from

the Clifford conjugation relations in eq. (4) with t = ci there). Then p = 2l−m if k = 0l and

p = 0 otherwise. 2

4.5. ADAPT, IN(BITS), OUT(MANY) and WEAK: Cl-P

Theorem 5 Let A be the set of computational tasks defined by adaptive Clifford circuits,

computational basis state inputs and multiple bit outputs. Then A may be weakly efficiently

classically simulated.

Remark. Note that by theorem 2 strong simulation in this scenario even with single bit

outputs, is #P-hard. The weak simulation that we give in the proof of theorem 5 below will

use the strong simulation result of theorem 4. A different proof of theorem 5 may be given in

terms of the stabiliser formalism (see [2], especially the Gottesman Knill theorem 10.7 therein)

which develops a description of the evolving state through the course of the computation.

Remark. A family of Clifford computational tasks {Tn : n = 1, 2, . . . }, where Tn acts on

n qubits, is said to be uniform if the description of Tn can be computed in poly(n) time

by a (deterministic) classical Turing machine on input of n. Theorem 5 shows that uniform

families of adaptive Clifford circuits with computational basis state inputs and multiple bit

outputs do not have additional power over polynomial-time randomised classical computa-

tion. Interestingly, the power of such uniform families of Clifford computational tasks in

fact coincides with polynomial-time randomised classical computation. This follows from the

constructions in the proof of theorem 2 where it was shown how to generate random bits and

realize Toffoli gates with adaptive Clifford circuits acting on computational basis state inputs

(see also [25] for related insights on realizing universal classical computation with adaptive

stabilizer measurements). Finally we note the interesting comparison with the case of prod-

uct states (replacing computational basis states) as inputs (keeping all other parameters the

same) where the associated uniform families of Clifford computational tasks have precisely
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the same power as universal quantum computation (which similarly immediately follows from

the proof of theorem 3).

Proof. Let C be an adaptive circuit on n qubit lines with K intermediate measurements,

input |x〉 = |x1〉 . . . |xn〉 and l output lines. By lemma 3 we may wlog instead work with an

extended circuit C̃ on n+K lines having the following form (rearranging the order of lines in

lemma 3): C̃ has input |0〉1 . . . |0〉K |x1〉K+1 . . . |xn〉K+n and the output measurements are on

lines K+1, . . . ,K+l (wlog, as swap operations are Clifford). Furthermore the ith intermediate

measurement yielding outcome yi for 1 ≤ i ≤ K is on line i and then line i is not further used in

C̃. As such, these measurements can be viewed as outputs too with the caveat that subsequent

choices of gates may depend on the values y1, y2, . . . , yK as they sequentially emerge. A full

run of C̃ (including its l output measurements) samples an associated probability distribution

p(y1, . . . , yK , yK+1, . . . , yK+l).

Now if y1, . . . , yj for j ≤ K are specified then the circuit up to the jth measurement

becomes non-adaptive (i.e. the adaptive choices have been specified) and hence we can

efficiently compute the marginal p(y1, . . . , yj) by theorem 4. Similarly if j ≥ K + 1 all

adaptations have been specified and by theorem 4 we can again efficiently compute the corre-

sponding marginals p(y1, . . . , yj). Hence by lemma 1 we can efficiently sample the distribution

p(y1, . . . , yK , yK+1, . . . , yK+l) and the last l bits of the sample provides a weak efficient clas-

sical simulation of C̃ and hence of C too. 2

Remark. The task of computing arbitrary marginals of p(y1, . . . , yK , yK+1, . . . , yK+l), which

would correspond to a strong simulation, is #P-hard owing to theorem 2. However, in the

proof of theorem 5 we showed that marginals of the special form p(y1, . . . , yj) can be computed

efficiently. The latter allowed us to invoke lemma 1 and conclude that weak simulation is

possible.

4.6. NONADAPT, IN(PROD), OUT(MANY) and STRONG: #P-hard

Theorem 6 Let A be the set of computational tasks defined by non-adaptive Clifford circuits,

general product state inputs and multiple bit outputs. Then the strong classical simulation of

A is #P-hard.

Remark. Note that by theorem 1 the same scenario with just 1-bit outputs is classically

strongly efficiently simulatable.

Proof. We will show that efficient strong simulation of A would imply efficient strong simu-

lation of universal quantum computation and hence provide an efficient solution of the #SAT

problem (using the process described in the proof of theorem 2 to express #f for any Boolean

f as a probability value).

Thus let D be any quantum circuit comprising basic Clifford gates and T gates with a

product state input, and single bit output denoted y. Consider again the process of lemma

4. In our present scenario for A we do not have adaptation available so we cannot implement

T gates as we did in the proof of theorem 3. Instead we proceed as follows. Suppose there

are K T gates in D. For each such gate introduce an ancilla in state
∣∣π
4

〉
and replace the T

gate by the sequence of operations in lemma 4, resulting in a non-adaptive circuit D′ now

involving only basic Clifford gates. Then D′ has K + 1 outputs viz. y and measurements of
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the K ancilla lines denoted a1, . . . , aK , and we have

ProbD(y) = ProbD′(y | 0a1 . . . 0aK )
= ProbD′(y 0a1 . . . 0aK )/ProbD′(0a1 . . . 0aK ).

Strong classical efficient simulation of A (which allows multi-line outputs) implies that we

can compute both of the D′ probabilities in the above quotient and hence ProbD(y) i.e. we

then get a strong efficient simulation of D. 2

4.7. NONADAPT, IN(PROD), OUT(MANY) and WEAK: collapse of PH

Theorem 7 Let A be the set of computational tasks defined (as in theorem 6) by non-adaptive

Clifford circuits, general product state inputs and multiple bit outputs. If A could be weakly

efficiently classically simulated, then the polynomial hierarchy PH would collapse to its third

level.

Remark. For the definition of PH we refer to [23]. The proof of theorem 7 below rests on

techniques introduced in [22] and below we will be content to describe the relationship of the

class A in theorem 7 to the constructions of [22] and refer to the latter for further details of

the proof.

Remark. Theorem 7 provides a partial answer to an open problem raised in [4] viz. the

question of the computational power of non-adaptive Clifford circuits with product state

inputs and multiple bit outputs.

Proof. Consider again the process of lemma 4. Now instead of utilising adaptation (as we

did in the proof of theorem 3) or conditional probabilities (as we did above in theorem 6), we

could alternatively implement T using the process of lemma 4 if we were able to post-select on

measurement outcomes viz. we post-select the value 0 of the ancilla measurement. It follows

that our class A together with post-selection contains universal quantum computation, and

even more, universal quantum computation with post-selection. Aaronson [24] has shown that

the class BQP with post-selection coincides with the classical class PP (cf [23] for definitions).

Thus our class A with post-selection contains PP.

Now let K be any class of bounded error quantum circuits such that K with post-selection

contains PP. Then (as elaborated in [22]) weak efficient classical simulation of K for output

measurements on many lines, implies thatK with post-selection is contained in BPP with post-

selection [22]. Then according to a result of classical complexity theory (cf [22] for details),

the latter inclusion (implying that PP is contained in BPP with post-selection) implies that

PH collapses to its third level. Hence weak efficient classical simulation of our class A would

imply this collapse. 2
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