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Abstract
The circuit-to-Hamiltonian construction translates dynamics (a quantum circuit
and its output) into statics (the groundstate of a circuit Hamiltonian) by
explicitly defining a quantum register for a clock. The standard Feynman–
Kitaev construction uses one global clock for all qubits while we consider
a different construction in which a clock is assigned to each interacting
qubit. This makes it possible to capture the spatio-temporal structure of
the original quantum circuit into features of the circuit Hamiltonian. The
construction is inspired by the original two-dimensional interacting fermion
model in Mizel et al (2001 Phys. Rev. A 63 040302). We prove that for one-
dimensional quantum circuits the gap of the circuit Hamiltonian is appropriately
lowerbounded so that the applications of this construction for quantum Merlin–
Arthur (and partially for quantum adiabatic computation) go through. For
one-dimensional quantum circuits, the dynamics generated by the circuit
Hamiltonian corresponds to the diffusion of a string around the torus.

Keywords: quantum complexity, quantum information, Markov chains,
Heisenberg model
PACS number: 03.67.−a

(Some figures may appear in colour only in the online journal)

1. Introduction

In [2] Feynman considered how to simulate a quantum circuit using unitary dynamics generated
by a time-independent Hamiltonian H. Imagine that the quantum circuit consists of L unitary
gates U1, . . . ,UL on n qubits. Feynman’s idea was to introduce a clock register |t〉 with time t
running from t = 0 to L such that for each unitary gate Ut in the circuit, we have a term Ht in
the Hamiltonian H, i.e.
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Ht = Ut ⊗ |t〉 〈t − 1| + U†
t ⊗ |t − 1〉 〈t| , H =

L∑
t=1

Ht .

Alternatively, one can construct a Hamiltonian Hcircuit such that the groundstate of Hcircuit =∑L
t=1 Ht is the history state of the quantum circuit [3]. We then take1

Ht = −Ut ⊗ |t〉 〈t − 1| − U†
t ⊗ |t − 1〉 〈t| + |t〉 〈t| + |t − 1〉 〈t − 1| � 0.

The zero energy groundstate of the circuit Hamiltonian Hcircuit is

|ψhistory〉 = 1√
L + 1

L∑
t=0

Ut . . .U1 |ξ 〉 ⊗ |t〉 ,

for any input state |ξ 〉 to the circuit. It is not hard to analyze the spectrum of Hcircuit as one can
transform the dependence on the specific gates U1, . . . ,UL away by a unitary transformation
W = ∑L

t=0 Ut . . .U1 ⊗ |t〉 〈t| such that W †Hcircuit(U1, . . . ,UL)W = Hcircuit(U1 = I, . . . ,UL =
I). This unitarily-transformed circuit Hamiltonian corresponds to that of a particle (whose
location is t) moving on a one-dimensional (1D) line: the eigenvalues of Hcircuit are
λk = 2(1 − cos qk) with qk = πk

L+1 for k = 0, . . . , L. The gap above the ground-space of
Hcircuit is thus easily lowerbounded as �(L−2), corresponding to the lowest k �= 0 eigenstate.
If one is given the history state, one can measure the clock register t and, with probability
1/(L + 1), obtain the output of the quantum circuit. In order to increase the probability of
getting the output to some constant, one can pad the quantum circuit with, say, L identity gates
at the end, so that the probability of measuring any time t ∈ [L, 2L] is approximately 1/2.
For all times in this interval, the qubits are in the output state of the quantum circuit. It has
been shown how the circuit-to-Hamiltonian construction can be used directly as a model for
universal quantum adiabatic computation [4].

The circuit-to-Hamiltonian construction was first used by Kitaev in quantum complexity
theory to prove that certain problems are quantum Merlin Arthur (QMA)-complete. The
complexity class QMA [3] is the quantum equivalent of the class NP (or its probabilistic
variant MA). Informally, in QMA the classical proof or witness and the classical verifier of
NP are replaced by a quantum proof |ξ 〉 and a quantum verifier. The formal definition is

Definition 1.1 (QMA [3, 5]). A promise problem L = Lyes ∪ Lno ⊆ {0, 1}∗ belongs to QMA
iff there exists a polynomial p(n) and a polynomial-time generated family of quantum circuits
{Cn} which take an input of n + p(n) qubits such that for all n and all x ∈ {0, 1}n,

x ∈ Lyes ⇒ ∃ξ, Pr[Cn(x, ξ ) = 1] � 2/3, (completeness)

x ∈ Lno ⇒ ∀ξ, Pr[Cn(x, ξ ) = 1] � 1/3. (soundness)

where ξ is a p(n)-qubit state.

The completeness and soundness errors ( 2
3 , 1

3 ) can be amplified to (1 − ε, ε) where
ε = 2−poly(n) [3, 6], thus making these errors exponentially small, without increasing the
number of qubits of the witness ξ .

To prove that a computational (promise) problem is QMA-complete, one needs to prove
that (1) the problem is contained in the complexity class QMA and (2) that the problem is
QMA-hard. The general ‘local Hamiltonian’ problem has been shown to be in QMA, e.g.

Proposition 1.2 ([3]). Let H = ∑
i Hi be a Hamiltonian on n qubits with ||Hi|| = O(1) and

each Hi acts on O(1) qubits non-trivially. We have the following promise: either there exists a
state ψ , 〈ψ | H |ψ〉 � a (YES) or ∀ψ, 〈ψ | H |ψ〉 � b (NO) for some given a, b (described by
some poly(n) bits) with |a − b| � 1

poly(n)
. The problem of deciding between YES and NO is in

the class QMA.
1 Sometimes a prefactor of 1

2 is included to make Ht a projector.
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The idea behind the containment in QMA is simple: if YES, Merlin (the prover) can
give Arthur (the verifier) a groundstate and Arthur can estimate the energy of this state with
1/poly(n) precision using an efficient quantum circuit. If this answer is NO, then Merlin
cannot give any state which has low enough energy to fool Arthur.

Using the circuit-to-Hamiltonian construction, Kitaev proved that 5-local Hamiltonian
problem (where each Hi acts on at most 5-qubits) is QMA-complete [3]. Since then, many
variants of the local Hamiltonian problem have been shown to be QMA-complete such as 1D
local Hamiltonians [7]. See [8, 9] and references therein for the most recent results. Various
new results for QMA-complete problems have so far come about by modifications of the
circuit-to-Hamiltonian construction, different realizations of clocks and the use of perturbation
gadgets [10].

In this paper we will show how a different circuit-to-Hamiltonian construction, the space-
time circuit-to-Hamiltonian construction (see [11] for early work on this construction), can be
used to give QMA-completeness results. In the next section we review a modification of the
Feynman–Kitaev construction with circular time. In section 1.2 we will present the space-time
circuit-to-Hamiltonian construction for general quantum circuits. In section 1.4 we show how
the space-time circuit-to-Hamiltonian construction for 1D quantum circuits relates to a two-
dimensional (2D) fermionic model which has been previously proposed as a model for adiabatic
computation. In section 1.5 we show how to modify the space-time construction for circular
time: this is convenient for our later mathematical analysis. In section 2 we start with a spectral
analysis of the circuit Hamiltonian and we focus our attention on 1D quantum circuits between
nearest-neighbor qubits in section 2.1. An important result in section 2.1 is the mapping of
the Hamiltonian dynamics onto that of a diffusing string. The string can be parametrized
by internal variables determining the shape of the string (dynamics of a Heisenberg model)
and an arbitrary boundary point which is moving on a 1D line. This mapping allows us to
lower bound the spectral gap of the circuit Hamiltonian. The results in this section 2.1 then
play an important role in section 3.1 where we prove, loosely speaking, that determining
the ground-state energy of a 2D interacting fermion model with a specific constraint on the
fermion number is QMA-complete. In section 3.4 we consider the consequence of our results
for quantum adiabatic computation.

We present the space-time circuit-to-Hamiltonian construction in its generality as we
believe that the association of a Hamiltonian with a quantum circuit may in the future have
other applications beyond the one directly discussed here.

1.1. Circular time

For any quantum circuit one can define a circuit Hamiltonian whose dynamics correspond to
a particle moving on a circle instead of a line (see [12]). We will use this idea in this paper
as it is easier to analyze, so let us give some details, see figure 1. We define a circular clock
register t = 0, . . . 2L − 1 where we identify t = 2L with t = 0 (t ∈ Z2L). The idea is to use the
sequence of unitary gates U1, . . . ,UL of the quantum circuit for the two different ways one
can go from t = 0 to the opposite point on the circle, t = L, see figure 1. More generally, we
define some new, yet to be specified, gates UL+1, . . .U2L and take as before

t ∈ [1, 2L] : Ht = −(Ut ⊗ |t〉 〈t − 1| + h.c.) + |t〉 〈t| + |t − 1〉 〈t − 1| .
Let Hcircuit = ∑2L

t=1 Ht . As Hcircuit is a sum of positive-semidefinite operators, it only has a zero
energy if all terms Ht have zero energy. W.l.o.g. we can take the groundstate to be of the form∑2L−1

t=0 |ψt〉 |t〉 which is a zero energy state if and only if

t ∈ [1, 2L] : |ψt〉 = Ut |ψt−1〉.
3
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Figure 1. Representation of the Feynman–Kitaev circuit-to-Hamiltonian construction
with circular time [12]. At t = L, the qubits are in the output state of the quantum
circuit while evolving further along the circle will undo the evolution. The evolution
from any point, say t = 0, to another point t on the circle is well-defined, even though
the evolution can happen via two different paths.

This implies that the unitary evolution from a state |ψt〉 around the entire circle must act as I
on the state |ψt〉. Equivalently, we have U2L . . .UL+1UL . . .U1 |ξ 〉 = |ξ 〉 where |ξ 〉 = |ψt=0〉.
Depending on the choice for UL+1, . . . ,U2L, this defines a subspace of states |ξ 〉. When we
choose Ut = U†

2L−t+1 for t = L+1, . . . , 2L, the subspace |ξ 〉 is the whole space and the history
state of the circuit is

|ψhistory〉 = 1√
2L

2L−1∑
t=0

Ut . . .U2U1 |ξ 〉 ⊗ |t〉 ,∀ ξ (1)

where the latter part (for t > L) of the evolution unravels the earlier part. An additional
observation is that if the original quantum circuit contains some I gates here and there, then
the gates need not explicitly be included in the unraveling evolution, in order for there to be a
zero energy history state for any ξ .

Note that the history state of this circular-time construction, equation (1), contains the
output of the original circuit when we measure time and find t = L. As before, we can pad the
original circuit with I gates at the end such that we have a window of time around t = L when
the qubits are in the output state of the original quantum circuit. Hence, if one is given (a fast
adiabatic path toward) the groundstate of the circuit Hamiltonian, one can measure the output
of the quantum circuit with such circular-time model similar as in the linear-time model.

1.2. Space-time circuit-to-Hamiltonian construction

We consider a quantum circuit on n qubits with single and 2-qubit gates Ui, i = 1, . . . , S
where S is the size of the circuit. As some gates can be executed in parallel on different qubits,
the circuit also has a certain depth D � S. The circuit may have a geometric structure, i.e.
only nearest-neighbor qubits on some d-dimensional lattice or space interact. The space-time
circuit-to-Hamiltonian defines a circuit Hamiltonian Hcircuit whose properties relate to the
geometric structure and the depth D of this quantum circuit.
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Each gate Ui in this circuit will correspond to a term in Hcircuit. The gates can be labeled as
U1

t [q] for a single-qubit gate acting at time-step (depth) t = 1, . . . , D on qubit q, or a 2-qubit
gate U2

t [q, p] acting at time-step t on qubits q and p.
The construction that we will analyze later has circular time, see section 1.5, but for

simplicity we first define the model with linear time. For each qubit q in the original circuit,
we define a clock register |t〉q with t = 0, . . . , D. Thus the global clock in the Feynman–Kitaev
construction gets replaced by a time-configuration |t1, . . . , tn〉1,...n. Consider a single-qubit gate
U1

t [q] acting on qubit q at time-step t in the quantum circuit. For each such gate, there is a
term H1

t [q] in Hcircuit of standard form, i.e.

H1
t [q] = −(

U1
t [q] ⊗ |t〉 〈t − 1|q + h.c.

) + |t〉 〈t|q + |t − 1〉 〈t − 1|q .

Clearly, if the quantum circuit were to consist of single-qubit gates only, the history state would
be a tensor product of history states, one for each qubit independently. In such a scenario, the
clocks of the qubits can be completely unsychronized and measure different times.

For every 2-qubit gate U2
t [q, p] acting on qubits p and q at time tq = tp = t in the quantum

circuit, we have in Hcircuit the term

H2
t [q, p] = −(

U2
t [q, p] ⊗ |t, t〉 〈t − 1, t − 1|q,p + h.c.

)
+ |t, t〉 〈t, t|q,p + |t − 1, t − 1〉 〈t − 1, t − 1|q,p � 0. (2)

Note that H2
t [q, p] always has zero energy when the clocks of qubits q and p measure unequal

times. We take Hcircuit = ∑D
t=1 Ht where Ht is a sum over all H2

t [q, p] and H1
t [q] for various

q, p, corresponding to gates U2
t [q, p] and U1

t [q] which act in parallel at time t.

1.3. Valid time-configurations

We consider the zero energy states of this circuit Hamiltonian. First we define what we call
invalid time-configurations |t1, . . . , tn〉. Invalid configurations are the time-configurations in
which, of at least one pair of qubits, say, the pair (q, p) which interacts in some 2-qubit gate
U2

t [q, p] in the quantum circuit, it holds that either (tq < t) ∧ (tp � t) or (tp < t) ∧ (tq � t).
Informally, this means that 1-qubit has gone through the gate while its partner qubit has not
yet gone through the gate. If one would evolve with Hcircuit starting from the all-synchronized
state |t1 = 0, . . . , tn = 0〉 ⊗ |ξ 〉, then clearly the resulting state would not have any support on
invalid time-configurations as qubits always go together through 2-qubit gates by equation (2).
Stated differently, Hcircuit preserves the space of valid time-configurations and its eigenstates
split into a sectors of valid and invalid eigenstates.

On the space of invalid time-configurations, one can easily find zero energy eigenstates for
Hcircuit, but we will not be interested in these states. If we apply this construction for quantum
adiabatic computation, section 3.4, we can start our adiabatic computation in the space of valid
time-configurations and thus remain in this subspace. If we apply the construction to QMA,
we need to do some additional work, see section 3.1.

We consider zero energy states in the space of valid time-configurations. We restrict
ourselves to quantum circuits which only employ 2-qubit gates2. For such quantum circuits, a
valid time-configuration |t1, . . . , tn〉 has zero energy when, for every 2-qubit gate U2

t [q, p] in
the circuit, the clock-times tq and tp are either tq �= tp, or tp = tq /∈ {t − 1, t} as then each term

2 Single-qubit gates can always be absorbed into 2-qubit gates. The presence of single-qubit gates would lead to
some differences, for example the presence of gapped excitations in Hcircuit which are localized in space-time.

5
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(a) (b)

Figure 2. (a) One-dimensional quantum circuit on n qubits and depth D where the (red)
line indicates a zero energy time-configuration. (b) One-dimensional quantum circuit
on n qubits with nearest-neighbor interactions on a circle and depth D (n and D both
even) which is analyzed in this paper. The (blue) line is not a zero energy configuration
but evolves under Hcircuit.

H2
t [q, p] has zero energy with respect to |t1, . . . , tn〉. Such configurations do not evolve and

we could call these configurations light-like.3

Let us illustrate these notions with quantum circuits that will mostly concern us, namely
1D quantum circuits with nearest-neighbor qubits interacting in 2-qubit gates, depicted in
figure 2. The quantum circuit in figure 2(a) has a beginning and an end and periodic boundary
condition in space, but some 2-qubit gates are missing in the circuit so that the (red) line
represents a zero energy configuration. The quantum circuit in figure 2(b) has no zero energy
configurations. Note that n and D are both even. Figure 3 is an example of a quantum circuit
with periodic boundary conditions in both space and time which does have unavoidable zero
energy configurations, see section 1.5.

For quantum adiabatic computation, the valid zero energy configurations are harmless as
we can avoid starting the computation in such non-evolving configurations. For the application
to QMA, the existence of valid zero energy configurations must be avoided as the goal is to
construct a Hamiltonian where the existence of a zero energy groundstate depends on the
computation done by the quantum circuit. If there are valid zero energy configurations, it is
not clear how to modify Hcircuit to make such configurations have non-zero energy. As we
see, it is simple to avoid zero energy configurations by ensuring that the quantum circuit has
2-qubit and single-qubit (possibly I) gates throughout which propagate the clocks.

1.4. Relation with the fermionic ground-state model of [1, 12, 13]

In [1] the authors formulate a (fermionic) model which allows for universal quantum
computation by adiabatically modifying a circuit Hamiltonian [14]. Imagine we have a
quantum circuit on n qubits, e.g. the one in figure 2(b), of depth D. With every qubit q,
we associate 2(D + 1) fermionic modes with creation operators a†

t [q], b†
t [q], t = 0, . . . , D.

One can view these 2n(D + 1) modes as the state-space of n spin-1/2 fermions, where each
fermion can be localized at sites on a 1D (time)-line of length D + 1. The spin-state of the n

3 If one would give each qubit q a spatial location rq, then one can informally say that for these configurations, the
space-time intervals of any pair of space-time points (rq, tq) and (rp, tp) is light-like. We could call the remaining valid
configurations space-like, as in these time-configurations there is no causal relation between any pair of points (rq, tq)

and (rp, tp), so all intervals are space-like. The invalid configurations thus contain time-like space-time intervals using
this nomenclature.
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Figure 3. Space-time cylinder with circumference 2D and length n with n = 6D, based
on the quantum circuit in figure 2(b). We identify the top and bottom of the cylinder
(periodic boundaries in space) to make a torus. The red line represents a zero energy
time-configuration, a closed time-loop. Such zero energy loops can be constructed
whenever n = 2kD with integer k.

fermions represents the state of the computation while the clock of each qubit is represented

by where the fermion is on the 1D line. Let Ct[q] =
[

at[q]
bt[q]

]
. Then for each single-qubit gate

U1
t [q], there is a term in the circuit Hamiltonian Hcircuit equal to

H1
t [q] = [

C†
t − λC†

t−1U
1
t

†][
Ct − λU1

t Ct−1
]
,

where we have dropped the label [q] for readability. This is a fermion hopping term for the
qth fermion from site t − 1 to t and vice-versa, while U1

t acts on the internal spin degree of
freedom. By including the onsite terms C†

t Ct and C†
t−1Ct−1 one ensures that H1

t [q] � 0. The
parameter λ ∈ [0, 1] can tune the relative strength of the hopping, but we will take λ = 1 for
the rest of the paper. In order for the circuit Hamiltonian to represent the action of a quantum
circuit with some single-qubit gates, we must require that the fermionic occupation number
N[q] = ∑D

t=0 nt[q] = 1 with nt[q] ≡ a†
t [q]at[q] + b†

t [q]bt[q], or that 1-qubit q is represented
by a single fermion present. If the original quantum circuit is universal, it will also involve
CNOT gates (or controlled-U gates). The authors in [1] represent a CNOT gate between qubit c
(control) and g (target) at time t by the following two terms HCNOT

t [c, g] = HI
t [c, g]+HNOT

t [c, g]
in the circuit Hamiltonian, i.e.

HI
t [c, g] = a†

t [c]at[c] nt[g] + a†
t−1[c]at−1[c] nt−1[g]

−(
a†

t [c]at−1[c]
(

a†
t [g]at−1[g] + b†

t [g]bt−1[g]
)

+ h.c.
)
,

HNOT
t [c, g] = b†

t [c]bt[c]nt[g] + b†
t−1[c]bt−1[c]nt−1[g]

−(
b†

t [c]bt−1[c]
(

a†
t [g]bt−1[g] + b†

t [g]at−1[g]
)

+ h.c.
)
. (3)

Note that for a general controlled-U gate, we could take HCU
t [c, g] = HI

t [c, g] + HU
t [c, g] with

the formal definition

HU
t [c, g] = b†

t [c]bt[c] nt[g] + b†
t−1[c]bt−1[c] nt−1[g] − (

b†
t [c]bt−1[c] C†

t [g]UCt−1[g] + h.c.
)
.

7
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For such 2-qubit gates, the fermions corresponding to qubits c and g both hop forward or
backward and the internal spin-state of fermion g is changed depending on the internal state
of fermion c. If the original quantum circuit is 1D, then the circuit Hamiltonian describes a
fairly natural interacting fermion system in 2D. It may thus be a physically attractive system
for realizing quantum adiabatic computation [14] or quantum walks [15]. Note that these
interactions preserve the condition that ∀q, N[q] = 1. The authors in [14] propose to use the
parameter λ to adiabatically turn the dynamics of the terms H1

t [q] (and similarly Ht
2[q]) on.

First, we would like to note that this model of interacting fermions can be unitarily
mapped onto the space-time circuit model introduced in section 1.2 by the following steps
[16]. Instead of fermions, one can represent each qubit q by a double line of 2(D+1) qubits as
one can verify that the interactions remain local under a Jordan–Wigner transformation (note
that the fermion hopping dynamics is that of nearest-neighbor coupled 1D hopping). Then we
unitarily switch the representation of the internal two-qubit state of the fermion at site t from
a ‘dual rail’ representation to a representation in which the first qubit labels the clock and
the second the current qubit state, i.e. we transform |01〉 → |10〉, |10〉 → |11〉, |00〉 → |00〉
and |11〉 → |01〉. The last input state |11〉 does not occur as N[q] = 1. After these 2-qubit
unitary transformations on all the qubits, we note that of the 2(D + 1) qubits representing
1-qubit in the original circuit, D qubits, out of D + 1 qubits, are in the |0〉 state, while 1-qubit
state has the current information. The other D + 1 qubits represent the clock of the qubit as
|t〉 = |0〉1|0〉2 . . . |0〉t |1〉t+1|0〉t+2 . . . |0〉D+1. Note that the extra D qubits in the |0〉 state can be
unitarily transformed away, by moving swapping the information-containing qubit to the first
qubit depending on the clock register |t〉.

This clock representation is usually called a pulse clock, as opposed to a domain wall
clock which was originally introduced in [3]. In our formulation of the circuit Hamiltonian we
have not yet specified a particular clock realization; we discuss this in section 3.2.

As the fermionic circuit Hamiltonian in the sector N[q] = 1 for all qubits q, is unitarily
related to the circuit Hamiltonian in section 1.2, the spectrum of the Hamiltonians is the same.
In [13, 14] the authors provide bounds on the gap above the ground-space. In [14] a penalty
term Hcausal is added to Hcircuit which ensures that invalid configurations have at least some
constant energy, see equation (26) in section 3.1.

The authors claim that the lowest non-zero eigenvalue of Hcircuit in the space of valid
time-configurations is �(S−4) where S is the size of the quantum circuit. The proof of this
claim is however not contained in [14], but the authors refer back to section C in [13] where
this result seems to be claimed for any quantum circuit consisting of single-qubit and 2-qubit
gates. However, the arguments in section C in [13] make no reference to having to exclude
invalid time-configurations which can easily be constructed to have zero energy. We believe
that the gap analysis in these papers misses several essential and interesting aspects of the
space-time circuit-to-Hamiltonian construction and warrants a more thorough mathematical
investigation. This is what we set out to do in this paper.

1.5. Space-time circuit-to-Hamiltonian construction with circular time

The construction in section 1.2 gets modified when the clock registers represent a circular
time. For each qubit q in the original circuit, we define an individual clock register |t〉q with
t ∈ Z2D. For simplicity, we again assume that the quantum circuit only contains 2-qubit gates.
One possible construction is to take Hcircuit = ∑2D

t=1 Ht where Ht is a sum over terms H2
t [q, p]

corresponding to all the gates which occur in parallel at time-step t in the original circuit, i.e.
equation (2) for t ∈ [1, D]. For t ∈ [D + 1, 2D] we take terms corresponding to the inverses
of all the gates which occur at time-step 2D − t + 1. However, if we apply this to the circuit in

8
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figure 2(b), we loose the alternating structure of the quantum circuit at times t = 0 and t = D.
We can simply avoid this by assuming that in the last time-step of the circuit only I gates are
performed on all qubits. Instead of undoing this gate in the next time-step at t = D + 1, we
‘undo’ it in the last time-step t = 2D. Thus the terms Ht for t ∈ [1, D] correspond again to
the original 2-qubit gates. The terms Ht with t ∈ [D + 1, 2D − 1] correspond to the inverses
of gates happening at time-steps 2D − t and the last term H2D corresponds to the (trivial I)
gates happening at time t = D in the original quantum circuit. In this way, we can wrap the
alternating gate structure around a cylinder, figure 3.

What are the zero energy states for such circuit Hamiltonian? We will have to redefine
what it means for time-configurations to be invalid as compared to section 1.2 as there is
no notion of ‘after’ or ‘before’ a certain time when time is circular. A 2-qubit gate U2[q, p]
occurring at time t in the quantum circuit gets mapped onto two terms in Hcircuit in general. The
gate specifies two complementary time intervals between the two gate-terms, It and Ic

t with
It ∪ Ic

t = Z2D. For example, for the unraveling choice above, all gates at time-steps t ∈ [1, D),
the intervals are It = [t, 2D − t − 1] and Ic

t = [2D − t, t − 1] and for the I-gates at t = D,
the intervals are [D, 2D − 1] and [0, D − 1]. A time-configuration t1, . . . , tn is called invalid
if there exists at least one pair of such qubits (q, p) interacting at time t in the original circuit,
for which either (tq ∈ It ) ∧ (tp ∈ Ic

t ) or (tp ∈ It ) ∧ (tq ∈ Ic
t ).

We consider valid zero energy configurations. If we impose periodic boundaries conditions
in space and take circular time with n = 2kD with integer k = 1, 2, . . ., one can construct
zero-energy configurations, see figure 3. The configuration with (even) n = 2kD makes
a homologically nontrivial loop around the torus in both directions (one always makes a
nontrivial loop around the space-direction). For n < 2D and 2-qubit gates throughout the
quantum circuit, we note that it is not possible to have such zero-energy configurations.

2. Gap of the circuit Hamiltonian

In this section we will do the technical work of lowerbounding the gap of the circuit
Hamiltonian for 1D quantum circuits with closed boundary conditions in space, figure 2(b), in
which the circuit Hamiltonian is constructed using circular time as in section 1.5. We start with
some observations which hold for more general quantum circuits. We consider the gap of the
circuit Hamiltonian in the space of valid time-configurations. Such valid time-configurations
will be denoted as |t〉. We can associate a graph and its Laplacian with the circuit Hamiltonian
on this valid subspace spanned by |t〉. Let G = (V, E ) be a graph with vertices t ∈ V
representing valid time-configurations and let E be the set of undirected edges of the graph.
There exists an edge e = (t, t′) ∈ E between valid time-configurations t �= t′ iff

〈t| Hcircuit |t′〉 = −V (t ← t′) �= 0,

for some unitary V (t ← t′), i.e. V (t ← t′) is the particular single-qubit or 2-qubit gate of
the quantum circuit which connects t′ to t. The Laplacian of the graph underlying the circuit
Hamiltonian is defined as

L(G)t,t′ =
⎧⎨
⎩

deg(t), t = t′

−1, (t, t′) ∈ E
0 else.

Note that one can write L(G) = D(G)−A(G) with diagonal degree matrix D(G) and adjacency
matrix A(G).

If G is a connected graph then by some number of applications of Hcircuit one can get
from any valid time-configuration to any other one. We will be only interested in connected
graphs: this precludes the existence of disconnected clusters of valid time-configurations.

9
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It may be clear that for the 1D quantum circuit with 2-qubit gates throughout with a
circular time and 2D > n, figure 2(b), Hcircuit corresponds to a connected graph. For
a connected graph, one can always construct a path from the ‘origin’ time-configuration
t = (0, 0, . . . 0) = 0 to any other t. It may also be clear that there is a unique unitary
transformation V (t ← 0) = V (t ← tm) . . .V (t2 ← t1)V (t1 ← 0) which one can associate
with such a path (of length m + 1).4 Using this composite unitary transformation V (t ← 0)

we can transform away the dependence of Hcircuit on the particular unitary gates. That is, let

W =
∑
valid t

V (t ← 0) |t〉 〈t| , (4)

then

W †Hcircuit({U}, G)W = Hcircuit({U = I}, G) =
∑
t,t′

L(G)t,t′ |t〉 〈t′| . (5)

The standard Feynman–Kitaev construction is a simple example of this in which the
underlying graph is a 1D line or circle and is thus connected. The space-time circuit-to-
Hamiltonian construction generalizes this to high-dimensional graphs whose vertices are no
longer points but strings (for 1D circuits) or membranes (for 2D quantum circuits) etc.

From the spectral theory of Laplacians on graphs [17], one can get some standard results,
e.g.

Proposition 2.1. The lowest eigenvalue of the Laplacian of a connected graph G = (V, E ) is
zero and corresponds to a unique vector which is the uniform superposition over all vertices.

This directly implies that for circuit Hamiltonians with underlying connected graph
G = (V, E ), the unique groundstate in the space of valid time-configurations is the history
state

|ψhistory〉 = 1√|V |
∑

valid t

V (t ← 0) |ξ 〉 ⊗ |t〉 ,∀ξ .

The second smallest eigenvalue of the Laplacian of a graph (and thus the gap of the circuit
Hamiltonian) is called the algebraic connectivity. Various techniques have been developed to
bound this eigenvalue [17], in particular using the theory of random walks on graphs and their
mixing times.

For the 1D quantum circuit in figure 2(b), with the circular time Hcircuit, the graph is
translationally-invariant in the ‘time direction’. Due to the periodic boundaries conditions
in space, the valid time-configurations corresponds to strings which wind around the torus,
see figure 3. This model is identical to the model considered in [18]. Our question, namely
bounding the mixing time of the process of diffusion of a closed string, is slightly different
from the problem solved in that paper. The problem of diffusion of a domain wall (of an
ferromagnetic Ising model at T = 0 where the Ising spin +1 or −1 represents whether
a gate has been done or not) has also been considered in the condensed-matter literature,
see e.g. [19, 20].

2.1. One-dimensional quantum circuits: FM Heisenberg model coupled to a counter

We start with a convenient relabeling of the valid time-configurations t as (τ, x) where
τ ∈ ZD and bitstring x = x1, x2, . . . , xn in the following manner. Let t1 be the time of one

4 Note that the path may not be unique as the order in which the gates are executed is not unique, but the induced
unitary transformation will nonetheless be unique.

10
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(a) (b)

Figure 4. (a) The valid time-configurations of the quantum circuit in figure 2(b), using
the circular-time construction, can be represented as a single string which winds around
the torus. The dynamics of the circuit Hamiltonian corresponds to the diffusion of this
string. The square plaquettes represent the gates and the string forms the boundary of
the gates that have already been executed. (b) Relabeling of the string variables using
the boundary point h0 which is next to the time t1 of qubit 1 and the variables xi with
(−1)xi = ±1 indicates whether the string continues left or right.

designated qubit, say, qubit 1. We assume as in figure 2(b) that the first gate on qubit 1 is
between qubits 1 and 2. Let h0 = t1 + 1

2 if t1 is even and h0 = t1 − 1
2 if t1 is odd so that h0

takes on values 1
2 + 2τ with τ ∈ ZD, see figure 4(b). Each valid time-configuration can be

associated with the half integers h0, h1, . . . , hn−1 (hn = h0) which are defined at the vertices of
the square plaquettes in figure 4(b) such that (−1)xi = hi − hi−1. It is clear from the figure that
a string t is equivalent to (h0, . . . , hn−1) which is equivalent to (τ, x1, . . . , xn) with xi = 0, 1.
Essentially, we are just reparametrizing the string t in terms of a point through which the string
crosses and deviations from this point which of course fully determines the position of the
string. Note that we explicitly break the translation symmetry between the qubits with this
parametrization. It is important to note that the periodic boundary conditions in space imply
that

∑n
i=1(−1)xi = 0 or

∑n
i=1 Zi = 0, i.e. an equal number of ‘spins’ are up or down.

This relabeling also immediately gives us the number of vertices in the graph G = (V, E )

as |V | = D
( n

n/2

)
. We consider the action of the circuit Hamiltonian (omitting the unitary gates

due to equation (5)) in this relabeled basis. Note that terms in Hcircuit which correspond to
gates between qubits 1 and n act on h0 and the ‘spin’ states x1 and xn. By such term h0 can be
mapped onto h0 ± 2 or the counter variable τ to τ ± 1.

Terms which correspond to gates between the other qubits do not act on the counter τ

but only on the spin states. For adjacent variables |xi = 0, xi+1 = 1〉 ↔ |xi = 1, xi+1 = 0〉
while |xi = 1, xi+1 = 1〉 or |xi = 0, xi+1 = 0〉 are left unchanged. The dynamics of the internal
variables x corresponds to that of the isotropic ferromagnetic spin-1/2 Heisenberg model
with the condition

∑n
i=1 Zi = 0. More precisely, the circuit Hamiltonian (in the valid time-

configuration subspace) is unitarily equivalent to

H̃circuit =
n−1∑
i=1

(
σ+

i σ−
i σ−

i+1σ
+
i+1 + σ−

i σ+
i σ+

i+1σ
−
i+1

) −
n−1∑
i=1

(
σ+

i σ−
i+1 + h.c.

)

+(
σ+

n σ−
n σ−

1 σ+
1 + σ−

n σ+
n σ+

1 σ−
1

) −
(

σ−
1 σ+

n

D−1∑
τ=0

|τ − 1〉 〈τ | + h.c.

)
. (6)
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One can verify this form of the Hamiltonian by inspecting the matrix elements 〈t| Hcircuit(U =
I) |t′〉 = Lt,t′ , equation (5), and representing t in terms of |τ, x〉. The off-diagonal terms
with negative sign directly come from minus the adjacency matrix, −At,t′ , while the positive
diagonal terms arise from the diagonal degree matrix Dt,t′ .

The eigenstates of H̃circuit with respect to the counter variable τ are simple plane-waves,
i.e.

|ψk〉 = 1√
D

D−1∑
τ=0

e2π ikτ/D |τ 〉 , k = 0, . . . D − 1,

H̃circuit |ψk〉 ⊗ |φ〉 = |ψk〉 ⊗ H(k) |φ〉 , (7)

where |φ〉 is any state of the spins. Using σ+
i σ−

i+1 + h.c. = 1
2 (XiXi+1 + YiYi+1) and

σ+
i σ−

i = 1
2 (I − Zi) we have

H(k) = n − 1

2
− 1

2

n−1∑
i=1

(XiXi+1 + YiYi+1 + ZiZi+1) + �(k), (8)

with

�(k) = 1
2 (1 − Z1Zn) − σ−

1 σ+
n e2π ik/D − σ+

1 σ−
n e−2π ik/D � 0. (9)

The eigenstates (and eigenvalues) of H̃circuit are thus the eigenstates of H(k) in
tensorproduct with the plane-wave states |ψk〉. H(k = 0) is the ferromagnetic (spin- 1

2 )
Heisenberg chain with periodic boundary conditions (in the sector with

∑
i Zi = 0), i.e.

H(k = 0) = n

2
− 1

2

n∑
i=1

(XiXi+1 + YiYi+1 + ZiZi+1) � 0. (10)

This model can be analyzed using the Bethe ansatz, see e.g. [21]. Note that the condition∑
i Zi = 0 is not the usual one studied in physics: one can interpret it as there being n/2

particles (out of n) which by the dynamics of H(k) can interchange positions on a circle. The
model H(k �= 0) corresponds to a ferromagnetic Heisenberg chain with a partially twisted
boundary. It may be possible to obtain the full spectrum of the partially-twisted Heisenberg
chain H(k) with a Bethe ansatz, but here we focus on determining the lowest eigenvalues.

The unique groundstate of H̃circuit is the zero energy groundstate of H(k = 0), the state
1√

D( n
n/2)

∑D−1
τ=0

∑
x:

∑
(−1)xi =0 |τ, x〉.

The gap of the ferromagnetic Heisenberg chain H(k = 0) for n spins with
∑

i Zi = 0 has
been lowerbounded previously, see theorem 2.5 in section 2.1.1. In order to lowerbound the
gap of H̃circuit, we also need to lowerbound the ground-state energies for any H(k �= 0). Let
us outline the remainder of our proof. We have H(k) = A + B where A is the ferromagnetic
Heisenberg chain with open boundaries, i.e. let

A ≡ n − 1

2
− 1

2

n−1∑
i=1

(XiXi+1 + YiYi+1 + ZiZi+1) � 0 (11)

and B ≡ �(k �= 0). We will invoke the following lemma.

Lemma 2.2 (Kitaev [3]). Let A � 0 and B � 0 and let ker(A)/ ker(B) be their respective null-
spaces, where ker(A) ∩ ker(B) = {0}. Let λ1(A) (λ1(B)) be the smallest non-zero eigenvalue
of A (B). Then

A + B � min(λ1(A), λ1(B)) · (1 − cos(θ ))

with cos(θ ) = maxψB∈ker(B),ψA∈ker(A) |〈ψA|ψB〉|.
12
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Thus if we can bound the gap of A (see equation (13) in section 2.1.1) and bound the gap
of the boundary term �(k �= 0) (this is simple as it involves 2-qubits) and bound the angle
between the two null-spaces ker(A) and ker(B) (see lemma 2.4), we can obtain a lowerbound
on the smallest eigenvalue of H(k �= 0). Together with the lowerbound on the gap of H(k = 0),
theorem 2.5, this will prove the following result.

Theorem 2.3. The smallest non-zero eigenvalue λ1 of the Hamiltonian Hcircuit of a 1D, depth
D > n

2 , quantum circuit on n qubits in the space of valid time-configurations, is bounded as

λ1(Hcircuit) = λ1(H̃circuit) � π4

4D2(n − 1)n
+ O

(
1

n4D2

)
. (12)

Proof. As we argued before, the spectrum of Hcircuit is the same as the spectrum of H̃circuit

which in turn is the same as the union of spectra of H(k) for all k due to equation (7). Theorem
2.5 shows that λ1(H(k = 0)) = �( 1

n2 ), but H(k �= 0) may have lower non-zero eigenvalues.
We invoke lemma 2.2. We have λ1(B) � 2 by direct calculation and we use equation (13) to
lowerbound λ1(A). The angle between the null-spaces ker(A) and ker(B) is given in lemma
2.4. This results in equation (12). �

Lemma 2.4 (Angle between subspaces). Let A be the open-boundary Heisenberg chain
defined in equation (11) and let B be the boundary term B = �(k �= 0) defined in
equation (9). Furthermore, let H be the subspace where

∑
i Zi = 0 and cos(θ ) =

maxψB∈ker(B)∩H,ψA∈ker(A)∩H |〈ψA|ψB〉|. Then

1 − cos(θ ) � π2n

4D2(n − 1)
+ O

(
1

D4

)
.

Proof. The groundstate |ψ0
A〉 = ( n

n/2

)−1/2 ∑
x:

∑
i(−1)xi =0 |x〉 of A is unique, see also section 2.1.1.

Thus we consider

1 − cos(θ ) = min
ψB∈Ker(B)

(
1 −

√
F(ψ0

A, ψB)

)
,

with the fidelity F(σ, ρ) = (Tr
√

ρ1/2σρ1/2)2 for two arbitrary density matrices σ and ρ. We
can use the monotonicity of fidelity under taking partial traces, i.e. F(ρ0

A, ρB) � F(ψ0
A, ψB)

[22] for the reduced density matrices ρ0
A and ρB(k) for qubits 1 and n. The reduced density

matrix of ψ0
A equals

ρ0
A = n − 2

4(n − 1)
(|00〉 〈00| + |11〉 〈11|) + n

2(n − 1)
|η0〉 〈η0| ,

with |η0〉 = 1√
2
(|01〉 + |10〉). The space ker B is spanned by vectors of the form

|00〉 ⊗ |ψ00〉,|11〉 ⊗ |ψ11〉 and |ηk〉 ⊗ |ψηk〉 with |ηk〉 = 1√
2
(|01〉 + e−2π ik/D |10〉). Here

|ψ00〉 , |ψ11〉 , |ψηk〉 are orthogonal as they contain a different number of particles (remember∑
i Zi = 0). As the states in the null-space of B are not fully symmetric under all permutations

of particles, the null-spaces of A and B have zero intersection. A reduced density matrix ρB(k)

can thus be parametrized as

ρB(k) = |α|2 |00〉 〈00| + |β|2 |11〉 〈11| + |γ |2 |ηk〉 〈ηk| ,
with |α|2 + |β|2 + |γ |2 = 1, so that

Tr
(
ρ

1/2
B (k)ρ0

Aρ
1/2
B (k)

)1/2 = (|α| + |β|)
√

n − 2

4(n − 1)
+ |γ |

√
n

2(n − 1)
|〈η0|ηk〉|.

13
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Using the Cauchy–Schwartz inequality and |〈η0| ηk〉|2 = 1+cos(2πk/D)

2 we can upperbound√
F

(
ρ0

A, ρB(k)
)

�
√

2(n − 2)

4(n − 1)
+ n(1 + cos(2πk/D))

4(n − 1)
.

This fidelity is clearly maximized for the lowest non-zero momentum k = 1 (or k = D − 1)
so that, using the Taylor expansion for the cosine and square-root, we can bound√

F(ψ0
A, ψB) � 1 − π2n

4D2(n − 1)
+ O

(
1

D4

)
. �

2.1.1. Heisenberg chain with (Open) boundaries: connection with Markov chains. The
ferromagnetic Heisenberg chain Hamiltonian with closed or open boundaries commutes with
each of the su(2) spin operators �S = (Sx, Sy, Sz) where Sα = 1

2

∑n
i=1 σ i

α with σ i = (Xi,Yi, Zi).
Using the total spin operator S2 = �S · �S which commutes with all Sα , one can thus label
the eigenstates by the quantum numbers |s, m〉, m = −s, . . . , s with Sz |s, m〉 = m |s, m〉 and
S2 |m, s〉 = s(s + 1) |m, s〉.

We are interested in the sector where Sz = 1
2

∑
i Zi has eigenvalue m = 0. The groundstate

in this sector is degenerate with the overall groundstate which can easily be seen as follows.
As the Heisenberg Hamiltonian H(k = 0) (periodic boundaries) or A (open boundaries) is
positive semidefinite, the state |000 . . . 0〉 is a zero-energy groundstate with m = n/2. Using
the lowering operator S− = Sx − iSy which acts as S− |s, m〉 ∝ |s, m − 1〉 and noting that the
lowering operator S− commutes with the isotropic Heisenberg Hamiltonian one can reach an
eigenstate with zero-energy in the m = 0 sector. This implies that the gap of the Heisenberg
model in the m = 0 sector can be lowerbounded by the gap of the Heisenberg model without
specifying any sector. For open boundary conditions, [23] lowerbounds this gap as

λ1(A) � 2(1 − cos(π/n)) = �

(
1

n2

)
. (13)

It is expected that similar results hold for the gap of the Heisenberg model with
periodic boundaries, but we will invoke a nice and well-known connection to the theory of
Markov chains. We use the relation between the Heisenberg model and a particle interchange
model, see e.g. [21]. Let Pi,i+1 be a transposition (permutation) of particles at i and i + 1,
i.e. Pi,i+1 |01〉i,i+1 = |10〉i,i+1, Pi,i+1 |10〉i,i+1 = |01〉i,i+1 and Pi,i+1 |11〉i,i+1 = |11〉i,i+1
and Pi,i+1 |00〉i,i+1 = |00〉i.i+1. We can define the symmetric, stochastic Markov matrix
P(x, y) = 1

n

∑n
i=1 〈y| Pi,i+1 |x〉 on the space of bitstrings |x〉 with

∑
i(−1)xi = 1, or the

space with n/2 particles (out of n). The Hamiltonian in equation (10) can then be written as
H(k = 0) = n − ∑n

i=1 Pi,i+1 or 〈y| H(k = 0) |x〉 = n(δxy − P(x, y)).
The Markov process given by P(x, y) is reversible, irreducible and aperiodic. Thus P

has a unique fixed point π(x) = ( n
n/2

)−1
(see e.g. [24]). The second largest eigenvalue of P

determines the smallest non-zero eigenvalue of the Heisenberg chain with a closed boundary.
This second largest eigenvalue of P has previously been bounded, i.e.

Theorem 2.5 (Theorem 3.1 in [24], see also [20]). Let P be the reversible, irreducible Markov
chain defined above with eigenvalues β0 = 1 > β1 > β2 � . . .. Then the second largest
eigenvalue of P is

β1 � 1 − 12

(n + 1)(n/2 + 1)n
,

which directly implies that

λ1(H(k = 0)) � 12

(n + 1)(n/2 + 1)
.
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3. Application to QMA and quantum adiabatic computation

3.1. QMA

As the general local Hamiltonian problem is contained in QMA [3], it is the second part of the
QMA-completeness which concerns us here. We construct a map from any class of problems
L = Lyes ∪ Lno in QMA to a Hamiltonian, using the space-time construction, such that:

• if x ∈ Lyes, then the Hamiltonian H(x) has eigenvalue lower than or equal to some a, see
section 3.1.1.

• if x ∈ Lno, then all eigenvalues of the Hamiltonian are larger than or equal to b where
|a − b| � 1

poly(n)
, see section 3.1.2.

A property that any promise problem L in QMA possesses is the existence of the
verification circuits Cn with the properties in definition 1.1. The quantum circuit Cn takes
as input the unspecified quantum proof |ξ 〉 provided by Merlin and some initial input qubits
in a set Sin set to |0〉 or |1〉 with |Sin| = m < n. The instance x is also part of this input set
of qubits. Whether qubits in Sin are set to 0 or 1 plays no role in the proof, so for notational
simplicity we require the qubits in Sin to be |0〉.

W.l.o.g. we can take the verification circuit to be of the form, figure 2), as such 1D
quantum circuits with only 2-qubit gates are universal. The circuit acts on n qubits and has
depth D which is a some polynomial in n. Let qout be the output qubit of the circuit Cn, so that
Pr[Cn(x, ξ ) = 1] = Pr[qout = 1].

For every qubit in the quantum circuit, one can define a past causal cone of qubits, namely
those qubits which could have influenced the state of that qubit at the end of the computation.
It is important to note that we may assume w.l.o.g. that the qubits in the set Sin are in the past
causal cone of the output qubit qout. If they are not, then these qubits are not needed to produce
this output so we could omit them. The Hamiltonian which corresponds to a verification circuit
is

H = Hcircuit + Hin + Hout + Hcausal (14)

where Hcircuit is the space-time circuit Hamiltonian of the verification circuit in figure 2(b)
with circular time. Recall that we have shown that the unique zero energy ground-state (space)
of this Hcircuit is of the form

|ψhistory〉 = 1√
D

( n
n/2

) ∑
valid t

V (t ← 0) |φin〉 ⊗ |t〉,

|φin〉 =
∑

y∈{0,1}m

αy |ξy〉 |y〉Sin
. (15)

Here y are the input-qubits in Sin and |ξy〉 is a general input state of the other qubits. One makes
the following choice for Hin and Hout:

Hin =
∑
p∈Sin

|1〉 〈1|p ⊗ |t = 0〉 〈t = 0|p ,

Hout = |0〉 〈0|qout
⊗ |t = D〉 〈t = D|qout

. (16)

The term Hcausal is a penalty term for invalid time-configurations. It is a sum of terms,
one for each 2-qubit gate in the original quantum circuit. Let there be a gate acting at time
t on qubits [q, p] in the original quantum circuit. Let �(tq ∈ It ) = ∑

s∈It
|s〉 〈s|q where the

interval It (and Ic
t ) were defined in section 1.5. Such projector acts on the time register of qubit
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q and has eigenvalue 1 if tq ∈ It (and 0 otherwise). The penalty term corresponding to this gate
equals

Hcausal([q, p], t) = �(tq ∈ It )�
(
tp ∈ Ic

t

) + �(tp ∈ It )�
(
tq ∈ Ic

t

)
. (17)

Hcausal commutes with Hin and Hout as all terms are diagonal in the same basis. Note that Hcausal

as defined here is not local; we will address this point in section 3.3. Each term Hcausal([q, p], t)
commutes with Hcircuit as follows. First of all, Hcausal([q, p], t) commutes with the two terms
which represent the gate U2

t [q, p] in the circuit Hamiltonian, as Hcausal([q, p], t)H2
t [q, p] = 0

etc. It obviously commutes with any H2
t [q′, p′] with q′ �= q and p′ �= p. Lastly, it commutes

with any H2
t ′ [q, p′] or H2

t ′ [q
′, p] or H2

t ′ [q, p] as these terms can propagate the clock of 1-qubit
or both qubits, but they cannot propagate the times of these clocks out of the complementary
intervals It and Ic

t . In other words, these last terms commute with the individual projectors
�(tq ∈ It ),�(tp ∈ It ),�(tp ∈ Ic

t ),�(tq ∈ Ic
t ). The commutativity implies that the eigenstates

of H either reside in the subspace where Hcausal = 0, i.e. the valid time-configuration subspace,
or the subspace where Hcausal has its lowest non-zero eigenvalue which is 1. In this way we
impose an energy penalty on invalid time-configurations and we can ignore them in the
remainder of the analysis.

In the next two sections, we do the technical work of establishing both aspects of the
map where the final results are expressed in equations (18) and (19). Note that the difference
between a and b scales as 1

DS2 where S is the size of the verification circuit and D is its depth,
if ε is sufficiently small. This proof is very analogous to the standard proof, first given in [3],
with similar results, but the notation and some of details are a bit more cumbersome.

3.1.1. Yes-instance ⇒ (almost) zero energy groundstate. We assume that there exists an
input witness state |ξ 〉 such that the verification circuit Cn has qout = 1 with probability 1 − ε.
We construct a low-energy state for the Hamiltonian H in equation (14) as the history state,
equation (15), with |φin〉 = |ξ 〉 |y = 00 . . . 0〉. The terms Hin, Hprop and Hcausal have zero energy
with respect to this state, thus

〈ψhistory| H |ψhistory〉 = 〈ψhistory| Hout |ψhistory〉
= 1

D
( n

n/2

) ∑
t:tqout =D

〈ξ, 00 . . . 0|V †(t ← 0) |0〉 〈0|qout
V (t ← 0) |ξ, 00 . . . 0〉 .

Note that the valid times t with tqout = D are times such that V (t ← 0) is the product of a set
of elementary gates which includes all gates which are in the past causal cone ofqout. Said
differently, it includes all gates which are needed to produce the correct circuit outcome for
the output qubit qout. Hence 〈ξ, 00 . . . 0|V †(t ← 0) |0〉 〈0|qout

V (t ← 0) |ξ, 00 . . . 0〉 � ε. The
number of t for which tqout = D is simply

(n−1
n
2 −1

)
as fixing the time for 1-qubit fixes the counter

τ and the first bit of the bit string x. Thus

〈ψhistory| H |ψhistory〉 � ε

2D
≡ a. (18)

3.1.2. No-instance ⇒ ground-state energy of Hamiltonian bounded away from zero. We
start from the assumption that for all inputs |ξ 〉 |00 . . . 0〉Sin

to the verification circuit Cn,
Pr[qout = 1] � ε. Due to the presence of Hcausal and the fact that Hcircuit preserves the subspace
of valid time-configurations, the eigenstates of H in the space of invalid time-configurations
have energy penalty at least 1. We thus consider the spectrum of Hcircuit + Hin + Hout in the
space of valid time-configurations.
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We apply lemma 2.2 with A = Hcircuit({U}) and B = Hin + Hout which have no common
null-space as the quantum circuit never outputs qout = 1 for some correctly initialized input
state by assumption. The final result is the following lowerbound.

Lemma 3.1. For a no-instance the smallest eigenvalue of the Hamiltonian H can be
lowerbounded as

λ1(H) � �

(
1

D2n2

)(
1

4D
− O

( ε

D

))
≡ b. (19)

Proof. Theorem 2.3 provides the lower-bound on λ1(Hcircuit). Consider B and note that the
set {t : tqout = D} is disjoint from the sets {t : tp∈Sin = 0} as we have assumed that the qubits in
Sin are in the past causal cone of qout thus their clocks cannot read t = 0 while the clock of the
output qubit reads D! This means that λ1(B) � 1. To apply lemma 2.2, we need to bound the
angle between the null-spaces of A and B. The null-space of A only contains the history states
ψhistory in equation (15). The goal is to upperbound cos2(θ ) = maxψhistory 〈ψhistory| �B |ψhistory〉
where �B is the projector onto the null-space of B. We can write |ψhistory〉 = αI |ψI〉+αNI |ψNI〉
where ψI is a state which is properly initialized, i.e. |φI

in〉 = |ξ, 00 . . . 0〉 and ψNI is some state
which is not properly initialized. We have

〈ψhistory| �B |ψhistory〉 = |αI|2 〈ψI| �B |ψI〉 + |αNI|2 〈ψNI| �B |ψNI〉
+2Re

(
αIα

∗
NI 〈ψNI| �B |ψI〉

)
. (20)

We will separately determine the maximum values of 〈ψI| �B |ψI〉 and 〈ψNI| �B |ψNI〉 and
the crossterm | 〈ψNI| �B |ψI〉 |. We start with some basic observations. The null-space of B is
a direct sum of spaces ker(B) = ker(B)out ⊕ ker(B)in ⊕ ker(B)int with the three orthogonal
null-spaces:

ker(B)out = span(|1〉qout
|v〉 ⊗ |t : tqout = D〉 ,∀ |v〉 ∈ (C2)⊗n−1)

ker(B)in = span(|w〉 |00 . . . 0〉S(x) ⊗ |t : ∀p ∈ S(x), (tp = 0)〉 ,

∀S(x) �= ∅ ⊆ Sin,∀ |w〉 ∈ (C2)⊗n−1)

ker(B)int = span(|ξ 〉 ⊗ |t : (∀p, tp �= 0) ∧ (tqout �= D〉),∀ |ξ 〉 ∈ (C2)⊗n).

We have �B = �in + �out + �int where �in,�out and �int are the projectors onto these three
null-spaces. As �int is diagonal in the t-basis, we have

〈ψhistory| �int |ψhistory〉 = |{t : (tqout �= D) ∧ (∀p ∈ Sin, tp �= 0)}|
D

( n
n/2

) ,

independent of initialization or the witness state.
By assumption on the verification circuit we have for all proofs |φI

in〉 = |ξ, 00 . . . 0〉

〈ψI | �out |ψI〉 = 1

D
( n

n/2

) ∑
t:tqout =D

〈φI
in|V †(t ← 0) |1〉 〈1|qout

V (t ← 0 |φI
in〉

� ε

2D
,

where we used that all V (t ← 0) with tqout = D are evolutions which lead to the correct output
of the verification circuit. This implies that for all proofs ψI , we have

〈ψI| �B |ψI〉 = 1 − 1 − ε

2D
. (21)

Consider next 〈ψNI| �B |ψNI〉. We have 〈ψNI| �B |ψNI〉 � maxψNI 〈ψNI| �out |ψNI〉 +
maxψNI 〈ψNI| �int +�in |ψNI〉. The first term is maximized when we assume that all improperly
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initialized states lead to qout = 1. We focus on upperbounding the last term 〈ψNI| �in |ψNI〉.
We write

�in =
∑

S �=∅∈Sin

|00 . . .〉 〈00 . . .|S ⊗ PS, (22)

with PS the projector onto all |t〉 for which (∀p ∈ S, tp = 0) ∧ (∀p ∈ Sin\S, tp �= 0). Let
the state ψNI be initialized to some |φNI

in 〉 = ∑
y�=00...0∈{0,1}m |ξy〉 ⊗ |y〉Sin

. We note that the
projector �in in equation (22) acts diagonally on the basis |y〉Sin

which implies that the input
state φNI

in initialized with a |y〉Sin
which ‘incurs a minimal penalty’ is the one which for which

〈ψNI| �in |ψNI〉 is maximized. For this particular y, all qubits in Sin are set to 0, except for
1-qubit, call it qubit q1, whose state is set to 1. Let this particular subset of qubits which is
initialized to 0 be T ⊆ Sin.5 Taking |ψNI〉 initialized with |φNI

in 〉 = |ξ 〉 |100 . . . 0〉Sin
, one has:

〈ψNI| �in |ψNI〉 =
∑

∅�=S⊆Sin

Rank(PS)

D
( n

n/2

) Tr(|10 . . . 0〉 〈10 . . . 0|Sin
|0 . . . 0〉 〈00 . . . 0|S)

=
∑

∅�=S⊆T

Rank(PS)

D
( n

n/2

) =
∑

∅�=S⊆Sin

Rank(PS)

D
( n

n/2

) −
∑

∅�=S∈Sin:q1∈S

Rank(PS)

D
( n

n/2

) .

Note that for a properly initialized state we have

〈ψI | �in |ψI〉 =
∑

∅�=S⊆Sin

Rank(PS)

D
( n

n/2

) .

Furthermore∑
∅�=S⊆Sin:q1∈S

Rank(PS) =
∑

q1∈S∈Sin

|{t : (∀p ∈ S, tp = 0) ∧ (∀p ∈ Sin\S, tp �= 0)}|

= |{t : tq1 = 0}| =
(

n − 1
n
2 − 1

)
.

This gives

max
ψNI

〈ψNI| �B |ψNI〉 = 1 − 1

2D
. (23)

Lastly, we bound the ‘crossterm’ | 〈ψNI| �B |ψI〉 |. Following the slightly different proof
technique in [7], we can write �B = �final�init where �init is the projector onto the entire
null-space of Hin and �final is the projector onto the null-space of Hout. The projectors �init

and �final commute as the set {t : tqout = D} is disjoint from the sets {t : tp∈Sin = 0}. We have

| 〈ψNI| �final�init |ψI〉 | � | 〈ψNI| �final |ψI〉 |.
As �final is diagonal in the basis t and a properly initialized state V (t ← 0) |ψ I

in〉 ⊗ |t〉 is
orthogonal to V (t ← 0) |ψNI

in 〉 ⊗ |t〉, we can bound

| 〈ψNI| �final |ψI〉 | �
1

D
( n

n/2

) ∑
t:tqout=D

∣∣ 〈ψNI
in

∣∣V †(t ← 0) |1〉 〈1|qout
V (t ← 0)

∣∣ψ I
in

〉 ∣∣ �
√

ε

2D
. (24)

All contributions, equations (21), (23), (24) together with equation (20) give

〈ψhistory| �B |ψhistory〉 � 1 − 1

2D
+ ε

2D
+

√
ε

D
, (25)

which is bounded away from 1 by approximately 1
2D for exponentially small (in n or D) ε.

Using lemma 2.2 then gives equation (19). �
5 In order to not have any dependence on the particular choice for qubit 1, we assume for simplicity that the number
of qubits in Sin is even, that the qubits are adjacent to each other and that they all interact among each other at the first
time-step.
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3.2. Clock realizations

The space-time circuit Hamiltonians Hcircuit used so far are not O(1)-local Hamiltonians,—
they are not sums of terms each of which acts on O(1) qubits non-trivially,—as the clock of
each qubit is realized by a O(log D)-qubit register. In order to prove that the lowest eigenvalue
problem for O(1)-local Hamiltonians is QMA-complete, one can realize such clock as a pulse
or domain wall clock (see e.g. [12]). In particular for the domain wall clock introduced by
Kitaev [3], terms such as |t〉 〈t − 1| are 3-local. For the QMA-application, one then considers
a Hamiltonian H = Hcircuit + Hin + Hout + Hcausal + Hclock where Hclock gives a O(1) penalty
to any state of the time registers which does not represent time. This implies that the lowest-
energy states are in the space where the time registers do represent time and one applies the
arguments in the previous sections to this subspace. Using the domain wall clock in the space-
time circuit-to-Hamiltonian construction gives rise to 8-local terms as |t, t〉 〈t − 1, t − 1| is
6-local. Similarly, the term Hcausal translates into a 4-local term as a term of the form |t〉 〈t| is
2-local for a domain wall clock, e.g. [12]. This implies that this use of the space-time circuit-
to-Hamiltonian construction is less efficient in terms of locality than the Feynman–Kitaev
construction which is 5-local.

3.3. QMA-completeness of two-dimensional interacting fermions

We can also prove QMA-completeness for the fermionic model of [14] ([16]) which indirectly
realizes a pulse clock for each qubit q. The terms of the circuit Hamiltonian are in equation (4)
in section 1.4. Note that we can only represent 2-qubit gates which are controlled-U operations.
However, given a supply of qubits initialized to the state |1〉, a 1D quantum circuit with only
such controlled-U gates is universal. The circuit Hamiltonian will correspond to that of an
interacting fermion model in two spatial dimensions with periodic boundary conditions in both
directions (a torus), as we work with the circular time circuit-to-Hamiltonian construction.
Aside from the circuit Hamiltonian one needs the fermionic equivalent of the terms Hin, Hout

and Hcausal. To represent the input state |00 . . . 0〉Sin
, one takes

Hin =
∑
q∈Sin

b†
0[q]b0[q],

such that the modes b0[q] (corresponding to those qubits being in the state |1〉 at time 0)
are never occupied. If we translate this back to qubits, this corresponds to the term Hin in
equation (16). Similarly, for Hout, equation (16), one takes

Hout = a†
D[qout]aD[qout].

Lastly, Hcausal (given in [14]) is the fermionic equivalent of equation (17). For a gate in the
original quantum circuit at time t between qubits q and p, one can take

Hcausal([q, p], t) = n(tq ∈ It )n
(
tp ∈ Ic

t

) + n(tp ∈ It )n
(
tq ∈ Ic

t

)
, (26)

where n(tq ∈ It ) = ∑
tq∈It

ntq [q] with number operator ntq (previously defined in section 1.4).
Again Hcausal commutes with all other terms Hin, Hout and Hcircuit. This form of Hcausal is not local
on the 2D lattice however. If we wish to prove QMA-completeness of the ground-state energy
problem of a 2D interacting fermion model, then one can replace Hcausal by a local version
H loc

causal. The idea is that the valid time-configurations of the quantum circuit in figure 2(b) are
very constrained. Consider figure 5. In between all 2-qubit gates,—which themselves form
a checkerboard pattern—, one places two triangle operator constraints. The triangle operator
between three fermionic sites a, b and c with control site at the top labeled a, see figure 5
reads Htriangle = na(1 − nb − nc). It is important to note that we work in the Fock space where
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Figure 5. The black dots are fermionic sites, each with two modes (an ↑ or ↓ state, say).
The (red) squares represent the quartic gate interactions and the (blue) triangle operators
penalize invalid fermionic configurations (invalid time-configurations). A (blue) triangle
operator with a top corner a and bottom corners b and c equals na(1 − nb − nc). The
lattice has periodic boundary conditions in both directions.

N[q] = 1 which means that 〈nb + nc〉 � 1 and Htriangle � 0 for the triangle operators in the
picture. The zero energy subspace of Htriangle is the direct sum of the Fock-space with na = 0,
the space with na = 1 and nb = 1, and the space with na = 1 and nc = 1. Thus the triangle
operator expresses the constraint that if there is a particle at a, there should also be a particle
at b or c. In the spaces between the gates, one puts two triangle operators. Note that the triangle
operators all commute as all number operators nt[q] mutually commute.

It is not hard to see that all triangle operators have energy zero if and only if the fermionic
Fock states represent a valid time-configuration. In addition, we want to establish that the
sum over all triangle operators commutes with Hcircuit, Hin and Hout. When this is the case,
the lowest invalid Fock state has at least energy 1 and thus in order to determine the lowest
non-zero eigenvalue of H, one only needs to look at the space of valid Fock states. Consider
a gate term HCU

t [q, p] with qubits q, p as control and target qubits in equations (3), (4), as in
figure 5 with the number operators n1, n2 and n3 and n4 at the corners of the gate. We wish
to show that all triangle operators commute with HCU

t [q, p]. We consider the gate interaction
HCU

t [q, p] on the states partially labeled by n1, n2, n3, n4, {nelse} where {nelse} are the number
operators for all the other fermionic sites on the lattice (the full state specification includes the
spin degree but is not relevant for the next arguments).

Due to the ∀q, N[q] = 1 constraint, some of these nelse are constrained
depending on n1, . . . , n4: in particular we only have (n1, n2, n3, n4) = (1, 0, 1, 0), (1, 0, 0, 1),

(0, 1, 0, 1), (0, 1, 1, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0) and (0, 0, 0, 0).
HCU

t [q, p] has nontrivial action only in the subspace where (n1, n2, n3, n4) = (1, 0, 1, 0) and
(n1, n2, n3, n4) = (0, 1, 0, 1), for all other (n1, n2, n3, n4) states it has zero energy. This means
that the operators n1 +n2, n3 +n4 and n1n3 +n1n4 commute with the gate interaction. The four
triangle operators above and below the gate, see figure 5 involves only symmetric combination
such as n1 + n2 and n3 + n4 and thus commute. The sum of the two triangle operators left
and right to the gate can be written as (n1 + n2) − (n1n3 + n2n4) − n1n5 − n2n6 where the
first two terms in () are conserved quantities and thus commute. The last two terms commute
separately as they only have support on the null-space of the gate interaction. Similarly the
triangle operator, either on the left or the right of the gate, commutes with the gate interaction
as the only term which involves, say n3, is supported on the null-space of the gate interaction.
Note that the triangle operators also commute with Hin and Hout. This means that the fermionic
Hamiltonian H = Hcircuit + Hin + Hout + H loc

causal is a quartic fermion Hamiltonian involving
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spin-1/2 fermionic sites. The quartic interaction involves at most four fermionic sites on a
square lattice, see figure 5.

The mapping from a 2D fermionic Hamiltonian onto the space-time circuit Hamiltonian
Hcircuit assumes that there is at most one fermion per qubit q, i.e N[q] = 1, see the mapping
in section 1.4. This means that the arguments above and in the last sections show that the
problem of deciding whether there is a state with energy less than or equal to a or larger than
or equal to b (|a − b| � 1

poly(n)
) for a 2D interacting fermion Hamiltonians H on a torus, in the

sector where∀q, N[q] = 1, N[q] = ∑
t∈Z2D

nt[q] is QMA-complete. This result goes beyond
the perturbative approach used in [26] as all terms in the Hamiltonians here are of strength
O(1). Considering eigenvalues of fermionic problems restricted to sectors with fixed number
of fermions is not unnatural as fermion number is a conserved quantity in physical systems
and one can tune a physical system such as a quantum dot so that one excess electron (above
the Fermi energy) is available for interactions. Alternatively, we add a nonlocal penalty term
Hclock to the Hamiltonian which enforces N[q] = 1, e.g. Hclock = ∑

q(N[q] − 1)2. However,
as has been observed before [12], it is not clear how to enforce this constraint in a local 1D
manner (without making the vacuum state without fermions always have the lowest energy).

We note that these results also can be stated in terms of only qubits instead of fermions
(using the Jordan–Wigner transformation). The terms Hin, Hout, H loc

caus remain local terms under
this transformation. However the pulse clock condition ∀q, N[q] = 1 is somewhat less natural.

3.4. Quantum adiabatic computation

We consider how the results in this paper can be used for simulating a quantum circuit by
a quantum adiabatic computation. One assumes that the quantum circuit which we wish
to simulate by an adiabatic computation is efficient, i.e. L = poly(n) where poly(n) is some
polynomial in n. A simple way to go from the circuit Hamiltonian to an adiabatic algorithm is to
construct a continuous family of circuit Hamiltonians Hcircuit(U1(ε), . . . ,UL(ε)) = Hcircuit[ε]
depending on a parameter ε ∈ [0, 1]. For ε = 0, we have ∀i Ui(ε = 0) = I while for ε = 1,
we have Ui(ε = 1) = Ui such that we smoothly interpolate between I and Ui for intermediate
values of ε [27] (Such smooth deformations always exists as one can continuously deform any
element to I in a Lie-group U (n)).6

The adiabatic computation starts in the groundstate of Hcircuit[ε = 0] and ε is gradually
increased to evolve to the groundstates of Hcircuit[ε �= 0]. The smoothness in the interpolation is
required such that first and second-derivatives of Hcircuit[ε] with respect to ε are polynomially
bounded in n, so that the explicit formulation of the quantum adiabatic theorem in e.g.
[28] applies. In order to use the space-time Hamiltonian construction for quantum adiabatic
computation one has to (i) bound the gap above the groundstate for the quantum adiabatic
path Hcircuit[ε], ε ∈ [0, 1]. Since Hcircuit[ε] is unitarily related to Hcircuit[ε = 0], one just
needs to bound the gap of Hcircuit[ε = 0]. Secondly, one has to show that one can prepare
the groundstate of the initial Hamiltonian Hcircuit[0] efficiently and thirdly show that one can
read out the output state of the quantum circuit from the groundstate of the final Hamiltonian
Hcircuit[1] on the adiabatic path.

Theorem 2.3 shows that the gap of the circuit Hamiltonian for efficient 1D quantum circuits
is lowerbounded appropriately, by some 1

poly(n)
. Together with the unitary relation between

the fermionic model and the qubit circuit Hamiltonian, this shows that the 2D interacting
fermionic (or qubit) model in section 1.4 could be used for quantum adiabatic computation,
as proposed in [14]. However, one still has to show how one can prepare the initial history

6 In the more standard construction in [4] the intermediate Hamiltonians on the adiabatic path are linearly interpolating
between initial and final Hamiltonian.
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state (with U = I) as output state from another adiabatic path, as in [4], and prove that this
adiabatic path has a 1/poly(n) gap everywhere. In [14] the authors propose to execute the
quantum adiabatic computation by gradually increasing the strength of the propagating part
of each Ht (by the parameter λ). However, the gap of this adiabatic path is not fully analyzed
in [13, 14] and goes beyond the results in this paper.

If one measures the time-configuration in the history state, the total probability to measure
a configuration t in which a qubit q has tq = D is 1

2D . This can be amplified to a constant by
padding the quantum circuit with I gates as in the Feynman–Kitaev construction. A different
question is how one obtains the correct output for all the qubits from the history state. In [29]
we will give arguments why this probability scales as 1

poly(n)
when D � n.

4. Discussion

We note that the circuit Hamiltonian in the altered representation, equation (6), could be
directly used as a realization of a one-dimensional translationally-invariant cellular automaton
circuit. For such a cellular automaton circuit, we assume that the same set of 2-qubit gates
is applied at every depth. This would imply that the circuit Hamiltonian is that of a purely
one-dimensional system where one of the local degrees of freedom is of dimension D.7

Another application of our analysis is a different proposal for the implementation of
universal quantum computation using a time-independent 2D interacting fermion system. In
[12] the standard Feynman–Kitaev construction and its spectral analysis were directly used
to show how to run a quantum computation using a time-independent Hamiltonian. Here one
expects that by initializing the fermions around the t = 0 modes and letting them evolve for
a random time within a certain window whose length scales polynomially with n and D one
can, with high probability, measure the output state of 1 qubit of the original one-dimensional
quantum circuit.
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