
Quantum Information and Computation, Vol. 14, No. 5&6 (2014) 0439–0453
c© Rinton Press

QUANTUM ALGORITHMS FOR SEARCH WITH WILDCARDS

AND COMBINATORIAL GROUP TESTING

ANDRIS AMBAINIS

Faculty of Computing, University of Latvia, Raina bulv. 19

Riga, LV-1586, Latvia

ASHLEY MONTANARO

Department of Computer Science, University of Bristol, Woodland Rd.

Bristol, BS8 1UB, UK

Received April 15, 2013

Revised August 14, 2013

We consider two combinatorial problems. The first we call “search with wildcards”:
given an unknown n-bit string x, and the ability to check whether any subset of the

bits of x is equal to a provided query string, the goal is to output x. We give a nearly

optimal O(
√
n logn) quantum query algorithm for search with wildcards, beating the

classical lower bound of Ω(n) queries. Rather than using amplitude amplification or a

quantum walk, our algorithm is ultimately based on the solution to a state discrimination

problem. The second problem we consider is combinatorial group testing, which is the
task of identifying a subset of at most k special items out of a set of n items, given the

ability to make queries of the form “does the set S contain any special items?” for any

subset S of the n items. We give a simple quantum algorithm which uses O(k) queries to
solve this problem, as compared with the classical lower bound of Ω(k log(n/k)) queries.

Keywords: Quantum query complexity, oracle interrogation, combinatorial group test-

ing.

Communicated by: R Cleve & R de Wolf

1 Introduction

We present new quantum algorithms for two combinatorial problems. The first problem is

search with wildcards. In this problem, we are given an n-bit string x and our task is to

determine x (so that with probability 1 − ε, all bits of x are correct) using the minimum

number of queries in the following wildcard query model. In one wildcard query, we can check

correctness of any subset of the bits of x. That is, we identify queries with pairs (S, y), where

S ⊆ [n] and y ∈ {0, 1}|S| and the query returns 1 if xS = y (here the notation xS means the

subset of the bits of x specified by S).

Wildcard queries are a generalisation of the standard quantum query model; the stan-

dard model corresponds to queries in which S contains just one element. Classically, each

query in this more general model still provides only one bit of information. Hence, by an

information-theoretic argument classical computers still require Ω(n) queries to solve search

with wildcards. Moreover, in the standard quantum query model, identifying x with bounded

error would require Ω(n) queries [1, 2]. Surprisingly, in contrast to these two lower bounds,

439

440 Quantum algorithms for search with wildcards and combinatorial group testing

we have the following theorem.

Theorem 1. There is a quantum algorithm which solves the search with wildcards prob-

lem with worst-case failure probability at most 1/3 using O(
√
n log n) queries. Further, any

bounded-error quantum algorithm which solves this problem must make Ω(
√
n) queries.

Observe that any (classical or quantum) bounded-error algorithm for search with wildcards

which makes q queries can be converted into a Las Vegas algorithm (i.e. one which always

succeeds eventually) which makes an expected number of queries which is O(q), as a claimed

solution can be checked with one additional query. Rather than using the usual methods

of designing quantum algorithms (such as amplitude amplification or quantum walks), our

algorithm is based on a novel information-theoretic idea. Our algorithm gradually increases

the information about the input string x by repeatedly using the Pretty Good Measurement

(PGM) [3, 4] to distinguish a set of quantum states. With one query, we can increase the

knowledge about the input x from k bits to k + Θ(
√
k) bits – which leads to a quantum

algorithm using O(
√
n log n) queries. We think that this idea (and the natural state distin-

guishability problem that we solve, in Lemma 3), may be of independent interest and may

find more applications.

The second problem is the well known combinatorial group testing (CGT). In this problem,

we are given oracle access to an n-bit string x such that the Hamming weight of x is at most

k. We usually assume that k is much smaller than n. In one query, we can get the OR of

an arbitrary subset of the bits of x. The goal is to determine x using the minimal expected

number of queries. This models a scenario where we would like to identify a small subset of

special items out of a large set of items, given the ability to make queries of the form “does

the set S contain any special items?” for any subset S of the items.

The idea of combinatorial group testingadates back to 1943, when it was proposed as a

means of identifying and rejecting syphilitic men called up for induction into the US mili-

tary [5]. Following this seminal work, a vast literature on the subject has developed; see the

textbook [6] for a detailed review, or the paper [7] for a discussion of more recent work. Areas

to which efficient algorithms for CGT have been applied include molecular biology [8], data

streaming algorithms [9], compressed sensing [10], and pattern matching in strings [11].

Classically, it is well-known that the number of queries required to solve CGT is of order

Θ(k log(n/k)) [6]. The lower bound is an information-theoretic argument while the upper

bound is based on binary search. In the quantum case, we have the following resultb.

Theorem 2. There is a bounded-error quantum algorithm which solves the combinatorial

group testing problem using O(k) queries. Further, any quantum algorithm which solves CGT

with bounded error must make Ω(
√
k) queries.

Note that our Theorem has no dependence on n (unlike the classical complexity). We

prove Theorem 2 in two parts: a O(k)-query quantum algorithm in Section 4 below, and a

aCGT is sometimes simply known as “group testing”; we prefer the inclusion of “combinatorial” to avoid
confusion with the notion of testing a set for being a group.
bA previous version of this paper claimed an upper bound of O(

√
k polylog(k)) queries, via a reduction to

search with wildcards. However, the reduction was incorrect and the precise quantum query complexity of
CGT remains open.

A. Ambainis and A. Montanaro 441

Ω(
√
k) quantum lower bound in Section 5. Each part of the result is fairly straightforward.

1.1 Related work

One can view the search with wildcards problem as oracle interrogation – i.e. learning the

contents of an unknown bit-string x hidden in an oracle – in a non-standard oracle model.

There has recently been some interest in this problem, in various different oracle models; we

summarise the results which have been obtained as follows.

• First, it was shown by van Dam [12] that in the standard oracle model (where the

oracle performs the map i 7→ xi), there exists a quantum algorithm which learns x with

constant success probability using n/2+O(
√
n) queries, contrasting with the n classical

queries required to learn x. Farhi et al. [13] later showed a matching n/2+Ω(
√
n) lower

bound.

• Iwama et al. have studied the quantum query complexity of counterfeit coin prob-

lems [14]. Here we are given a set of n coins, k of which are false (underweight), and the

task is to determine the false coins. In this model, a query is specified by q ∈ {0, 1,−1}n
such that

∑
i qi = 0. Then the oracle returns 0 if q ·x = 0, and 1 otherwise. We imagine

that x is a set of coins, and xi = 0 if the i’th coin is fair, and xi = 1 if the i’th coin

is false. The oracle simulates a “quantum scale”, and qi = 1 (resp. qi = −1) means

that we place the i’th coin on the left (resp. right) pan. If the oracle returns 0, the

scale is balanced, and if it returns 1, the scale is unbalanced. Iwama et al. showed

that there is a quantum algorithm based on amplitude amplification which solves this

problem using only O(k1/4) queries, beating the classical information-theoretic lower

bound of Ω(k log(n/k)) queries. Note that, similarly to our algorithm for CGT, their

result removes any dependence on n from the complexity.

• Finally, recently Cleve et al. have studied oracle interrogation in the model of substring

queries [15]. Here the allowed queries are of the form “is y a substring of x?” for

y ∈ {0, 1}k, 1 ≤ k ≤ n, where a substring of x is a consecutive subsequence of x.

Classically, this problem again requires n queries; Cleve et al. proved that quantum

algorithms can achieve a linear speedup, giving an algorithm which uses 3n/4 + o(n)

queries. They also show an Ω(n/ log2 n) quantum lower bound.

We also remark that the problem of identifying (“learning”) an unknown oracle has been

considered in great generality by Ambainis et al. [16, 17] and Atıcı and Servedio [18]. The

algorithms given in these works could be applied to the problems studied here, but would not

give a bound stronger than O(n) queries in the case of search with wildcards, and O(k log n)

in the case of CGT.

1.2 Preliminaries and notation

We write [n] := {1, 2, . . . , n}, and use |x| for the Hamming weight of x and d(x, y) for the

Hamming distance between x and y. For x ∈ {0, 1}n, a 1-index (resp. 0-index) of x is an

index i ∈ [n] such that xi = 1 (resp. xi = 0). For readability, we sometimes leave states

unnormalised. The two problems that we consider are precisely defined as follows:

442 Quantum algorithms for search with wildcards and combinatorial group testing

• SEARCH WITH WILDCARDS. We are given oracle access to an n-bit string x (with

no restriction on Hamming weight) and our task is to determine x using the minimum

number of queries. A query is specified by a string s ∈ {0, 1, ∗}n, and returns 1 if

xi = si for all i such that si 6= ∗, and returns 0 otherwise. We can equivalently identify

queries with pairs (S, y), where S ⊆ [n] and y ∈ {0, 1}|S| and the query Qx(S, y) returns

1 if xS = y (here the notation xS means the subset of the bits of x specified by S).

We therefore sometimes refer to queries in this model as subset queries. In the case

of quantum algorithms, we give the algorithm access to the unitary oracle which maps

|S〉|y〉|z〉 7→ |S〉|y〉|z ⊕Qx(S, y)〉.

• COMBINATORIAL GROUP TESTING (CGT). We are given oracle access to an n-bit

string x such that the Hamming weight of x is at most k; again, our task is to determine

x. We usually assume that k is much smaller than n. We are allowed to query arbitrary

subsets S ⊆ [n] of the bits of x; a query Qx(S) returns 1 if there exists i ∈ S such that

xi = 1. In the case of quantum algorithms, we give the algorithm access to the unitary

oracle which maps |S〉|z〉 7→ |S〉|z ⊕Qx(S)〉.

We note that search with wildcards is a special case of CGT. Consider an instance of CGT

where k ≤ n/2 and the input is divided into k blocks Bi = {2i − 1, 2i} of size 2, 1 ≤ i ≤ k,

followed by a final block of n − 2k bits. The input is promised to contain exactly one 1 in

each of the first k blocks; the position of the 1 within each block Bi encodes a bit zi. Now

consider a subset S of bits queried by an algorithm for CGT, and let Si = S ∩ Bi. We may

assume that S is a subset of the first 2k bits, as the last n−2k bits are promised to be 0. Now

observe that by choosing each Si appropriately, we can make three different kinds of query:

Si = {2i − 1} corresponds to “does zi = 0?”, Si = {2i} corresponds to “does zi = 1?”, and

Si = {} corresponds to excluding zi from the query (the remaining query Si = {2i − 1, 2i}
always returns 1 and is hence uninteresting). The overall query S =

⋃
i Si is the OR of all of

the individual queries. Thus a CGT query corresponds to a subset S of the bits of z and a

claimed assignment y to these bits; the response is 1 if any of the bits of y are equal to z. To

convert this into an instance of search with wildcards on k bits, simply observe that inverting

the response to such a query is equivalent to performing a query (S, y) to z̄ where the reply

is 1 if z̄S = y. Thus an algorithm for CGT can be used to learn z̄ and hence z.

2 Search with wildcards

We now show that we can indeed solve the search with wildcards problem efficiently, proving

the upper bound part of Theorem 1 (for the lower bound, see Section 5). Consider an instance

of search with wildcards of size n. Let x ∈ {0, 1}n and k ∈ [n].

Our proof uses the following state distinguishability result (which we prove in Section 3).

Lemma 3. Fix n ≥ 1 and, for any 0 ≤ k ≤ n, set

|ψkx〉 :=
1(

n
k

)1/2 ∑
S⊆[n],|S|=k

|S〉|xS〉,

where |xS〉 :=
⊗

i∈S |xi〉. Then, for any k = n − O(
√
n), there is a quantum measurement

A. Ambainis and A. Montanaro 443

(POVM) which, on input |ψkx〉, outputs x̃ such that the expected Hamming distance d(x, x̃) is

O(1).

In words, Lemma 3 says that, given a superposition over k-subsets of the bits of x with

k = n − O(
√
n), we can output a bit-string that is likely to be very close to x itself. This

is in sharp contrast to the analogous situation classically; given any n − O(
√
n) bits of x,

determining the remaining O(
√
n) bits succeeds only with exponentially small probability.

Roughly speaking, our algorithm for search with wildcards will repeatedly use Lemma 3 to

learn O(
√
n) bits of x at a time, fixing the incorrect bits after each measurement.

Consider an instance of search with wildcards of size n. Let x ∈ {0, 1}n and k ∈ [n].

Recall that we denote

|ψkx〉 =
∑

S:S⊆[n],|S|=k

|S〉|xS〉,

where we write |xS〉 := ⊗i∈S |xi〉. Let Mn,k be a measurement (POVM) for distinguishing the

states |ψkx〉, and assume that Mn,k satisfies the following property: for k ≥ n −
√
n, and all

x, the expected Hamming distance of the outcome x̃ from x is upper bounded by a constant.

By Lemma 3, such a measurement Mn,k indeed exists. We can express Mn,k as a two-step

process, with the first step being a unitary transformation Un,k that maps |ψkx〉 to a state in

Ho⊗Hg (where Ho is the output register and Hg is the rest of the state) and the second step

being the measurement of Ho (with the measurement result interpreted as a guess x̃ for the

hidden bit-string x).

We define a sequence of numbers n0, . . . , nl, with nl = n and ni−1 = dni −
√
nie. Our

algorithm consists of Stages 0, 1, . . ., l.

Stage 0. Generate |ψn0
x 〉 by first creating

∑
S:S⊆[n],|S|=n0

|S〉 and then querying each

xi, i ∈ S.

Stage s (s > 0). Stage s receives |ψns−1
x 〉 as the input and outputs |ψns

n 〉. It consists of

the following steps:

1. With no queries, transform |ψns−1
x 〉 to∑

S′:S′⊆[n],|S′|=ns

|S′〉
∑

S:S⊆S′,|S|=ns−1

|S〉|xS〉 =
∑

S:S⊆[n],|S|=ns

|S〉|ψns−1
xS
〉.

This can be achieved by attaching an ancilla register in the state |0〉 and performing

the map |S〉|0〉 7→ |S〉
(∑

S′:S⊆S′,|S′|=ns
|S′〉

)
, which does not require any queries.

2. Apply Uns,ns−1
on the register holding |ψns−1

xS 〉. Use a subset query to verify whether

x̃S in the Ho register is indeed equal to xS . Measure the outcome of the subset query.

3. If the subset query answers that x̃S = xS , we have a state∑
S:S⊆[n],|S|=ns

|S〉|xS〉|ϕS〉

where |ϕS〉 is a state in the Hg register. Apply the transformation |S〉|ϕS〉 7→ |S〉|0〉
(which requires no queries) and discard the Hg register.

444 Quantum algorithms for search with wildcards and combinatorial group testing

4. If the subset query answers that x̃S 6= xS , repeat the following sequence of transforma-

tions:

(a) Use a binary search with dlog nse subset queries (performed coherently, without

measurements) to find one i for which (x̃S)i 6= (xS)i. If the algorithm succeeds,

change (x̃S)i to the opposite value.

(b) Use a subset query to verify whether x̃S in the output register is now equal to xS .

Measure the outcome of the subset query.

(c) If the subset query answers that x̃S 6= xS , return to step 4a.

(d) If the subset query answers that x̃S = xS , we have a state∑
S:S⊆[n],|S|=ns

|S〉|xS〉|ϕS〉

where |ϕS〉 is some “garbage” state consisting of the contents of Hg after Uns,ns−1

and leftover information from the subset queries in step 4a. Apply the transforma-

tion |S〉|ϕS〉 7→ |S〉|0〉 (which requires no queries) and discard the register holding

the |0〉 state.

The expected number of queries for Stage s (s > 0) is 1 for step 2 and O(D log n) for step

4, where D is the expected number of errors in the answer x̃S . Since D = O(1) by Lemma 3,

the expected number of queries is O(log n).

For the number of stages, we can choose l = O(
√
n) so that n0 = O(1). To see this,

consider the result n′ of applying the map z 7→ dz −
√
ze some number of times, starting

with n. Then any z produced during this process satisfies dz −
√
ze ≤ z −

√
n′ + 1, and in

particular the map needs to be repeated at most
√
n/2 + 1 times to produce n′ ≤ n/2 (for

large enough n). Repeating this process, the number of iterations required to produce a value

which is O(1) is at most (
√
n/2 + 1) + (

√
n/4 + 1) + · · · = O(

√
n).

Thus the algorithm uses n0 = O(1) queries in Stage 0 and expected O(log n) queries in

each of the next O(
√
n) stages. Hence, the expected total number of queries is O(

√
n log n).

3 The state discrimination problem

Our next task is to prove Lemma 3, i.e. to show that, given the state

|ψkx〉 :=
1(

n
k

)1/2 ∑
S⊆[n],|S|=k

|S〉|xS〉,

for any k = n−O(
√
n), we can output x̃ such that the expected Hamming distance between

x̃ and x is constant. We will achieve this using the pretty good measurement [3, 4] (PGM),

which is also known as the square root measurement [19] and is defined as follows. Given a

set {|φi〉} of pure states, set ρ =
∑
i |φi〉〈φi|. Then the measurement vector corresponding

to state |φi〉 is |µi〉 := ρ−1/2|φi〉, the inverse being taken on the support of ρ. This is a valid

POVM because∑
i

|µi〉〈µi| =
∑
x

ρ−1/2|φi〉〈φi|ρ−1/2 = ρ−1/2

(∑
i

|φi〉〈φi|

)
ρ−1/2 = I.

A. Ambainis and A. Montanaro 445

The probability that the PGM outputs j on input |φi〉 is precisely |
√
Gij |2, where G is the

Gram matrix of the states {|φi〉}, Gij = 〈φi|φj〉. In our case, we have

Gxy = 〈ψkx|ψky 〉 =
1(
n
k

) ∑
S⊆[n],|S|=k

[xS = yS] =

(
n−d(x,y)

k

)(
n
k

) .

As Gxy depends only on x ⊕ y, G is diagonalised by the Fourier transform over Zn2 (see for

example [20, Theorem 2.3.6]). Eigenvalues λ(s) of G, indexed by bit-strings s ∈ {0, 1}n, are

thus given by the Fourier transform of the function f(x) = Gx0 =
(n−|x|

k)
(n
k)

. Indeed, we have

λ(s) =
∑

x∈{0,1}n
(−1)s·xf(x) =

1(
n
k

) ∑
x∈{0,1}n

(−1)s·x
(
n− |x|
k

)
= 2n−k

(
n−|s|
n−k

)(
n
k

) , (1)

where the final equality is an identity of Delsarte [21, Eq. (48)].

As
√
Gxy also depends only on x ⊕ y, the expected Hamming distance of the output y

from the input x does not depend on x and is equal to

Dk :=
∑

y∈{0,1}n
d(x, y)(

√
Gxy)2 =

∑
y∈{0,1}n

|y|(
√
G0y)2.

We now proceed to upper bound this quantity using Fourier duality. Observe that Dk can

be viewed as the inner product between the functions f(x) = |x| and g(x) = (
√
G0x)2. By

Plancherel’s theorem we have∑
x∈{0,1}n

f(x)g(x) = 2n
∑

s∈{0,1}n
f̂(s)ĝ(s),

where for any function f we define f̂(s) = 1
2n

∑
x∈{0,1}n(−1)s·xf(x). One can easily calculate

that

f̂(s) =


n
2 if s = 0n

− 1
2 if |s| = 1

0 otherwise.

On the other hand, we can compute the Fourier spectrum of g as follows. As the Fourier

transform turns multiplication into convolution, we have

ĝ(s) =
√̂
g
√
g(s) =

∑
t∈{0,1}n

√̂
g(t)
√̂
g(s+ t).

We can therefore determine the Fourier spectrum of g directly from that of the function√
g(x) =

√
G0x. We have already computed this Fourier transform; up to normalisation, it

is just the function giving the eigenvalues of
√
G, or in other words the function

√
λ(s). We

thus obtain

ĝ(s) =
2−n−k(

n
k

) ∑
t∈{0,1}n

(
n− |t|
n− k

)1/2(
n− d(s, t)

n− k

)1/2

=
2−n−k(

n
k

) n∑
t,u=0

|{y : |y| = t, d(s, y) = u}|
(
n− t
n− k

)1/2(
n− u
n− k

)1/2

.

446 Quantum algorithms for search with wildcards and combinatorial group testing

This is a fairly complicated expression, but as f̂(s) = 0 when |s| > 1, we only need to calculate

a few special cases. In particular, we have ĝ(0n) = 1/2n and

ĝ(ei) =
2−n−k(

n
k

) n∑
t=0

(
n− t
n− k

)1/2
((

n− 1

t− 1

)(
n− t+ 1

n− k

)1/2

+

(
n− 1

t

)(
n− t− 1

n− k

)1/2
)

= 2−n−k
n∑
t=0

(
k

t

)(
t

n

(
n− t+ 1

k − t+ 1

)1/2

+

(
1− t

n

)(
k − t
n− t

)1/2
)

=: 2−n−k
n∑
t=0

(
k

t

)
Tt

for bit-strings ei of Hamming weight 1. Thus 2nĝ(ei) is equal to 1 when k = n and will be

close to 1 when k is close to n. Indeed, set k = n − c
√
n and consider terms Tt in this sum

such that t = n/2 + a
√
n, for a ∈ R. Then, using the lower bound

√
x ≥ 3

2x−
1
2x

2, which is

valid for x ≥ 0, we have

Tt =

(
1

2
+

a√
n

)(
1 +

c√
n/2− (a+ c) + 1/

√
n

)1/2

+

(
1

2
− a√

n

)(
1− c√

n/2− a

)1/2

≥
(

1

2
+

a√
n

)(
1 +

c√
n/2− a

)1/2

+

(
1

2
− a√

n

)(
1− c√

n/2− a

)1/2

≥ 1− 1

2

(
c√

n/2− a

)2

+
ac√

n(
√
n/2− a)

= 1−O(1/n)

for constant a and c. We thus have 2nĝ(ei) ≥ 1 − O(1/n). Computing the inner product

2n
∑
s∈{0,1}n f̂(s)ĝ(s), we get

Dk =
n

2
(1− ĝ(ei)) = O(1)

as desired. In Appendix 1, we continue the analysis of the state discrimination problem by

giving quite tight upper and lower bounds on the probability of identifying x exactly.

4 Algorithms for combinatorial group testing

We now consider the related problem of combinatorial group testing, beginning by consid-

ering the very special case of CGT where k = 1. Classically, this problem can be solved

with certainty using binary search in dlog2 ne queries, which is asymptotically tight by an

information-theoretic argument.

Lemma 4. If k = 1, CGT can be solved exactly using one quantum query.

Proof. The result follows from observing that, in order to learn x, it suffices to compute

the function x · s for arbitrary s ∈ {0, 1}n (this is the same observation that underpins the

quantum oracle interrogation algorithm of van Dam [12]). In the CGT problem, we have

access to an oracle which computes f(s) =
∨
i xisi for arbitrary s ∈ {0, 1}n. But if |x| ≤ 1,

then for any s,
∨
i xisi = x · s.

Formally, the quantum algorithm proceeds as follows.

A. Ambainis and A. Montanaro 447

1. Create the state 1√
2n+1

∑
s∈{0,1}n |s〉(|0〉 − |1〉).

2. Apply the oracle to create the state

1√
2n+1

∑
s∈{0,1}n

(−1)
∨

i sixi |s〉(|0〉 − |1〉) =
1√

2n+1

∑
s∈{0,1}n

(−1)s·x|s〉(|0〉 − |1〉)

3. Apply Hadamard gates to each qubit of the first register and measure to obtain x.

Call the above algorithm the k = 1 algorithm. We can extend this idea to obtain a simple

quantum algorithm for CGT which achieves significantly better query complexity than is

possible classically, by not depending on n. First assume that |x| = k, and let I be the set

of 1-indices of x which are currently known (initially, I = ∅). The algorithm is based on the

following subroutine.

1. Construct a subset S ⊆ [n]\I by including each i ∈ [n]\I with independent probability

1/k. Write Sj for the j’th element of S.

2. Create the state
(

1√
2|S|+1

∑
t∈{0,1}|S| |t〉

)
(|0〉 − |1〉).

3. Apply the oracle to create the state

1√
2|S|+1

∑
t∈{0,1}|S|

(−1)
∨|S|

i=1 tixSi |t〉(|0〉 − |1〉);

henceforth ignore the second register.

4. Apply Hadamard gates to each qubit of the first register to produce the state

1

2|S|

∑
y∈{0,1}|S|

 ∑
t∈{0,1}|S|

(−1)
∨|S|

i=1 tixSi
+
∑|S|

i=1 tiyi

 |y〉.
5. Measure to obtain y ∈ {0, 1}|S|.

6. For each i such that yi = 1, add Si to I. Reduce k by |y|.

Observe that, for all i such that xSi
= 0, the state produced in Step 4 has zero amplitude

on all y such that yi = 1. Thus, for each index Si added to I, xSi = 1. On the other hand, the

probability that the outcome y = 0|S| is obtained is exactly (1 − 21−|xS |)2, so the algorithm

finds at least one 1-index with probability 1 − (1 − 21−|xS |)2. In particular, if S contains

exactly one 1-index i of x, which will occur with probability at least (1− 1/k)k−1 ≥ 1/e, we

are guaranteed to learn i. Repeating this subroutine, the expected overall number of queries

used in order to learn x completely is O(k).

If we only know the upper bound that |x| ≤ k, we can simply use the above subroutine

with guesses k′ = 2i, i = 0, . . . , dlog2 ke. For at least one of these choices (call this k′′) such

that k′′ ≤ |x| ≤ 2k′′, the probability that the subset S which we pick randomly contains

448 Quantum algorithms for search with wildcards and combinatorial group testing

exactly one 1-index is lower bounded by a constant. For each k′ we apply the subroutine

O(k′) times such that, when k′ = k′′, the probability that we do not learn all the 1-indices

of x is upper bounded by 1/3. After this procedure, we have used
∑dlog2 ke
i=0 O(2i) = O(k)

queries and have learned all of the 1-indices of x, except with probability at most 1/3. We can

convert this into a Las Vegas algorithm, i.e. an algorithm that always succeeds eventually,

by checking whether we have found all 1-indices of x (by querying the complement of the

1-indices found so far), and repeating if necessary.

5 An almost matching lower bound

We finally prove that our results for the search with wildcards and combinatorial group

testing problems are almost optimal. We will use the following very general “strong weighted

adversary” bound formulated by Zhang [22] (for the statement given here, see [15, 23]).

Theorem 5. Let f : S → T be a function and let Q be a finite set of possible query strings.

Let x ∈ S be an initially unknown input which is accessed via an oracle Ox performing the

map Ox|q〉|z〉 = |q〉|z⊕ ζ(x, q)〉, where q ∈ Q, z ∈ {0, 1}, and ζ : S ×Q→ {0, 1} is a function

specifying the response to oracle queries. Also let w, w′ be weight schemes such that:

• Each pair (x, y) ∈ S × S is assigned a non-negative weight w(x, y) = w(y, x) such that

w(x, y) = 0 whenever f(x) = f(y);

• Each triple (x, y, q) ∈ S × S × Q is assigned a non-negative weight w′(x, y, q) such

that w′(x, y, q) = 0 for all x, y, q such that ζ(x, q) = ζ(y, q) or f(x) = f(y), and

w′(x, y, q)w′(y, x, q) ≥ w(x, y)2 for all x, y, q such that ζ(x, q) 6= ζ(y, q) and f(x) 6=
f(y).

For all x ∈ S and q ∈ Q, set wt(x) =
∑
y w(x, y) and v(x, q) =

∑
y w
′(x, y, q). Then any

quantum query algorithm that computes f(x) with success probability at least 2/3 on every

input x must make

Ω

 min
x,y,q;w(x,y)>0,
ζ(x,q) 6=ζ(y,q)

√
wt(x)wt(y)

v(x, q)v(y, q)


queries to the oracle Ox.

Lemma 6. Any quantum algorithm which solves search with wildcards on n bits with worst-

case success probability 2/3 must make Ω(
√
n) oracle queries.

Proof. In the search with wildcards problem the input is a string x ∈ {0, 1}n, queries q = (S, t)

are specified by S ⊆ [n], t ∈ {0, 1}|S|, and ζ(x, q) = 1 if and only if xS = t. We define the

following weight scheme: w(x, y) = 1 if d(x, y) = 1, and w(x, y) = 0 otherwise; w′(x, y, q) =

w′(y, x, q) = 1 if d(x, y) = 1 and ζ(x, q) 6= ζ(y, q), and w′(x, y, q) = w′(y, x, q) = 0 otherwise.

For any x ∈ {0, 1}n, wt(x) = n. On the other hand,

v(x, q) = |{y : d(x, y) = 1, ζ(x, q) 6= ζ(y, q)}| =


|S| [ζ(x, q) = 1]

1 [ζ(x, q) = 0, d(xS , t) = 1]

0 [otherwise]

.

A. Ambainis and A. Montanaro 449

Hence

min
x,y,q;w(x,y)>0
ζ(x,q) 6=ζ(y,q)

√
wt(x)wt(y)

v(x, q)v(y, q)
=
√
n

and the claim follows from Theorem 5.

Via the reduction from search with wildcards to CGT, Lemma 6 implies that CGT requires

Ω(
√
k) quantum queries, completing the proof of Theorem 2. A simple direct proof of this is

to consider the special case where the input string x is of length k + 1, and is promised to

have Hamming weight k. Then the problem reduces to finding the single zero in x, and any

query to a subset of size 2 or more always returns 1. This is therefore the same problem as

standard unstructured search for a single marked element in a database of size k + 1, which

is known to require Ω(
√
k) quantum queries [24].

6 Outlook

The major open question left by our work is to fully resolve the quantum query complexity

of CGT. A previous version of this paper incorrectly claimed a O(
√
k polylog(k)) algorithm

for this problem; it is a very interesting open problem to determine its true complexity.

An alternative way of considering the CGT problem is as a restricted case of the problem of

learning juntas via membership queries [25, 26]. A k-junta is a boolean function that depends

only on at most k input bits. The general problem of learning juntas is defined as follows.

Given oracle access to a function f : {0, 1}n → {0, 1}, and the promise that f is a k-junta,

output a representation of f (e.g. its truth table). It is easy to see that CGT is the special

case of this problem where f is restricted to be the OR of at most k of the input bits; our

algorithm therefore allows this restricted problem to be solved using O(k) queries. The same

algorithm also works if f is promised to be an AND function (i.e. f(x) =
∧
i∈S xi, for some

S such that |S| = k), because in this case querying f(x̄) and negating the output simulates

a query to a function f ′ such that f ′(x) =
∨
i∈S xi. It would be interesting to determine

whether efficient quantum algorithms could be found for other restricted cases of the junta

learning problem.

A related question is testing juntas. In this problem we are given a function f : {0, 1}n →
{0, 1} such that f either is a k-junta, or differs from any k-junta on at least ε2n inputs, and

must determine which is the case. Classically, this problem can be solved using O(k/ε+k log k)

queries [27], while there is an Ω(k) lower bound on the number of queries required [28]. In

the quantum case, Atıcı and Servedio have given an O(k/ε)-query algorithm [26]. It has

recently been observed that there are connections between the junta testing problem and

CGT [29]. It would be very interesting if our results could be used or generalised to give an

O(
√
k polylog(k)) quantum algorithm for testing juntas.

Acknowledgements

AM was supported by an EPSRC Postdoctoral Research Fellowship and would like to thank

Raphaël Clifford for helpful comments on a previous version, and David Gosset, Robin Kothari

and Rajat Mittal for helpful discussions. AA was suppported by the European Commission

under the projects QCS (Grant No. 255961), MQC (Grant No. 320731) and QALGO (Grant

No. 600700). We would like to thank Aram Harrow for suggesting a collaboration between

450 Quantum algorithms for search with wildcards and combinatorial group testing

the authors and helpful discussions, and two anonymous referees for comments which have

improved the paper. Special thanks to Han-Hsuan Lin for spotting a crucial error in a previous

version.

Appendix A

Further analysis of the state discrimination problem

In this appendix, we carry out some further analysis of the problem of discriminating the

states |ψkx〉 discussed in Section 3. We have the bound from [30] that

(
√
Gxx)2 ≥ 1∑

y∈{0,1}n |〈ψkx|ψky 〉|2
, (A.1)

which allows us to prove the following lower bound on the probability that the PGM outputs

x exactly.

Lemma 7. Set k = n− a
√
n for some 0 ≤ a ≤ 1. Then (

√
Gxx)2 ≥ 1− 2a2 −O(1/

√
n).

Proof. By (A.1) we have

(
√
Gxx)2 ≥

(
n
k

)2∑n
d=0

(
n
d

)(
d
k

)2 =

(
n
k

)∑n
d=0

(
d
k

)(
n−k
d−k
) .

We now upper bound the reciprocal of this quantity, setting g = n− k, i = n− d to obtain

1(
n
g

) g∑
i=0

(
n− g + i

i

)(
g

i

)
=

1(
n
g

) g∑
i=0

(
n− g
i

)(
g

i

)
(n− g + i) . . . (n− g + 1)

(n− g) . . . (n− g − i+ 1)

=
1(
n
g

) g∑
i=0

(
n− g
i

)(
g

i

)(
1 +

i

n− g

)
. . .

(
1 +

i

n− g − i+ 1

)

≤ 1(
n
g

) g∑
i=0

(
n− g
i

)(
g

i

)(
1 +

g

n− 2g + 1

)g+1

≤ eg(g+1)/(n−2g+1)

≤ 1 + 2a2 +O(1/
√
n).

We also record here an exact expression for the probability of getting outcome y on input

x. Let Kn
k (x) be the k’th Krawtchouk polynomial [21], defined by

Kn
k (x) =

k∑
i=0

(−1)i
(
x

i

)(
n− x
k − i

)
.

Lemma 8.

(
√
Gxy)2 = 2−(n+k)

(
n

d(x, y)

)−2(n∑
z=0

Kn
d(x,y)(z)

(
n

z

)1/2(
k

z

)1/2
)2

. (A.2)

A. Ambainis and A. Montanaro 451

Proof. Essentially immediate from the discussion in Section 3; the entries of
√
G can be

calculated using

√
Gxy =

1

2n

∑
s∈{0,1}n

(−1)(x⊕y)·sλ(s)1/2 =
1

2(n+k)/2
(
n
k

)1/2 ∑
s∈{0,1}n

(−1)(x⊕y)·s
(
n− |s|
n− k

)1/2

=
1

2(n+k)/2
(
n
k

)1/2 n∑
z=0

(
n− z
n− k

)1/2 ∑
s∈{0,1}n,|s|=z

(−1)(x⊕y)·s

=
1

2(n+k)/2
(
n
k

)1/2 n∑
z=0

(
n− z
n− k

)1/2

Kn
z (d(x, y)),

where λ(s) are the eigenvalues of G (see eqn. (1)). Lemma 8 then follows using well-known

identities for binomial coefficients and Krawtchouk polynomials [21].

We finally turn to putting upper bounds on how well x can be identified given a state of

the form |ψkx〉. We first observe that there is no loss of generality in putting upper bounds on

the success probability of the PGM, as it is in fact the optimal measurement for identifying x

(in terms of minimising the average probability of error). This follows from a result of Eldar

and Forney [19] which shows that the PGM minimises the probability of error of state dis-

crimination for states which are geometrically uniform, i.e. generated by applying an abelian

group to an initial state |φ〉. This holds for our states, as they can be thought of as being

generated by applying the unitary Uy defined by Uy|S〉|x〉 = |S〉|x + yS〉 to the initial state∑
S⊆[n],|S|=k |S〉|0〉. The set {Uy}, y ∈ {0, 1}n, clearly forms an abelian group. As a more

concise proof, optimality of the PGM follows directly from the diagonal entries of
√
G being

equal [3].

Lemma 9. Set k = n− a
√
n for some a ≥ 0. Then

(
√
Gxx)2 ≤ 4e−a

2/32.

Proof. We have
√
Gxx = 2−(n+k)/2

n∑
z=0

(
n

z

)1/2(
k

z

)1/2

.

Now split the sum into two parts to obtain

√
Gxx = 2−(n+k)/2

∑
z≤k/2+a

√
k/4

(
k

z

)1/2(
n

z

)1/2

+ 2−(n+k)/2
∑

z>k/2+a
√
k/4

(
k

z

)1/2(
n

z

)1/2

≤

 1

2k

∑
z≤ k

2+
a
√

k
4

(
k

z

)
1/2 1

2n

∑
z> k

2+
a
√

k
4

(
n

z

)
1/2

+

 1

2k

∑
k
2+

a
√

k
4

(
k

z

)
1/2 1

2n

∑
z> k

2+
a
√

k
4

(
n

z

)
1/2

by Cauchy-Schwarz. We now use the Chernoff bound that

1

2n

∑
z≥n/2+b

√
n

(
n

z

)
≤ e−b

2/2

452 Quantum algorithms for search with wildcards and combinatorial group testing

for any b > 0, which implies

1

2n

∑
z≤k/2+a

√
k/4

(
n

z

)
≤ e−a

2/32,
1

2k

∑
z>k/2+a

√
k/4

(
k

z

)
≤ e−a

2/32,

noting that k/2+a
√
k/4 ≤ n/2−a

√
n/4 by assumption. The claimed upper bound follows.

References

1. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantum computation
in determining parity. Phys. Rev. Lett., 81:5442–5444, 1998. quant-ph/9802045.

2. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polyno-
mials. J. ACM, 48(4):778–797, 2001. quant-ph/9802049.

3. V. P. Belavkin. Optimal multiple quantum statistical hypothesis testing. Stochastics, 1:315–345,
1975.

4. P. Hausladen and W. Wootters. A “pretty good” measurement for distinguishing quantum states.
J. Mod. Opt., 41(12):2385–2390, 1994.

5. R. Dorfman. The detection of defective members of large populations. The Annals of Mathematical
Statistics, 14(4):436–440, 1943.

6. D. Du and F. Hwang. Combinatorial Group Testing and Its Applications. World Scientific, 2000.
7. E. Porat and A. Rothschild. Explicit non-adaptive combinatorial group testing schemes. In Proc.

35th International Conference on Automata, Languages and Programming (ICALP’08), pages
748–759, 2008. arXiv:0712.3876.

8. M. Farach, S. Kannan, E. Knill, and S. Muthukrishnan. Group testing problems with sequences in
experimental molecular biology. In Proc. Compression and Complexity of Sequences 1997, pages
357–367, 1997.

9. G. Cormode and S. Muthukhrishan. What’s hot and what’s not: tracking most frequent items
dynamically. ACM Trans. Database Syst., 30(1):249–278, 2005.

10. G. Cormode and S. Muthukhrishan. Combinatorial algorithms for compressed sensing. In Proc.
13th Colloquium on Structural Information and Communication Complexity (SIROCCO’06), pages
280–294, 2006.

11. R. Clifford, K. Efremenko, E. Porat, and A. Rothschild. Pattern matching with don’t cares and
few errors. J. Comput. Syst. Sci., 76(2):115–124, 2010.

12. W. van Dam. Quantum oracle interrogation: Getting all information for almost half the price.
In Proc. 39th Annual Symp. Foundations of Computer Science, pages 362–367. IEEE, 1998.
quant-ph/9805006.

13. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. How many functions can be distinguished
with k quantum queries?, 1999. quant-ph/9901012.

14. K. Iwama, H. Nishimura, R. Raymond, and J. Teruyama. Quantum counterfeit coin problems. In
Proc. 21st International Symposium on Algorithms and Computation (ISAAC 2010), pages 85–96,
2010. arXiv:1009.0416.

15. R. Cleve, K. Iwama, F. Le Gall, H. Nishimura, S. Tani, J. Teruyama, and S. Yamashita. Recon-
structing strings from substrings with quantum queries. In Proc. 13th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT’12), pages 388–397, 2012. arXiv:1204.4691.

16. A. Ambainis, K. Iwama, A. Kawachi, H. Masuda, R. Putra, and S. Yamashita. Quantum identifi-
cation of Boolean oracles. In Proc. STACS 2004, pages 93–104. Springer, 2004. quant-ph/0403056.

17. A. Ambainis, K. Iwama, A. Kawachi, R. Raymond, and S. Yamashita. Improved algorithms for
quantum identification of boolean oracles. Theor. Comput. Sci., 378:41–53, 2007. quant-ph/

0411204.
18. A. Atıcı and R. Servedio. Improved bounds on quantum learning algorithms. Quantum Information

Processing, 4(5):355–386, 2005. quant-ph/0411140.

A. Ambainis and A. Montanaro 453

19. Y. C. Eldar and G. D. Forney, Jr. On quantum detection and the square-root measurement. IEEE
Trans. Inform. Theory, 47(3):858–872, 2001. quant-ph/0005132.

20. T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli. Harmonic Analysis on Finite Groups. Cam-
bridge University Press, 2008.

21. I. Krasikov and S. Litsyn. Survey of binary Krawtchouk polynomials. In Codes and Associa-
tion Schemes, volume 56 of DIMACS series in Discrete Mathematics and Theoretical Computer
Science, pages 199–212. American Mathematical Society, 1999.

22. S. Zhang. On the power of Ambainis lower bounds. Theoretical Computer Science, 339(2–3):241–
256, 2005. quant-ph/0311060.

23. R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. Theory of Computing,
2:1–18, 2006. quant-ph/0409116.

24. C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum
computing. SIAM J. Comput., 26(5):1510–1523, 1997. quant-ph/9701001.

25. E. Mossel, R. O’Donnell, and R. Servedio. Learning functions of k relevant variables. J. Comput.
Syst. Sci., 69(3):421–434, 2004.

26. A. Atıcı and R. A. Servedio. Quantum algorithms for learning and testing juntas. Quantum
Information Processing, 6:323–348, 2007. arXiv:0707.3479.

27. E. Blais. Testing juntas nearly optimally. In Proc. 41st Annual ACM Symp. Theory of Computing,
pages 151–158, 2009.

28. H. Chockler and D. Gutfreund. A lower bound for testing juntas. Inf. Proc. Lett., 90(6):301–305,
2004.

29. D. Garćıa Soriano. Query-Efficient Computation in Property Testing and Learning Theory. PhD
thesis, University of Amsterdam, 2012.

30. A. Montanaro. On the distinguishability of random quantum states. Comm. Math. Phys.,
273(3):619–636, 2007. quant-ph/0607011.

