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Abstract. The sensitivity conjecture of Nisan and Szegedy [12] asks
whether the maximum sensitivity of a Boolean function is polynomi-
ally related to the other major complexity measures of Boolean func-
tions.1 Despite major advances in analysis of Boolean functions in the
past decade, the problem remains wide open with no positive result to-
ward the conjecture since the work of Kenyon and Kutin from 2004 [11].

In this work, we prove tighter upper bounds for various complexitymea-
sures in terms of sensitivity. More precisely, we show that deg(f)1−o(1) =
O(2s(f)) and C(f) ≤ 2s(f)−1s(f); these in turn imply various corollaries
regarding the relation between sensitvity and other complexity measures,
such as block sensitivity, via known results. The gap between sensitivity
and other complexity measures remains exponential but these results are
the first improvement for this difficult problem that has been achieved in
a decade.

1 Introduction

Sensitivity conjecture is a well-known and challenging open problem in the study
of complexity measures of Boolean functions. As explaind in detail in various
works, the conjecture has many equivalent (or morally equivallent) formulations.
Although in this work we shall be mostly concerned with the original formula-
tion of the conjecture in terms of complexity measures of Boolean functions, let
us begin by stating the combinatorial formulations of the problem— as this for-
mulation perhaps has the benefit of being more immediately accessible. In the
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language of extremal combinatorics, the problem is about a certain conjectured
Ramsey-type phenomenon over the Hamming cube as follows: does there exists
a δ > 0 such that any unbalanced two-coloring of vertices of hypercube {0, 1}n
contains a verctex x ∈ {0, 1}n such that x has ≥ nδ neighbors in the same color
class as x?

In the original form of Nisan and Szegedy [12], the conjecture takes the fol-
lowing form:

Conjecture 1 (sensitivity conjecture). There exists a constant d ∈ R
+ such that

for any Boolean function f : {−1, 1}n → {−1, 1} we have

bs(f) = O(s(f)d),

where s(f) and bs(f) denote the sensitivity and the block sensitivity (defined in
Section 2) of the function f .

We shall note that the equivalence between these two seemingly different
problems, first observed by Gotsman and Linial [8], is not at all that difficult.
Moreover, the equivalence is very direct, and there is almost no cost in parame-
ters for switching from one setting to the other. Thus, one may choose to work in
whichever setting one finds more convenient. As such, we shall work exclusively
in the complexity theoretic framework, though we shall note that our argue-
ments in Section 4 is inspired and is a refinement of an arguement of Chung et
al. from [6] which takes place in the combinatorial setting.

We shall make one final remark about the formulation of the problem before
moving on to the discussion of previous works and our results. In the statement
of the conjecture, we can replace the block sensitivity by several other widely
used complexity measure of Boolean functions (such as deterministic and ran-
domized query complexity, certificate complexity, Fourier degree, etc.) which are
all polynomially related to block sensitivity (and to each other), as shown by
Nisan and Szegedy [12].

Background. As mentioned above, through the work of various researchers by
now many different equivalent forms of the sensitivity conjecture are available.
Fortunately, almost all of these different formulations and various approaches to
the conjecture are discussed in the recent survey of P. Hatami et al. [10] (see
also the blogpost of Aaronson [1] which played an important role in the recent
surge of attention to the problem). We refer to these works for a more detailed
exposition of the background and the prior works. We briefly recall some of the
more immediately relevant facts:

The best known upper bound on block sensitivity is

bs(f) ≤ (
e√
2π

)es(f)
√
s(f), (1)

given by Kenyon and Kutin [11]. In the other direction, the first progress on the
lower bound was made by Rubinstein [13] who gave the first quadratic separation
for block sensitivity and sensitivity by constructing a Boolean function f with
bs(f) = 1

2s(f)
2. Currently, the best lower bound is due to Ambainis and Sun

who in [3] exhibited a function with bs(f) = 2
3s(f)

2 − 1
2s(f).
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Results. Our first result in this paper is the following estimate regarding the rela-
tion between the maximum sensitivity and Fourier degree of a Boolean function.

Theorem 1. Let f : {0, 1}n → {−1, 1} be a Boolean function. Then

deg(f)1−o(1) ≤ s(f)2s(f) ,

where o(1) denotes a term that vanishes as deg(f) → ∞.

The proof of the above theorem is a mixture of techniques from Fourier analysis
and combinatorics. The argument is partly inspired by the arguments in the
paper of Chung et al. [6] which recently played an important role in solving a
question about the query complexity of restrictions of parity function in [2].

For sensitivity versus certificate complexity, we can prove a somewhat stronger
theorem which has direct consequences for sensitivity versus block sensitivity
problem (which is the original formulation of sensitivity conjecture by Nisan
and Szegedy [12]).

Theorem 2. For any Boolean function f ,

C1(f) ≤ 2s0(f)−1s1(f), C0(f) ≤ 2s1(f)−1s0(f). (2)

Here C0(f) and C1(f) denote the 0-certificate complexity and 1-certificate com-
plexity of f . These notions – along with the rest of the background material on
complexity measures of Boolean functions – are presented in Section 2.

Using the known relations between various complexity measures of Boolean
functions, we can derive several consequences from the above result.

Corollary 1. For any Boolean function f ,

bs(f) ≤ C(f) ≤ 2s(f)−1s(f).

Combining Theorem 2 and some previous results, we can also give another upper
bound for block sensitivity.

Corollary 2. For any Boolean function f ,

bs(f) ≤ min{2s0(f), 2s1(f)}s1(f)s0(f). (3)

Hence, we see that our Theorems 1 and 2 and their corollaries show an improved
exponent in relation between sensitivity and various complexity measures of
Boolean functions compared to the previous best bound shown in equation (1).
Beside being the first positive result toward the sensitivity conjecture since the
work of Kenyon and Kutin from 2004, we believe our results have the merit of
introducing new ideas and techniques which could be valuable elesewhere as well
as in the future works on this fundamental conjecture.

Although the bounds obtained in Theorems 1 and Theorem 2 look quite sim-
ilar, the theorems do not follow one from another by using the known relations
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between certificate complexity and Fourier degree. On the contrary, the two the-
orems are obtained by using rather different techniques. However, we shall note
that despite their differences both proofs of Theorem 1 and 2 crucially rely on the
small set expansion properties of Boolean hypercube. It is plausible that better
analytic estimates along the lines of [7] could be useful to slightly improve our
results— though a significant improvement is likely to require new ideas.

Organization. In Section 2 we recall some basic definitions and concepts relevant
to this work. In Section 3, we prove Theorem 1 and in Section 4, we prove
Theorem 2 and its corollaries. Both Sections 3 and 4 are self-contained and can
be read in any order.

2 Preliminaries

In this paper, we work with total Boolean functions over the hypercube and their
measures of complexity. We assume some basic familiarity with the complexity
measures of Boolean functions (as described in the survey [5]). For completeness,
we briefly recall some basic definitions.

We work with the usual graph structure on the hypercube by connecting
x, y ∈ {0, 1}n if and only if x, y differ in a single coordinate. We always denote
by log(·) the logarithm with the base 2.

Definition 1. The pointwise sensitivity s(f, x) of a function f on input x is
defined as the number of bits on which the function is sensitive, i.e.

s(f, x) =
∣
∣{i ∈ [n]|f(x) �= f(x(i))}∣∣,

where x(i) is obtained by flipping the i-th bit of x. We define the total sensitivity
by

s(f) = max
{
s(f, x)|x ∈ {0, 1}n} ,

and the 0-sensitivity and 1-sensitivity by

s0(f) = max
{
s(f, x)|x ∈ {0, 1}n, f(x) = 0

}
, s1(f) = max

{
s(f, x)|x ∈ {0, 1}n, f(x) = 1

}
.

Block sensitivity is another important complexity measure which is obtained by
relaxing the requirement that we have to only flip single coordinates by allowing
flipping disjoint blocks. More formally block sensitivity is defined as follows:

Definition 2. The pointwise block sensitivity bs(f, x) of f on input x is de-
fined as maximum number of pairwise disjoint subsets B1, ..., Bk of [n] such that
f(x) �= f(x(Bi)) for all i ∈ [k]. Here x(Bi) is obtained by flipping all the bits
{xj |j ∈ Bi} of x. Define the block sensitivity of f as

bs(f) = max
{
bs(f, x)|x ∈ {0, 1}n},

and the 0-block sensitivity and 1-block sensitivity, analogously to Definition 1,
by

bs0(f)=max
{
bs(f, x)|x ∈ {0, 1}n, f(x) = 0

}
, bs1(f)=max

{
bs(f, x)|x ∈ {0, 1}n, f(x) = 1

}
.
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The certificate complexity is another very useful complexity measure with a more
non-deterministic type of definition. It is defined as follows:

Definition 3. The certificate complexity C(f, x) of f on input x is defined as
the minimum length of a partial assignment of x such that f is constant on this
restriction. Define the certificate complexity of f by

C(f) = max
{
C(f, x)|x ∈ {0, 1}n},

and the 0-certificate and 1-certificate by

C0(f) = max
{
C(f, x)|x ∈ {0, 1}n, f(x) = 0

}
, C1(f) = max

{
C(f, x)|x ∈ {0, 1}n, f(x) = 1

}
.

Another important notion for us is Fourier degree. It is also polynomially
related to block-sensitivity and certificate complexity. To define Fourier degree,
recall that any function f : {0, 1}n → C can be expanded in terms of Fourier
characters as follows

f(x) =
∑

S⊆[n]

f̂(S)χS(x) ,

where χS(x) = (−1)
∑

i∈S xi .

Definition 1. Let f : {−1, 1}n → R and let f̂(·) denote its Fourier transform.
We define Fourier degree of f by

deg(f) = max
f̂(S) �=0

|S| .

Finally, we mention an important and well-known combinatorial result over the
hypercube, usually attributed to Harper [9].

Lemma 1 (Hamming Cube Isoperimetry [9]). Assume ∅ �= A ⊆ {0, 1}n.
Let d be the average degree of vertices of A with graph structure on A induced
from the natural Hamming graph of {0, 1}n. Then we have

|A| ≥ 2d .

The above lemma is quite easy to prove by induction. For a detailed proof which
covers the application to combinatorics, we recommend consulting the book by
Bollobás [4].

The above theorem implies that if |A| is small, the average degree d must
also be relatively small. In this case, the ratio between the number of the edges
leaving the set A and the total number of incident edges to A, which is equal to
1−d/n, is relatively large. This justifies the alternative name given to the above
theorem as the “small set expansion” property of the Hamming cube.

In Section 4, we need an equivalent formulation of discrete isoperimetric in-
equality, Lemma 1, which will be a more convenient for our purposes there.

Lemma 2. For any A ⊆ {0, 1}n, the edges between A and Ā = {0, 1}n \ A is
lower bounded by

|E(A, Ā)| ≥ |A|(n− log2 |A|).
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3 Sensitivity versus Degree

In this section, we shall prove Theorem 1. Let f : {0, 1}n → {−1, 1} be a Boolean
function. To prove Theorem 1, the key idea is to count the following objects.

Definition 4. An (l, r) S-triple consists of a point x ∈ {0, 1}n and two sets
L ⊆ R ⊆ [n] with |L| = l and |R| = r such that f(x) �= f(xi) for any i ∈ L.

In our application, the two parameters l ≤ r are chosen as follows: l = c log r,
for some c > 0 an appropriately chosen constant, and r will be a slowly growing
function of n which will be asymptotically log logn. The upper bound on the
number of S-triples is easy to establish.

Lemma 3. The number of (l, r) S-triples is bounded by

2n
s(f)

l
nr−l

l!(r − l)!
.

Proof. We can assume s(f) ≥ l as otherwise the number of S-triples is zero.
Consider any x ∈ {0, 1}n. The number of S-triples involving x is bound by

max1≤q≤s(f)

(
q
l

)(
n−l
r−l

)
. This is clearly bounded by s(f)l nr−l

l!(r−l)! which implies the

above lemma. ��
The main part of proving Theorem 1 is to prove a lower bound on the number

of S-triples which coupled with the above lemma gives the desired lower bound
on s(f). The key idea here is study of restriction of function f to subcubes of
dimension r. To be able to carry out our argument we will need a few definition
regarding restrictions of functions over the discrete cube.

Restrictions of Boolean functions.

Definition 5. Given z ∈ {0, 1, ∗}n and R ⊆ [n], we call them a compatible
pair if R = {i ∈ [n] : z(i) = ∗}. Each z ∈ {0, 1, ∗}n naturally corresponds to
|R|-dimensional subcube Qz ⊆ {0, 1}n defined as follows:

Qz = {y ∈ {0, 1}n : zi �= ∗ ⇒ yi = zi},

i.e. Qz is constructed by freezing the coordinates of y in [n] \ R according to z,
and letting the rest of coordinates yi for i ∈ R to be free.

Let f : {0, 1}n → R. Given a compatible pair z ∈ {0, 1, ∗}n and R = {i ∈ [n] :
z(i) = ∗} we obtain a restriction function f |z given by restricting f to Qz

Definition 6. Given z ∈ {0, 1, ∗}n and x ∈ {0, 1}n (here x is not necessarily
in Qz), define y = (x ↓ z) to be projection of x to Qz given by yi = zi for any
i ∈ [n] such that z(i) �= ∗ and yi = xi for all the other i ∈ [n]. We define

f |z(x) = f(x ↓ z) .
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Notice that f |z(x) is a function over whole {0, 1}n though its value only depends
on R the coordinates which z(i) = ∗. Given the above definition one can easily
infer the Fourier expansion of the restriction function f |z(·) from that of f as
follows.

(f |z) (x) =
∑

S⊆R

χS(x)
∑

U∩R=S

f̂(U)χU\S(z) .

We need the following lemma regarding the degree of restrictions of a function.

Lemma 4. Let f : {−1, 1}n → {−1, 1} be function of degree n. Let R ⊆ [n].
Then there exist z ∈ {−1, 1, ∗}n compatible with R such that (f |z) is also full-
degree |R|.

Proof. The coefficient of the highest monomial in Fourier expansion of (f |z) is
given by ∑

R⊆U

f̂(U)χU\R(z).

Now we calculate the expectation of the square of this value for a random z
compatible with R.

E
z

⎛

⎝
∑

R⊆U

f̂(U)χU\R(z)

⎞

⎠

2

=
∑

R⊆U

f̂(U)2 ≥ f̂([n])2 > 0

where for the last inequality we used the fact that f is full-degree. ��
The importance of the above lemma is that it allows us to use induction:2

Fix some R ⊆ [n]. By the lemma above, there exists z ∈ {0, 1, ∗}n compatible
with R such that f |z is full-degree. The importance of existence of z is that Qz

always contain an S-triple which was the object we were interested to count.
More precisely, since f |z is full-degree by induction on the degree in Theorem 1
there exists subset L ⊆ R with |L| ≥ 1

3 log |R| such that there exist x ∈ Qz such
that f |z(x) �= f |z(xi) for every i ∈ L. Taking l = |L| and r = |R| we see that
(x, L,R) constitutes an S-triple. We use the existence of z and Harper’s lemma
1 to prove that for every R there exists not only one such z but in fact many.
This is the key estimate we need to prove our result.

The Main Proof of Sensitivity versus Fourier Degree Estimate

Proof (Theorem 1). Without loss of generality we can assume f is full-degree.

If this is not the case, choose S ⊆ [n] with |S| = deg(f) such that f̂(S) �= 0,

2 It is worth noting that for our induction we do not need the full strength of Theorem
1; in fact, a weaker bound of (say) deg(f) ≤ 10s(f), which follows from [11] and the
know relations between Fourier degree and block sensitivity, here suffices. If we were
able to change our methods to exploit the sharper induction hypothesis provided by
Theorem 1, this may be useful for achieving some improved estimate.
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then set the coordinates outside S arbitrary to get a Boolean function on |S|-
dimensional hypercube of full-degree. This reduces the problem to the full-degree
case as restricting a function can only decrease the sensitivity.

Let r = ω(1) be a very slowly growing function of n to be specified later. Fix
a set R ⊆ [n] with |R| = r. By Lemma 4 there exist z ∈ {0, 1, ∗}n compatible
with R such that the restricted function (f |z) has degree r. Now by induction
s(f |z) ≥ l where l = Θ(log r). (we can take l = 1

3 log r for concreteness.) This
means we can find a point x ∈ Qz with l neighbors x1, x2, . . . , xl such that

(f |z)(x1) = (f |z)(x2) = . . . = (f |z)(xl) �= (f |z)(x) .

Let L = {i1, i2, . . . , il} ⊆ R be the direction of the edges
(x, x1), (x, x2), . . . , (x, xl) respectively. Then (x, L,R) constitutes a (l, r)
S-triple.

So far for any R ⊆ [n] we have shown the existence of one such S-triple.
Now we show there are many such triples. Consider ZR which is the set of all
z ∈ {0, 1, ∗}n compatible with R. Notice that ZR can be naturally associated
with a (n − r)-hypercube with z1, z2 ∈ ZR said to be neighbors in direction
j ∈ [n] \R if z1(i) = z2(i) for i ∈ [n] \ {j} and z1(j) �= z2(j). (Clearly z1(j) �= ∗
and z2(j) �= ∗ as both z1 and z2 are compatible with R. )

We call a z̃ ∈ ZR good if

(f |z̃)(x1) = (f |z̃)(x2) = . . . = (f |z̃)(xl) �= (f |z̃)(x) .

Let A be the set of all good z̃ in ZR. Notice that if z̃ is good, ((x ↓ z̃), L,R)
constitutes an S-triple. We have shown so far that z ∈ A so A is non-empty.
Now we prove all elements of A have high degree when seen as a subset of
(n − r)-hypercube. Indeed, notice that for any z̄ ∈ ZR and any x̄, there are at
most s(f) directions j ∈ [n] \ R such that (f |z̄) (x̄(j)) �= (f |z̄) (x̄). Applying the
same reasoning to all x, x1, x2, . . . , xl, we see that for any z ∈ A there is at least
n−r−s(f)(l+1) neighbors of z in A. Now applying our isoperimetric inequality
(Lemma 1) to A we see that there are at least 2n−r−(l+1)s(f) such special triples
for a fixed R ⊆ [n] of sizer.

On the other hand, the number of such special triples is bounded above by
Lemma 3. So we have

(
n

r

)
2n−r−s(f)(l+1) ≤ 2n

s(f)
l
nr−l

l!(r − l)!
.

As r � n we have
(
n
r

) ≥ nr

2rr! . Simplifying we see n
l

l+1 ≤ 4r
(
r
l

)
s(f)2s(f).

Choosing r log r = logn and l = log r
3 we get

n1−O( 1
log log n) ≤ s(f)2s(f) ,

which is our desired result. ��
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4 Sensitivity versus Certificate Complexity

In this section we prove Theorem 2. Actually, we prove a slightly stronger result.

Theorem 3. Let f : {0, 1}n → {0, 1} be a Boolean function, then

C1(f) ≤ 2s0(f)−1s1(f)− (s0(f)− 1), C0(f) ≤ 2s1(f)−1s0(f)− (s1(f)− 1).3

Proof. By symmetry we only need to prove C1(f) ≤ 2s0(f)−1s1(f)− (s0(f)− 1).
Without the loss of generality, we assume C1(f) = C(f, 0n), i.e. the 1-certificate
complexity is achieved on the input 0n. We have f(0n) = 1. We assume that
the minimal certificate of 0n consists of x1 = 0, x2 = 0, . . . , xm = 0, where
m = C(f, 0n) = C1(f).

Let Q0 be the set of inputs x that satisfies x1 = x2 = . . . = xm = 0. Since
x1 = 0, x2 = 0, . . . , xm = 0 is a 1-certificate, we have ∀ x ∈ Q0, f(x) = 1.

For each i ∈ [m], let Qi be the set of inputs x with x1 = . . . = xi−1 =
xi+1 = . . . = xm = 0 and xi = 1. Let S be the total sensitivity of all inputs
x ∈ ⋃m

i=1 Qi. It consists of three parts: sensitivity between Qi and Q0 (denoted
by S1), sensitivity inside Qi (denoted by S2) and sensitivity between Qi and
other input (denoted by S3), i.e.

S =

m∑

i=1

∑

x∈Qi

s(f, x) = S1 + S2 + S3. (4)

In the following we estimate S1, S2 and S3 separately. We use A1, . . . , Am to
denote the set of 0-inputs in Q1, . . . , Qm, respectively, i.e. Ai = {x ∈ Qi|f(x) =
0} (i ∈ [m]). Since x1 = . . . = xm = 0 is the minimal certificate, i.e. Q0 is
maximal, thus A1, . . . , Am are all nonempty.

We also need the following lemma which follows from Lemma 2 but can be
also proven without using it [14]:

Lemma 5. For any i ∈ [m],

|Ai| ≥ 2n−m−s0(f)+1.

The sensitivity between Qi and Q0 is |Ai|. By summing over all possible i we
get:

S1 =

m∑

i=1

|Ai|. (5)

Sensitivity Inside Q1, . . . , Qm: By Lemma 2, for each i ∈ [m], the number of
edges between Ai and Qi \Ai is bounded by:

|E(Ai, Qi \Ai)| ≥ |Ai|(log2 |Qi| − log2 |Ai|) = |Ai|(n−m− log2 |Ai|).
3 If s0(f) = 0 or s1(f) = 0, then f is constant, hence s(f) = bs(f) = C(f) = 0.
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Therefore,

S2 = 2

m∑

i=1

|E(Ai, Qi \Ai)|

≥ 2
m∑

i=1

|Ai|(n−m− log2 |Ai|). (6)

Sensitivity between Qi and Other Inputs (i.e. {0, 1}n\⋃m
j=0 Qj): For each

1 ≤ i < j ≤ m, let Qi,j be the set of inputs (not in Q0) that are adjacent to both
Qi and Qj, i.e. Qi,j is the set of inputs x that satisfy x1 = . . . xi−1 = xi+1 =
. . . xj−1 = xj+1 = . . . xm = 0 and xi = xj = 1. The sensitivity between Qi, Qj

and Qi,j is lower bounded by
∑

x∈Q0

|f(x+ ei)− f(x+ ej)|.

where ei is the unit vector with the i-th coordinate equal to 1 and all other
coordinates equal to 0. Then, x+ ei, x+ ej are the neighbors of x in Qi and Qj ,
respectively. Summing over all possible pairs of (i, j) we get

S3 ≥
∑

1≤i<j≤m

∑

x∈Q0

|f(x+ ei)− f(x+ ej)|

=
∑

x∈Q0

(
m∑

i=1

f(x+ ei)

)(

m−
m∑

i=1

f(x+ ei)

)

=
∑

x∈Q0

s(f, x)(m − s(f, x)). (7)

If we combine inequalities (5)-(7), we get

S =

m∑

i=1

∑

x∈Qi

s(f, x)

≥
m∑

i=1

|Ai|+ 2

m∑

i=1

|Ai|(n−m− log2 |Ai|) +
∑

x∈Q0

s(f, x)(m − s(f, x)). (8)

Since s(f, x) is upper bounded by s0(f) or s1(f) (depending on whether f(x) = 0
or f(x) = 1), we have

∑

x∈Qi

s(f, x) ≤ |Ai|s0(f) + (|Qi| − |Ai|)s1(f)

= |Ai|s0(f) + (2n−m − |Ai|)s1(f)
Thus,

S =

m∑

i=1

∑

x∈Qi

s(f, x) ≤
m∑

i=1

(
|Ai|s0(f) + (2n−m − |Ai|)s1(f)

)
. (9)
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We use w to denote the total number of 0-inputs in Q1, . . . , Qm. Then,

w =

m∑

i=1

|Ai| =
∑

x∈Q0

s(f, x).

The inequality (9) can be rewritten as

S ≤ w · s0(f) + (m · 2n−m − w)s1(f). (10)

Also, s(f, x) ≤ s1(f) for each x ∈ Q0. Thus, the right-hand side of inequality (8)
is

m∑

i=1

|Ai|+ 2

m∑

i=1

|Ai|(n−m− log2 |Ai|) +
∑

x∈Q0

s(f, x)(m− s(f, x))

≥ w + 2
m∑

i=1

|Ai|(n−m− log2 |Ai|) + (m− s1(f))
∑

x∈Q0

s(f, x)

= w + 2w(n−m)− 2

m∑

i=1

|Ai| log2 |Ai|+ (m− s1(f))w

= w(1 + 2n−m− s1(f))− 2

m∑

i=1

|Ai| log2 |Ai|. (11)

By combining inequalities (8)-(11) we get

w(1 + 2n−m− s1(f))− 2
m∑

i=1

|Ai| log2 |Ai| ≤ w · s0(f) + (m · 2n−m − w)s1(f).

By rearranging the inequality we get

w(1 + 2n−m− s0(f)) ≤ 2
m∑

i=1

|Ai| log2 |Ai|+m · 2n−ms1(f). (12)

Since the function g(x) = x log2 x is convex and we know that |Ai| ≤ |Qi| =
2n−m, from Lemma 5 |Ai| ≥ 2n−m−s0(f)+1. Therefore,

g(|Ai|) = g

(
|Ai| − 2n−m−s0(f)+1

2n−m − 2n−m−s0(f)+1
· 2n−m +

2n−m − |Ai|
2n−m − 2n−m−s0(f)+1

· 2n−m−s0(f)+1

)

≤ |Ai| − 2n−m−s0(f)+1

2n−m − 2n−m−s0(f)+1
· g(2n−m) +

2n−m − |Ai|
2n−m − 2n−m−s0(f)+1

· g(2n−m−s0(f)+1)

=
|Ai| − 2n−m−s0(f)+1

2n−m − 2n−m−s0(f)+1
· 2n−m(n − m)

+
2n−m − |Ai|

2n−m − 2n−m−s0(f)+1
· 2n−m−s0(f)+1(n − m − s0(f) + 1)

=
|Ai| − 2n−m−s0(f)+1

2s0(f)−1 − 1
· 2s0(f)−1(n − m) +

2n−m − |Ai|
2s0(f)−1 − 1

(n − m − s0(f) + 1)

=

(
|Ai| − 2n−m−s0(f)+1

2s0(f)−1 − 1
2
s0(f)−1

+
2n−m − |Ai|
2s0(f)−1 − 1

)

(n − m) − 2n−m − |Ai|
2s0(f)−1 − 1

(s0(f) − 1)

= |Ai|(n− m) − 2n−m − |Ai|
2s0(f)−1 − 1

(s0(f)− 1).
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Hence

m∑

i=1

|Ai| log2 |Ai| =
m∑

i=1

g(|Ai|)

≤
m∑

i=1

(
|Ai|(n−m)− 2n−m − |Ai|

2s0(f)−1 − 1
(s0(f)− 1)

)

= w(n−m+
s0(f)− 1

2s0(f)−1 − 1
)−m · 2n−m s0(f)− 1

2s0(f)−1 − 1
. (13)

By combining inequalities (12) and (13), we get

w(1 + 2n−m− s0(f))

≤ 2

(
w(n−m+

s0(f)− 1

2s0(f)−1 − 1
)−m · 2n−m s0(f)− 1

2s0(f)−1 − 1

)
+m · 2n−ms1(f).

It implies that

w

(
1 +m− s0(f)− 2(s0(f)− 1)

2s0(f)−1 − 1

)
≤ m · 2n−m

(
s1(f)− 2(s0(f)− 1)

2s0(f)−1 − 1

)
,

Substituting w =
∑m

i=1 |Ai| ≥ m · 2n−m−s0(f)+1, we get

m · 2n−m−s0(f)+1

(
1 +m− s0(f)− 2(s0(f)− 1)

2s0(f)−1 − 1

)
≤m · 2n−m

(
s1(f)− 2(s0(f)− 1)

2s0(f)−1 − 1

)
,

i.e.

1 +m− s0(f)− 2(s0(f)− 1)

2s0(f)−1 − 1
≤ 2s0(f)−1

(
s1(f)− 2(s0(f)− 1)

2s0(f)−1 − 1

)
,

which implies
m ≤ 2s0(f)−1s1(f)− s0(f) + 1.

��

4.1 Proof of Corollary 2

To prove Corollary 2, we need the following Lemma by Kenyon and Kutin.4

Lemma 6. [11] bs0(f) ≤ 2(C1(f)− 1
2 )s0(f), bs1(f) ≤ 2(C0(f)− 1

2 )s1(f).

Proof. (of Corollary 2) From Theorem 2 bs0(f) ≤ C0(f) ≤ 2s1(f)−1s0(f).
From Corollary 6 we have bs0(f) ≤ 2(C1(f) − 1

2 )s0(f), together with The-

orem 2 we get bs0(f) ≤ 2(2s0(f)−1s1(f) − 1
2 )s0(f). Therefore, bs0(f) ≤

min{2s1(f)s0(f), 2s0(f)s1(f)s0(f)}. Similarly we can show that bs1(f) ≤
min{2s1(f)s0(f)s1(f), 2s0(f)s1(f)}. ��
4 In their original paper there is no “− 1

2
” term, but a careful analysis will provide it.
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