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Welcome Address

Dear Colleagues,

On behalf of the Organizing Committee, we welcome you to the 10th International Conference 
of the Progress on Difference Equations taking place in the Riga, Latvia!

The aim of the Conference is to bring together members of the mathematical community. 
This conference, held under the auspices of the International Society for Difference 
Equations, aims to be a forum where researchers can share their work and discuss the 
latest developments in the areas of difference equations, discrete dynamical systems and 
their applications. About 40 researchers, university academic staff members, and students 
of Mathematics have applied for the participation. They represent leading institutions of 
research and Higher education of Belarus, Brazil, Czech Republic, France, Germany, India, 
Italy, Poland, Portugal, Romania, Spain, Serbia, UAE, USA, and, of course, of Latvia.

We wish you a scientifically stimulating and enjoyable time in Riga!

Inese Bula, 
Chair of Organizing Committee

Andrejs Reinfelds, 
Co-Chair of Scientific Committee

University of Latvia, Rīga, Latvia

http://www.lu.lv/pode2016/
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Stevo Stevič and Bratislav Iričanin (Serbia). On some solvable classes of difference
equations and systems of equations

12

CONTRIBUTED TALKS

Ziyad Alsharawi (UAE). Global stability in a discrete-time contest-competition model 15
Aija Anisimova (Latvia). Periodicity of some rational difference equations with a positive
real power

16

Narcisa Apreutesei (Romania). Continuous dependence on data for the solutions of some
differential and difference equations

17

Maruta Avotina (Latvia). Solutions with period two 18
Ignacio Bajo (Spain). Invariants for a class of discrete dynamical systems given by rational
mappings

19

Francisco Balibrea (Spain). On Difference equations with predetermined forbidden sets 20
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Jaromı́r Baštinec and Josef Dibĺık (Czech Republic). Positive and oscillating solutions
of discrete linear equations with a single delay

21

Sigrun Bodine (USA). Asymptotics of solutions of perturbations of difference equations
with a nonuniform exponential dichotomy

22

Eduard Brokan and Felix Sadyrbaev (Latvia). On attractors in dynamical systems arising
in gene regolatory network theory

23
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Marcos Marvá (Spain). A Time scales approach to the competitive exclusion principle 35
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GLOBAL DYNAMICS OF DIFFERENCE EQUATIONS:
APPLICATIONS TO POPULATION DYNAMICS

SABER ELAYDI

Trinity University

San Antonio, Texas, USA

E-mail: selaydi@trinity.edu

In this talk we will present the latest development in the global dynamics of two types of systems
generated by triangular maps and monotone maps. The dynamics of planar monotone maps have
been well understood through the work of Hal Smith. The theory of monotone maps is now extended
to higher dimensional maps via geometrical interpretation of monotonicity. Another class of maps
for which the Global dynamics have been successfully established, is the class of triangular maps
where the Jacobian matrix of the map is triangular. Applications of our theory to population biology
will be presented. For instance, hierarchical models may be represented by triangular maps defined
on Rk

+. In particular, we focus our attention on models with the Allee effect. The general theory
of the global dynamics of triangular maps was established by Balreira, E., and Luis [1]. Here we
extend these results to include the difficult case of non-hyperbolic maps, building upon the work
by Assas et al. [2,3]. We show that in the case of non-hyperbolic maps, the center manifold is
semi-stable from above. Finally, we show how immigration to one of the species or to both would
change drastically the dynamics of the system. It is shown that if the level of immigration to one
or both species is above a specified level, then there will be no extinction region.

REFERENCES

[1] F.C. Balreira, S.N. Elaydi and R. Luis. Global Dynamics of Triangular Maps. Nonlinear Analysis, Theory, Methods
and Appl., Ser. A, 104 (2014), 75-83.

[2] L. Assas, S.N. Elaydi, E. Kwessi, G. Livadiotis and D. Ribble. Hierarchical competition models with the Allee
effect. J. Biological Dynamics, 9, Suppl. 1 (2015), 32-44.

[3] L. Assas, S.N. Elaydi, E. Kwessi, G. Livadiotis and B. Dennis. Hierarchical competition models with the Allee
effect II: the case of immigration. J. Biological Dynamics, (2015). To appear.
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ENTROPY LOCKING

MICHA�L MISIUREWICZ

Indiana University-Purdue University Indianapolis

402 N. Blackford Street, Indianapolis, IN 46202, USA

E-mail: mmisiure@math.iupui.edu

Consider discontinuous piecewise linear interval maps with two pieces, where the map is increasing
on one piece and decreasing on the other piece. Often the topological entropy depends only on the
slopes, not on the size of the jump at the discontinuity point. We present a simple explanation of
this phenomenon.
This is joint work with David Cosper.
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STABILITY OF SWITCHED DIFFERENCE EQUATIONS
ON ORDERED SPACES

STEFAN SIEGMUND

Center for Dynamics & Institute for Analysis, Department of Mathematics

TU Dresden, 01062 Dresden, Germany

E-mail: stefan.siegmund@tu-dresden.de

Let A1, . . . , AN ∈ L(X) be N ∈ N bounded linear operators on a Banach space X. For an
arbitrary switching signal σ : N0 → {1, . . . , N} consider the linear switched difference equation

xk+1 = Aσ(k)xk for k ∈ N0. (1)

If all operators leave a cone K ⊆ X invariant, i.e. AiK ⊆ K, then (1) is called positive.
We provide sufficient criteria for the stability of positive linear switched systems (1). More

precisely, we assume the existence of an interior point in the cone which behaves well under the
action of every single operator Ai. Our main tool for the proof is an extension of the concept of
linear Lyapunov functions for positive systems to the setting of infinite-dimensional partially ordered
spaces. We illustrate our results with examples.
This is joint work with Doan Thai Son, Anke Kalauch and Markus Klose [1].

REFERENCES

[1] T.S. Doan, A. Kalauch, M. Klose, S. Siegmund. Stability of positive linear switched systems on ordered Banach
spaces. Systems & Control Letter, 75 14–19, 2015.

11



Abstracts of PODE 2016, May 17–20, 2016, R̄ıga, Latvia

c© 2016

STABILITY OF SWITCHED DIFFERENCE EQUATIONS
ON ORDERED SPACES

STEFAN SIEGMUND

Center for Dynamics & Institute for Analysis, Department of Mathematics

TU Dresden, 01062 Dresden, Germany

E-mail: stefan.siegmund@tu-dresden.de

Let A1, . . . , AN ∈ L(X) be N ∈ N bounded linear operators on a Banach space X. For an
arbitrary switching signal σ : N0 → {1, . . . , N} consider the linear switched difference equation

xk+1 = Aσ(k)xk for k ∈ N0. (1)

If all operators leave a cone K ⊆ X invariant, i.e. AiK ⊆ K, then (1) is called positive.
We provide sufficient criteria for the stability of positive linear switched systems (1). More

precisely, we assume the existence of an interior point in the cone which behaves well under the
action of every single operator Ai. Our main tool for the proof is an extension of the concept of
linear Lyapunov functions for positive systems to the setting of infinite-dimensional partially ordered
spaces. We illustrate our results with examples.
This is joint work with Doan Thai Son, Anke Kalauch and Markus Klose [1].

REFERENCES

[1] T.S. Doan, A. Kalauch, M. Klose, S. Siegmund. Stability of positive linear switched systems on ordered Banach
spaces. Systems & Control Letter, 75 14–19, 2015.

11



Abstracts of PODE 2016, May 17–20, 2016, R̄ıga, Latvia

c© 2016

ON SOME SOLVABLE CLASSES OF DIFFERENCE
EQUATIONS AND SYSTEMS OF EQUATIONS

STEVO STEVIĆ

Mathematical Institute of the Serbian Academy of Sciences

Knez Mihailova 36/III, 11000 Beograd, Serbia

E-mail: sstevic@ptt.rs

BRATISLAV IRIČANIN

Faculty of Electrical Engineering, Belgrade University

Bulevar Kralja Aleksandra 73, 11000 Beograd, Serbia

E-mail: iricanin@etf.rs

The old area of solving difference equations and systems has re-attracted some recent attention.
Our idea of transforming complicated difference equations into simpler solvable ones, used in [5]
for explaining the solvability of the equation appearing in [3], was later essentially employed and
developed in numerous other papers (e.g. in [1], [2], [4], [6]-[11]). Another area of some recent
interest, essentially initiated by G. Papaschinopoulos and C. J. Schinas, is studying symmetric and
close to symmetric systems of difference equations. Among these types of systems there are also
some solvable ones (e.g. the ones in [2], [6]-[11]). In this talk we will present some new classes of
difference equations and systems of difference equations solvable in closed form and briefly describe
some methods for getting formulas for their solutions. Also we will explain what essentially stands
behind the solvability of the equations and systems. Beside real difference equations and systems
we will also discuss some equations and systems with complex coefficients and initial values.

REFERENCES

[1] I. Bajo and E. Liz, Global behaviour of a second-order nonlinear difference equation, J. Differ. Equations Appl.
17 (10) (2011), 1471-1486.

[2] L. Berg and S. Stević, On some systems of difference equations, Appl. Math. Comput. 218 (2011), 1713-1718.

[3] C. Cinar, On the positive solutions of difference equation, Appl. Math. Comput. 150 (1) (2004), 21-24.

[4] G. Papaschinopoulos and G. Stefanidou, Asymptotic behavior of the solutions of a class of rational difference
equations, Inter. J. Difference Equations 5 (2) (2010), 233-249.

[5] S. Stević, More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004), 80-85.

[6] S. Stević, On a system of difference equations, Appl. Math. Comput. 218 (2011), 3372-3378.

[7] S. Stević, Solutions of a max-type system of difference equations, Appl. Math. Comput. 218 (2012), 9825-9830.

[8] S. Stević, Product-type system of difference equations of second-order solvable in closed form, Electron. J. Qual.
Theory Differ. Equ. Vol. 2015, Article No. 56, (2015), 16 pages.

[9] S. Stević, M. A. Alghamdi, A. Alotaibi and N. Shahzad, On a higher-order system of difference equations, Electron.
J. Qual. Theory Differ. Equ. Vol. 2013, Article No. 47, (2013), 18 pages.

[10] S. Stević, J. Diblik, B. Iričanin and Z. Šmarda, On a third-order system of difference equations with variable
coefficients, Abstr. Appl. Anal. vol. 2012, Article ID 508523, (2012), 22 pages.

[11] S. Stević, J. Diblik, B. Iričanin and Z. Šmarda, On a solvable system of rational difference equations, J. Difference
Equ. Appl. 20 (5-6) (2014), 811-825.
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GLOBAL STABILITY IN A DISCRETE-TIME
CONTEST-COMPETITION MODEL

ZIYAD ALSHARAWI

American University of Sharjah

Sharjah, UAE

E-mail: zsharawi@aus.edu

In this talk, we consider a general discrete-time model and investigate its dynamics under the
effect of constant effort exploitation. We show global stability under certain conditions on the re-
cruitment function and the harvesting parameter. Also, we discuss the conditions under which a
Neimark-Sacker bifurcation occurs.
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PERIODICITY OF SOME RATIONAL DIFFERENCE
EQUATIONS WITH A POSITIVE REAL POWER

AIJA ANISIMOVA

University of Latvia, Department of Mathematics

Ze�l�lu iela 8, R̄ıga LV-1002, Latvia

E-mail: aija.anisimova@gmail.com

In this talk we consider the existence of periodic solutions of some second order rational difference
equations in the form (1):

xn+1 =
α+ βxk

n + γxk
n−1

A+Bxk
n + Cxk

n−1

, n = 0, 1, 2, .., (1)

with nonegative parameters α, β, γ, A,B,C and arbitrary nonegative initial conditions x−1, x0 such
that the denominator is always positive and the two arguments xn and xn−1 are raised to a positive
real power k ∈ (0,∞).
The boundedness character of solutions of the Eq.(1) have been studied in [1]; furthermore, a

number of interesting open problems are also posed in [1].

REFERENCES

[1] E. Camouzis. Boundedness of Solutions of a Rational Equation with a Positive Real Power. International Journal
of Difference Equations, 8 (2):135–178, 2013.

[2] A.E. Hamza, M.A. El-Sayed. Stability Problem of Some Nonlinear Difference Equations. International Journal
Mathematics & Mathematical Science, 21 (2):331–340, 1998.

[3] S. Jasarevic - Hrustic, Z. Nurkanovic, M.R.S. Kulenovic, E.Pilav. Birkhoff Normal Forms, KAM Theory and
Symmetries for Certain Second Order Rational Difference Equation with Quadratic Term. International Journal
of Difference Equations, 10 (2):181–199, 2015.

[4] D.C. Zhang, B. Shi, M.J. Gai. A Rational Recursive sequence. Computers and Mathematics with Applications,
41 :301–306, 2001.
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We are interested in some classes of differential and difference equations associated with maximal
monotone operators in Hilbert spaces. We present some continuous dependence results for their
solutions on the operator that governs the equation.
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In this talk we consider the existence of periodic solutions of some second order rational difference
equations in the form (1):

xn+1 =
α+ βxk

n + γxk
n−1

A+Bxk
n + Cxk

n−1

, n = 0, 1, 2, .., (1)

with nonegative parameters α, β, γ, A,B,C and arbitrary nonegative initial conditions x−1, x0 such
that the denominator is always positive and the two arguments xn and xn−1 are raised to a positive
real power k ∈ (0,∞).
The boundedness character of solutions of the Eq.(1) have been studied in [1]; furthermore, a

number of interesting open problems are also posed in [1].
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Zeļļu iela 25, R̄ıga LV-1002, Latvia

E-mail: maruta.avotina@lu.lv

We investigate the behaviour of solutions for homogeneous and non-homogeneous linear difference
equations

xn+1 = A1xn +A2xn−1 + . . .+Ak+1xn−k +B (1)

that have a root −1 of the characteristic equation.
The linearized equation associated with (1) about the equilibrium point x̄ and the characteristic

equation in both cases (homogeneous and non-homogeneous) are the same and in the following form

yn+1 = A1yn +A2yn−1 + . . .+Ak+1yn−k, (2)

λk+1 −A1λ
k −A2λ

k−1 − . . .−Ak+1 = 0, (3)

although the homogeneous equation always has an equilibrium x̄ = 0, but the non-homogeneous
equation has a non-zero equilibrium x̄ = B

1−A1−A2−...−Ak+1
.

If the solution converges to the period two solution then in some cases it is possible to express
this period two solution in terms of initial conditions.
In many cases (not only for linear difference equations but also for some rational difference equa-

tions, see [1; 2; 3; 4; 5] the root −1 is connected with the period-two solution. The aim of the
investigation is to determine why and how the root −1 of the characteristic equation affects the
behaviour of solutions.
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An invariant or first integral of a discrete dynamical system x(k + 1) = F (x(k)) with domain D
is a non constant map H : U ⊂ Kn → K defined in an open and dense subset U of D such that for
all x ∈ U it holds H(F (x)) = H(x).

In this work, we study the existence of invariants for a family of rational dynamical systems.
Explicitly, let K denote either R or C. We consider the discrete dynamical systems in an open
domain D of Kn of the form

x(k + 1) = F (x(k)) = (F1(x(k)), . . . , Fn(x(k))), x(k) ∈ D ⊂ Kn (1)

where the functions Fi : D ⊂ Kn → K are linear fractionals sharing denominator:

Fi(x) =
ai1x1 + ai2x2 + · · ·+ ainxn + ci
b1x1 + b2x2 + · · ·+ bnxn + d

, i = 1, 2, . . . , n,

for x = (x1, x2, · · · , xn) and all involved parameters in K. Such systems can be written with the aid
of homogeneous coordinates as the composition of a linear map in Kn+1 with a certain projection
and their behaviour is strongly determined by the spectral properties of the corresponding linear
map.
We will prove that if n ≥ 2 then every system of this kind admits an invariant, both in the real

and in the complex case. More precisely, our main result will be

Theorem 1. Consider n > 1. If the dynamical system given by (1) is defined in a nonempty open
set D, then it admits an invariant defined in an open and dense subset

U = {x ∈ D : Q(x) �= 0},

where Q(x) is a polynomial of degree 2 defined by a couple of (not necessarily distinct) eigenvectors
u1, u2 of a matrix defined by the coefficients of the components of F .

In fact, for a sufficiently large n several functionally independent invariants can be obtained and,
in many cases, the invariant can be chosen as the quotient of two quadratic polynomials. In this
cases one has, as a consequence, that every orbit of the system results to be contained in a certain
F -invariant quadric.
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Let f : Rk → R be of the form f(xn, ..., xn−k+1) =
P (xn,xn−1,...,xn−k+1)
Q(xn,xn−1,...,xn−k+1)

that is, a rational function.

The corresponding rational difference equation of order k is given by

xn+1 = f(xn, xn−1, ..., xn−k+1)

which can be seen as the following discrete dynamical system associate to the iteration function.

F (xn, xn−1, ..., xn−k+1) = (f(xn, xn−1, ..., xn−k+1), xn, ..., xn−k+2)

A solution of the equation is the sequence of numbers (xn)
∞
n=0 where (x0, ..., xk−1) ∈ Rk is the given

vector of initial conditions.

Some vectors of initial conditions do not allow to construct a solution because there is a member
xn+1 of the solution that can not be defined, usually because Q(xn, ..., xn−k+1) = 0. It can also
happen by the effect of negative parameters in the equation. We will call forbidden set of the
equation to the set of vectors X ∈ Rk for which the solution taking them as initial conditions are
not defined. It will be denoted by F. Given a rational difference equation, it is a classical problem
to construct its forbidden set.

In this talk we will deal with the converse problems. Given a set F, find an iteration function
in such a way that its associate F has been previously specified. For example, given an arbitrary
closed set C ⊂ R, we are able to construct even a non-autonomous rational difference equation with
a forbidden set holding F = C.

On other hand, in some families of difference equations, for all its members F always contains
non-bounded hypersurfaces and it is impossible to use the constructions used in the cases considered
in the former paragraph.

We will also deal with some generalizations of the same problems on the forbidden sets in the
setting of systems of difference equations, equations with complex parameters and equations outside
of the rational frame. Some type of universal behaviour will be also presented.
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In the talk we deal with positive and oscillating solutions of linear difference equations

∆x(n) = −p(n)x(n− k)

where p : Z∞
a → R+ := (0,∞), Zq

s := {s, s+ 1, . . . , q}, k ≥ 1, a is an integer and n ∈ Z∞
a .

We give sufficient conditions with respect to the right-hand side of equation to guarantee the
existence of at least one initial function

x(n) = ϕ∗(n), n ∈ Za
a−k

with ϕ∗ : Za
a−k → (0,∞) such that the solution x∗ = x∗(n; a, ϕ∗) remains positive on Z∞

a−k.
This problem is solved utilizing results on difference inequalities (e.g., [1, Theorem 3] and [2,

Theorem 7.6.2]). Main assumption on p is 0 < p(n) ≤ p�(n) for a fixed � ≥ 0 and for all sufficiently
large n → +∞ where

p�(n) :=

(
k

k + 1

)k [
1

k + 1
+

k

8n2
+

k

8(n lnn)2
+ · · ·+ k

8(n lnn . . . ln� n)2

]
.

We show that, in the case of an opposite inequality for p(n), all solutions of the equation considered
are oscillating for n → ∞. This is proved with the aid of [3, Theorem 4, p. 66].
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[5] J. Dibĺık, J. Baštinec, Z. Šmarda. Existence of positive solutions of discrete linear equations with a single delay.
J. Difference Equ. Appl., 2010, vol. 16, no. 9 (2010), 1047-1056. ISSN: 1023-6198.

21



Abstracts of PODE 2016, May 17–20, 2016, R̄ıga, Latvia

c© 2016

ASYMPTOTICS OF SOLUTIONS OF PERTURBATIONS
OF DIFFERENCE EQUATIONS WITH A NONUNIFORM
EXPONENTIAL DICHOTOMY

SIGRUN BODINE

University of Puget Sound

Tacoma, WA, 98416, USA

E-mail: sbodine@pugetsound.edu

For invertible d× d matrices A(n), we are interested in the asymptotic behaviour of solutions of
difference equations

y(n+ 1) = A(n)y(n) + f(n, y(n)), (1)

where n ∈ N or n ∈ Z. Here we assume that the unperturbed systems x(n+1) = A(n)x(n) satisfies
a nonuniform exponential dichotomy (see, e.g., [1]), i.e., there exist constants α,K > 0, ε ≥ 0, and
a projection P such

∣∣X(n)PX−1(k)
∣∣ ≤ Ke−α(n−k)+ε|k|, k ≤ n,∣∣X(n)QX−1(k)
∣∣ ≤ Ke−α(k−n)+ε|k|, k > n,

where Q = Id − P is the complementary projection. Depending on the size of the perturbation
f(n, y(n)), we will discuss results on the asymptotics of solutions of (1).
Our work was motivated by a recent publication [2] concerning the continuous case

y′ = A(t)y + f(t, y).
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We consider systems of differential equations occuring in the theory of telecommunications/gene
regulatory systems. In the theory of such systems an important role play attractor selection and
attracting sets ([1], [2]). The configuration of a network and interrelations between nodes heavily
depend on the structure of attractors. We consider the dynamical system




x′
1 =

1

1 + e−µ(W11x1+...+W1nxn−θ)
− x1,

x′
2 =

1

1 + e−µ(W21x1+...+W2nxn−θ)
− x2,

. . . . . . . . . ,

x′
n =

1

1 + e−µ(Wn1x1+...+Wnnxn−θ)
− xn,

where Wij are entries of the regulatory matrix W, µ and Θ are parameters. The results on
the structure and properties of attractive sets are provided. For the particular case of W being
the matrix with unity entries everywhere except the main diagonal, where entries are zero, full
description of attracting sets is given for any possible value of (µ,Θ).

REFERENCES

[1] N. Vijesh et al. Modeling of gene regulatory networks: A review. J. Biomedical Science and Engineering, 6
(2A):223–231, 2013.

[2] Y. Koizumi et al. Adaptive Virtual Network Topology Control Based on Attractor Selection. Journal of Lightwave
Technology, 28 1720–1731, 2013.

23



Abstracts of PODE 2016, May 17–20, 2016, R̄ıga, Latvia

c© 2016

ASYMPTOTICS OF SOLUTIONS OF PERTURBATIONS
OF DIFFERENCE EQUATIONS WITH A NONUNIFORM
EXPONENTIAL DICHOTOMY

SIGRUN BODINE

University of Puget Sound

Tacoma, WA, 98416, USA

E-mail: sbodine@pugetsound.edu

For invertible d× d matrices A(n), we are interested in the asymptotic behaviour of solutions of
difference equations

y(n+ 1) = A(n)y(n) + f(n, y(n)), (1)

where n ∈ N or n ∈ Z. Here we assume that the unperturbed systems x(n+1) = A(n)x(n) satisfies
a nonuniform exponential dichotomy (see, e.g., [1]), i.e., there exist constants α,K > 0, ε ≥ 0, and
a projection P such

∣∣X(n)PX−1(k)
∣∣ ≤ Ke−α(n−k)+ε|k|, k ≤ n,∣∣X(n)QX−1(k)
∣∣ ≤ Ke−α(k−n)+ε|k|, k > n,

where Q = Id − P is the complementary projection. Depending on the size of the perturbation
f(n, y(n)), we will discuss results on the asymptotics of solutions of (1).
Our work was motivated by a recent publication [2] concerning the continuous case

y′ = A(t)y + f(t, y).
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We consider systems of differential equations occuring in the theory of telecommunications/gene
regulatory systems. In the theory of such systems an important role play attractor selection and
attracting sets ([1], [2]). The configuration of a network and interrelations between nodes heavily
depend on the structure of attractors. We consider the dynamical system




x′
1 =

1

1 + e−µ(W11x1+...+W1nxn−θ)
− x1,

x′
2 =

1

1 + e−µ(W21x1+...+W2nxn−θ)
− x2,

. . . . . . . . . ,

x′
n =

1

1 + e−µ(Wn1x1+...+Wnnxn−θ)
− xn,

where Wij are entries of the regulatory matrix W, µ and Θ are parameters. The results on
the structure and properties of attractive sets are provided. For the particular case of W being
the matrix with unity entries everywhere except the main diagonal, where entries are zero, full
description of attracting sets is given for any possible value of (µ,Θ).
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Recently, growing interest is paid to the investigation of stability of linear difference systems
with delay. In the talk we give sufficient conditions for the exponential stability of linear difference
systems with multiple delays

x (k + 1) = Ax (k) +

s∑
i=1

Bi(k)x (k −mi(k)) , k = 0, 1, . . . (1)

where A is an n × n constant matrix, Bi(k) are n × n matrices, mi(k) ∈ N, mi(k) ≤ m for an
m ∈ N, s ∈ N and x = (x1, . . . , xn)

T : {−m,−m + 1, . . . } → Rn. Simultaneously, we give an
exponential estimate of the norms of solutions. The results are compared with some previously
published results. The exponential stability of (1) is studied by the second Lyapunov method.
Investigation is performed by Lyapunov function V (x) = xTHx with an n × n positive definite
symmetric matrix H.
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We study recurrences for Laguerre-Hahn orthogonal polynomials of class one. It is shown for
some families of such Laguerre-Hahn polynomials that the coefficients of the three term recurrence
relation satisfy some forms of discrete Painlevé equations, namely, dPI and dPIV . This is a joint
work [1] with M.N. Rebocho (Departmento de Matemática, Universidade da Beira Interior, CMUC,
Coimbra, Portugal).
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In this talk I shall present some recent results on the factorization of certain (q, h)–difference
equations. The talk will be based on the papers [1; 2].
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The global qualitative analysis of continuous and discrete polynomial dynamical systems is carried
out [1]. First, using new bifurcational and topological methods, we solve Hilbert’s Sixteenth Problem
on the maximum number of limit cycles and their distribution for the 2D general Liénard polynomial
system [2] and Holling-type quartic dynamical system [3]. Then, applying a similar approach,
we study 3D polynomial systems and complete the strange attractor bifurcation scenario for the
classical Lorenz system connecting globally the homoclinic, period-doubling, Andronov–Shilnikov,
and period-halving bifurcations of its limit cycles which is related to Smale’s Fourteenth Problem [4].
We discuss also how to apply our approach for studying global limit cycle bifurcations of discrete
polynomial dynamical systems which model the population dynamics in biomedical and ecological
systems.

REFERENCES

[1] V.A. Gaiko. Global bifurcation theory and Hilbert’s sixteenth problem. Kluwer Academic Publishers, Boston,
2003.

[2] V.A. Gaiko. Maximum number and distribution of limit cycles in the general Liénard polynomial system.
Adv. Dyn. Syst. Appl., 10 (2):177–188, 2015.

[3] V.A. Gaiko. Global qualitative analysis of a Holling-type system. Int. J. Dyn. Syst. Differ. Equ., 2016.

[4] V.A. Gaiko. Global bifurcation analysis of the Lorenz system. J. Nonlinear Sci. Appl., 7 (6):429–434, 2014.

27



Abstracts of PODE 2016, May 17–20, 2016, R̄ıga, Latvia

c© 2016

FLOWS OF HOMOGRAPHIES

DOROTA G�lAZOWSKA

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra
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If the difference of two real homographic functions is nonnegative, then it is constant. Motivated
by this property we introduce the following

Definition 1. Let ϕ and ψ be real homographic functions. We say that the pair (ϕ, ψ) is subcom-
muting (or ϕ subcommutes with ψ) if

ϕ ◦ ψ ≤ ψ ◦ ϕ.

If the opposite inequality holds we say that the pair (ϕ, ψ) is supercommuting (or ϕ supercommutes
with ψ).

We determine all pairs of subcommuting (supercommuting) real homographic functions. We also
show that simple modification of subcommuting (supercommuting) functions transforms them into
commuting ones. One of main results reads as follows

Theorem 2. Assume that the homographic functions ϕ and ψ are of the form

ϕ (x) = ax+ b and ψ (x) =
px+ q

x+ r
,

where a, b, p, q, r ∈ R and a �= 0, (a− 1)2 + b2 �= 0, pr �= q. The pair (ϕ, ψ) is subcommuting if and
only if

a = −1, r = −b/2, p ≥ b/2. (1)

Moreover, if condition (1) holds and p �= b
2 , then the homographic functions f and g given by

f (x) = ϕ (x) +m, g (x) = ψ (x) + n,

for some m,n ∈ R, are commuting if and only if m = 0 and n = b−2p
2 .

Moreover we deal with one parameter families of comparable commuting homographic functions.
In particular, we show that a generalized flow of comparable homographic functions coincides with
the family of translations of the identity function.

Results have been obtained jointly with J. Matkowski.
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In this talk we present some new criteria for the oscillation of solutions of the difference equation
with retarded arguments

(Ez) (−1)z∆mx(n) = f(n, x(σ1(n)), x(σ2(n)), . . . , x(σk(n))),

where z, k ∈ N , m ≥ 2, n ∈ Nn0
, σi : Nn0

→ Nn0
are functions such that limn→∞ σi(n) = ∞

(i = 1, 2, . . . , k) and the function f : Nn0
×Rk → R satisfies the conditions

(C1) x1f(n, x1, x2, . . . , xk) > 0 for x1xi > 0 (i = 1, 2, . . . , k)

and

(C2) f(n, x1, x2, . . . , xk) sgn x1 ≥
k∑

i=1

pi(n)|xi|,

where n ∈ Nn0
, pi : Nn0

→ R+ ∪ {0}, (i = 1, 2, . . . , k).
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[2] G. E. Chatzarakis, Ö. Öcalan. Oscillations of difference equations with non-monotone retarded arguments. Appl.
Math. and Comput., 258 :60-66, 2015.

[3] G. Grzegorczyk, J. Werbowski. Oscillation of higher order difference equations. Comput. Math. Appl., 42 :711-717,
2001.

[4] G. Ladas, Ch. G. Philos, Y. G. Sficas. Sharp conditions for the oscillation of delay difference equations. J. Appl.
Math. Simulation, 2 :101-111, 1989.
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At the beginning of this century Adler, Bobenko and Suris started a program of classification
of non-linear lattice equation depending on two discrete indices n,m ∈ Z based on the so-called
Consistency Around the Cube (CAC). Interest in such procedure was motivated from the fact that
CAC provides a Lax pair, making the equations integrable. The main result of this program is the
so called ABS list of lattice equations [1]. Few years later it was proved [8] that the equations of
the ABS list were all particular cases of a single integrable equation: the QV equation

QV : a1un,mun+1,mun,m+1un+1,m+1

+ a2 (un,mun,m+1un+1,m+1 + un+1,mun,m+1un+1,m+1 + un,mun+1,mun+1,m+1 + un,mun+1,mun,m+1)

+ a3 (un,mun+1,m + un,m+1un+1,m+1) + a4 (un,mun+1,m+1 + un+1,mun,m+1)

+ a5 (un+1,mun+1,m+1 + un,mun,m+1) + a6 (un,m + un+1,m + un,m+1 + un+1,m+1) + a7 = 0,

where the ai are 7 arbitrary coefficients.
R. Boll [2; 3; 4] extended the results of ABS giving a list of non autonomous equations.
In this lecture we introduce a non-autonomous generalization of the QV equation which contains

all the equations presented by Boll. Using the Algebraic Entropy test [5; 6; 7] we infer that such
equation should be integrable and with the aid of a formula introduced by Xenitidis [9] we find its
three point generalized symmetries.
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This is a joint work with Liu Liu, Lin Li, and Weinian Zhang.
Given a set X, a self mapping F of X and a positive integer n a function f : X → X is said to

be a fractional iterate (or: iterative root) of order n of F if

fn(x) = F (x), x ∈ X,

where fn denotes the nth iterate of f . The problem of finding fractional iterates started from the
papers [1] and [2] by Ch. Babbage published two hundred years ago. Some classical results were
given by Bödewadt [3], and Kuczma [4].
A big part of the research was devoted to roots of monotonic functions. In 1961, in the paper

[4], Kuczma gave a complete description of iterative roots of continuous strictly monotonic self-
mappings of a given interval (see also the books [5] and [6]). In the talk we deal with fractional
iterates of continuous piecewise monotonic functions defined on a compact interval.
Let a, b ∈ R, a < b, and let F : [a, b] → R be a continuous function. A point c of the interval

(a, b) is called a fort of F if F is strictly monotonic in no neighbourhood of c. The function F is
said to be piecewise monotonic if it has only finitely many forts. The set of all piecewise monotonic
self-mappings of [a, b] is denoted by PM(a, b). Given any F ∈ PM(a, b) we denote by S(F ) the
set of all forts of F . It is known that S

(
F k

)
⊂ S

(
F k+1

)
, k ∈ N. If there is a k ∈ N such that

S
(
F k

)
= S

(
F k+1

)
, then the least one is called the nonmonotonicity height of F and denoted by

H(F ). Otherwise we put H(F ) = +∞.
In the talk we focus on functions F ∈ PM(a, b) satisfying H(F ) ≥ 2. We are interested in

their roots of order n = #S(F ). Assume that n ≥ 2 and write S(F ) = {c1, . . . , cn}, where
a < c1 < . . . < cn < b. Set also c0 = a and cn+1 = b.

Lemma. Let F ∈ PM(a, b) with H(F ) ≥ 2 and assume that #S(F ) ≥ 2. If f ∈ PM(a, b) is a root
of order n#S(F ) of F , then f has exactly one fort. Moreover, one the following cases holds:

T −
1 . S(f) = {c1}, the function f reaches the minimum value at c1 and f (c1) < c1,

T +
1 . S(f) = {cn}, the function f reaches the maximum value at cn and f (cn) > cn,

T −
2 . S(f) = {c1}, the function f reaches the maximum value at c1 and f (c1) > c1,

T +
2 . S(f) = {cn}, the function f reaches the minimum value at cn and f (cn) < cn.

A full characterization of those F ∈ PM(a, b) that have a root of order n = #S(F ) of types T −
1

and T +
1 was given in [7]. We present it during the talk as well as a construction of all such roots.

For the references see those given at the end of the next talk being a continuation of this one.
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At the beginning of this century Adler, Bobenko and Suris started a program of classification
of non-linear lattice equation depending on two discrete indices n,m ∈ Z based on the so-called
Consistency Around the Cube (CAC). Interest in such procedure was motivated from the fact that
CAC provides a Lax pair, making the equations integrable. The main result of this program is the
so called ABS list of lattice equations [1]. Few years later it was proved [8] that the equations of
the ABS list were all particular cases of a single integrable equation: the QV equation

QV : a1un,mun+1,mun,m+1un+1,m+1

+ a2 (un,mun,m+1un+1,m+1 + un+1,mun,m+1un+1,m+1 + un,mun+1,mun+1,m+1 + un,mun+1,mun,m+1)

+ a3 (un,mun+1,m + un,m+1un+1,m+1) + a4 (un,mun+1,m+1 + un+1,mun,m+1)

+ a5 (un+1,mun+1,m+1 + un,mun,m+1) + a6 (un,m + un+1,m + un,m+1 + un+1,m+1) + a7 = 0,

where the ai are 7 arbitrary coefficients.
R. Boll [2; 3; 4] extended the results of ABS giving a list of non autonomous equations.
In this lecture we introduce a non-autonomous generalization of the QV equation which contains

all the equations presented by Boll. Using the Algebraic Entropy test [5; 6; 7] we infer that such
equation should be integrable and with the aid of a formula introduced by Xenitidis [9] we find its
three point generalized symmetries.
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Given a set X, a self mapping F of X and a positive integer n a function f : X → X is said to

be a fractional iterate (or: iterative root) of order n of F if

fn(x) = F (x), x ∈ X,

where fn denotes the nth iterate of f . The problem of finding fractional iterates started from the
papers [1] and [2] by Ch. Babbage published two hundred years ago. Some classical results were
given by Bödewadt [3], and Kuczma [4].
A big part of the research was devoted to roots of monotonic functions. In 1961, in the paper

[4], Kuczma gave a complete description of iterative roots of continuous strictly monotonic self-
mappings of a given interval (see also the books [5] and [6]). In the talk we deal with fractional
iterates of continuous piecewise monotonic functions defined on a compact interval.
Let a, b ∈ R, a < b, and let F : [a, b] → R be a continuous function. A point c of the interval

(a, b) is called a fort of F if F is strictly monotonic in no neighbourhood of c. The function F is
said to be piecewise monotonic if it has only finitely many forts. The set of all piecewise monotonic
self-mappings of [a, b] is denoted by PM(a, b). Given any F ∈ PM(a, b) we denote by S(F ) the
set of all forts of F . It is known that S

(
F k

)
⊂ S

(
F k+1

)
, k ∈ N. If there is a k ∈ N such that

S
(
F k

)
= S

(
F k+1

)
, then the least one is called the nonmonotonicity height of F and denoted by

H(F ). Otherwise we put H(F ) = +∞.
In the talk we focus on functions F ∈ PM(a, b) satisfying H(F ) ≥ 2. We are interested in

their roots of order n = #S(F ). Assume that n ≥ 2 and write S(F ) = {c1, . . . , cn}, where
a < c1 < . . . < cn < b. Set also c0 = a and cn+1 = b.

Lemma. Let F ∈ PM(a, b) with H(F ) ≥ 2 and assume that #S(F ) ≥ 2. If f ∈ PM(a, b) is a root
of order n#S(F ) of F , then f has exactly one fort. Moreover, one the following cases holds:

T −
1 . S(f) = {c1}, the function f reaches the minimum value at c1 and f (c1) < c1,

T +
1 . S(f) = {cn}, the function f reaches the maximum value at cn and f (cn) > cn,

T −
2 . S(f) = {c1}, the function f reaches the maximum value at c1 and f (c1) > c1,

T +
2 . S(f) = {cn}, the function f reaches the minimum value at cn and f (cn) < cn.

A full characterization of those F ∈ PM(a, b) that have a root of order n = #S(F ) of types T −
1

and T +
1 was given in [7]. We present it during the talk as well as a construction of all such roots.

For the references see those given at the end of the next talk being a continuation of this one.
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This is a continuation of the previous talk. I use the same notation and definitions. The results
that I am going to present were obtained jointly with Witold Jarczyk, Liu Liu and Weinian Zhang.
I consider the remaining cases T −

2 and T +
2 which surprisingly are much more complicated than T −

1

and T +
1 studied in [7]. The main theorem presented in my talk describes completely the situation;

the problem has been solved by considering eight complementary cases (cf. [8]).
Among tools which are basic in the proof there are following two lemmas.

Lemma 1. Let F ∈ PM(a, b) with H(F ) ≥ 2 and assume that #S(F ) ≥ 2. If f ∈ PM(a, b) is a
root of F , of order n = #S(F ) and type T −

2 , then

f (ci) = cn+2−i, i ∈
{
2, . . . ,

[
n+ 1

2

]}
, and f (ci) = cn+1−i, i ∈

{[
n+ 1

2

]
+ 1, . . . , n

}
.

In the next lemma we use the following notion of compatibility. Continuous strictly increasing
functions F : [a, b] → [a, b] and G : [c, d] → [c, d] are said to be compatible if a ∈ FixF iff c ∈ FixG
and b ∈ FixF iff d ∈ FixG and there is a continuous strictly increasing function γ mapping FixF onto
FixG such that F (x)−x and G(y)−y have the same signs in the intervals (ξ1, ξ2) and (γ (ξ1) , γ (ξ2)),
respectively, for every ξ1, ξ2 ∈ FixF with ξ1 < ξ2 and (ξ1, ξ2) ∩ FixF = ∅.

Lemma 2. Let I and J be compact intervals and let F : I → I and G : J → J be compatible
functions. Then, for any even n ∈ N, there exist a continuous strictly increasing function f : I → J
and continuous strictly decreasing function g : J → I such that (g ◦ f)n = F and (f ◦ g)n = G.
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In this talk, set invariance properties for dynamical systems described by linear discrete time-delay
difference equations (dDDEs) of the form:

x(k + 1) =

d∑
i=0

Aix(k − i) (1)

are addressed, where x(k) ∈ Rn is the state vector at the time k ∈ Z+, d ∈ Z+ is the maximal fixed
time-delay, the matrices Ai ∈ Rn×n, for i ∈ Z[0,d] and the initial conditions are considered to be
given by x(−i) = x−i ∈ Rn, for i ∈ Z[0,d]. An extended state space representation can be constructed

for any given delay realization. Just by setting z(k + 1) =
[
x(k + 1)T · · ·x(k − d+ 1)T

]T
, equation

(1) can be rewritten as:

zk+1 = Aezk =




A0 . . . Ad−1 Ad

I . . . 0 0
...

. . .
...

...
0 . . . I 0


 zk (2)

The first goal is to review known necessary and/or sufficient conditions for the existence of invari-
ant sets with respect to (1) and (2). Secondly, I will discuss recent results related to the invariance
with respect to (1), also called D-invariance. Set invariance in the original state space leads to con-
servative definitions due to its delay independent property. This limitation makes the D-invariant
sets only applicable to a limited class of systems. Hence an alternative solution based on the set
factorization is established in order to obtain more flexible set characterization. With linear algebra
manipulations it is shown that similarity transformations are key elements in the characterization
of low complexity invariant sets. In short, it is shown that we can construct, in a low dimensional
state-space, an invariant set for a dynamical system governed by a delay difference equation. The
artifact which enables the construction is a simple change of coordinates for the dDDE (1). Inter-
estingly, this D-invariant set will be shown to exist in the new coordinates even if in its original
state space it does not fulfill the necessary conditions for the existence of D-invariant sets. This
proves the importance of the state representation’s choice.
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This is a continuation of the previous talk. I use the same notation and definitions. The results
that I am going to present were obtained jointly with Witold Jarczyk, Liu Liu and Weinian Zhang.
I consider the remaining cases T −

2 and T +
2 which surprisingly are much more complicated than T −

1

and T +
1 studied in [7]. The main theorem presented in my talk describes completely the situation;

the problem has been solved by considering eight complementary cases (cf. [8]).
Among tools which are basic in the proof there are following two lemmas.

Lemma 1. Let F ∈ PM(a, b) with H(F ) ≥ 2 and assume that #S(F ) ≥ 2. If f ∈ PM(a, b) is a
root of F , of order n = #S(F ) and type T −

2 , then

f (ci) = cn+2−i, i ∈
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2, . . . ,

[
n+ 1

2

]}
, and f (ci) = cn+1−i, i ∈

{[
n+ 1

2

]
+ 1, . . . , n

}
.

In the next lemma we use the following notion of compatibility. Continuous strictly increasing
functions F : [a, b] → [a, b] and G : [c, d] → [c, d] are said to be compatible if a ∈ FixF iff c ∈ FixG
and b ∈ FixF iff d ∈ FixG and there is a continuous strictly increasing function γ mapping FixF onto
FixG such that F (x)−x and G(y)−y have the same signs in the intervals (ξ1, ξ2) and (γ (ξ1) , γ (ξ2)),
respectively, for every ξ1, ξ2 ∈ FixF with ξ1 < ξ2 and (ξ1, ξ2) ∩ FixF = ∅.

Lemma 2. Let I and J be compact intervals and let F : I → I and G : J → J be compatible
functions. Then, for any even n ∈ N, there exist a continuous strictly increasing function f : I → J
and continuous strictly decreasing function g : J → I such that (g ◦ f)n = F and (f ◦ g)n = G.
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In this talk, set invariance properties for dynamical systems described by linear discrete time-delay
difference equations (dDDEs) of the form:

x(k + 1) =
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Aix(k − i) (1)

are addressed, where x(k) ∈ Rn is the state vector at the time k ∈ Z+, d ∈ Z+ is the maximal fixed
time-delay, the matrices Ai ∈ Rn×n, for i ∈ Z[0,d] and the initial conditions are considered to be
given by x(−i) = x−i ∈ Rn, for i ∈ Z[0,d]. An extended state space representation can be constructed

for any given delay realization. Just by setting z(k + 1) =
[
x(k + 1)T · · ·x(k − d+ 1)T

]T
, equation

(1) can be rewritten as:
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The first goal is to review known necessary and/or sufficient conditions for the existence of invari-
ant sets with respect to (1) and (2). Secondly, I will discuss recent results related to the invariance
with respect to (1), also called D-invariance. Set invariance in the original state space leads to con-
servative definitions due to its delay independent property. This limitation makes the D-invariant
sets only applicable to a limited class of systems. Hence an alternative solution based on the set
factorization is established in order to obtain more flexible set characterization. With linear algebra
manipulations it is shown that similarity transformations are key elements in the characterization
of low complexity invariant sets. In short, it is shown that we can construct, in a low dimensional
state-space, an invariant set for a dynamical system governed by a delay difference equation. The
artifact which enables the construction is a simple change of coordinates for the dDDE (1). Inter-
estingly, this D-invariant set will be shown to exist in the new coordinates even if in its original
state space it does not fulfill the necessary conditions for the existence of D-invariant sets. This
proves the importance of the state representation’s choice.
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Optimal harvesting strategies from an ecological perspective aim to promote stability and persis-
tence of populations, thus preventing the risk of collapses. It has been suggested that a strategy of
constant escapement (also referred to as threshold harvesting) is optimal for sustainable development
[3; 4]. Such an strategy consists of harvesting all individuals above a threshold population size, with
no harvest below the threshold.
For discrete-time single-species populations, we can use a simple one-dimensional map to analyze

the dynamical properties of this harvesting strategy, namely,

xn+1 = min{f(xn), T} =

{
f(xn) if f(xn) ≤ T ,

T if f(xn) > T ,
(1)

where xn is the population size at the nth generation (after harvesting), T > 0 is the threshold, and
f is the recruitment function. The flat-topped map defined by the right-hand side of equation (1)
has also been considered in the context of chaos control [2].
We describe the typical dynamics of the solutions of (1) for the usual compensation and depensa-

tion models [1], and we compare the method with other usual management strategies (constant effort
and constant yield). Our results confirm that constant escapement favors stability and persistence
in contrast with the other methods.
This talk is based on a joint work with Prof. Frank Hilker.
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The competitive exclusion principle is a tenet in theoretical ecology and its validity was tested
in the well known experiments with flour beetle [1, 2]. It is known that the data observed in
these experiments mainly corroborated the exclusion principle, whose outcomes are captured by the
Leslie-Gower model, the discrete counterpart of the Lotka-Volterra competition model [3].
However, part of the data was at odds with this model. Subsequently, Edmunds, Cushing and

collaborators [4] showed that the celebrated PLA model (larva-pupae-adult), a competition model
that incorporates age structure, may exhibit long term behaviour compatible with this unexpected
data.
In this work, and based on behavioral features of the species of the flour beetle involved in the

experiment, we present an alternative approach that also explains the aforementioned unexpected
behavious. In this case, the model relies on spatial heterogeneity and fast individuals dispersal [5]
rather that on age structure.
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Optimal harvesting strategies from an ecological perspective aim to promote stability and persis-
tence of populations, thus preventing the risk of collapses. It has been suggested that a strategy of
constant escapement (also referred to as threshold harvesting) is optimal for sustainable development
[3; 4]. Such an strategy consists of harvesting all individuals above a threshold population size, with
no harvest below the threshold.
For discrete-time single-species populations, we can use a simple one-dimensional map to analyze

the dynamical properties of this harvesting strategy, namely,

xn+1 = min{f(xn), T} =

{
f(xn) if f(xn) ≤ T ,

T if f(xn) > T ,
(1)

where xn is the population size at the nth generation (after harvesting), T > 0 is the threshold, and
f is the recruitment function. The flat-topped map defined by the right-hand side of equation (1)
has also been considered in the context of chaos control [2].
We describe the typical dynamics of the solutions of (1) for the usual compensation and depensa-

tion models [1], and we compare the method with other usual management strategies (constant effort
and constant yield). Our results confirm that constant escapement favors stability and persistence
in contrast with the other methods.
This talk is based on a joint work with Prof. Frank Hilker.
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The competitive exclusion principle is a tenet in theoretical ecology and its validity was tested
in the well known experiments with flour beetle [1, 2]. It is known that the data observed in
these experiments mainly corroborated the exclusion principle, whose outcomes are captured by the
Leslie-Gower model, the discrete counterpart of the Lotka-Volterra competition model [3].
However, part of the data was at odds with this model. Subsequently, Edmunds, Cushing and

collaborators [4] showed that the celebrated PLA model (larva-pupae-adult), a competition model
that incorporates age structure, may exhibit long term behaviour compatible with this unexpected
data.
In this work, and based on behavioral features of the species of the flour beetle involved in the

experiment, we present an alternative approach that also explains the aforementioned unexpected
behavious. In this case, the model relies on spatial heterogeneity and fast individuals dispersal [5]
rather that on age structure.
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GeoGebra [1] is free software that allows to interact with mathematical entities from both the
geometrical and the algebraic point of view. It was originally designed for teaching purposes with
emphasis in manipulability and interactivity, and these features make it simple to generate, visualize
and explore the behavior of solutions and orbits of low dimensional discrete systems.
In particular, given a difference equations system, it is straightforward to parametrize the co-

efficients of the system by means of sliders, in such a way that the corresponding cobweb dia-
gram/solutions/orbits of the system are sensitive, in real time, to variations on the parameters
values by just dragging the slider with the mouse.
We use these tools for both teaching and preliminary research purposes. Students and us benefit

from the chance of interactively explore the behaviour of the system for a large range of parameters
values and, thus, gaining intuition on the features of the underlaying model.

This poster displays examples of what can be done, and provides links to a GitHub [2, 3] that
stores

• to reproducible documents, a kind of tutorials, that describe how to build up the dynamical
system. Suitable for students and researchers

• applet examples that can be easily customized.
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This is a joint work with Professors Márcia Federson, Rogélio Grau and Eduard Toon. The goal
of this paper is to study the boundedness of the solutions of dynamic equations on time scales
using Lyapunov functionals, considering more general conditions. In order to obtain our results, we
investigate the boundedness results for measure differential equations and we use the correspondence
between these equations and the dynamic equations on time scales to extend the results for these
last equations.
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We consider the third-order delay trinomial difference equation of the form

∆3xn + pn∆xn+1 + qnxn−τ = 0,

where τ is a positive integer, (pn) is a sequence of nonnegative real numbers, (qn) is a sequence of
positive real numbers. We transform this equation to a binomial third-order difference equation with
quasidifferences. Using comparison theorems with a certain first order delay difference equation we
establish results on some asymptotic properties of solutions of the studied equation. The presented
criteria is easily applicable.
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The equation

f(x) :=
a1
xb1

+
a2
xb2

+ . . .+
an
xbn

= C,

where n ≥ 2, C > 0, 0 < b1 < b2 < ... < bn, and a1, a2, . . . , an > 0, appearing in some banks’
calculations of annual percentage rate is considered. The attention is paid to the problem of finding
the unique real positive root of this equation with high accuracy using as few as possible number of
mathematical operations.
The proposed fast root-finding algorithm is the following iterative method

x1 =

(
a1 + a2 + . . .+ an

C

)n/(b1+b2+...+bn)

, xk+1 = xk ·

(
f(xk)

C

)−
1

xk
·
f(xk)

f ′(xk)
, k ≥ 1.

Practical testing shows that a few iterations are enough (so x5 is very close to the unique positive

root). It seems that
1

|x0 − xn|
always grows as fast as AnB

where x0 is the positive root of equation

and A and B are constants, greater than 1.
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In [2], the authors studied the Construction and Analysis of the following functional modal type
difference scheme for 2D Helmholtz Equation:

GxDxUxx(x, y) + GyDyUyy(x, y) + P (x, y) ∗ U(x, y) = 0 .

The goal of this paper is to study the Nodal Type Numerical Method for 2D Absorption Equation
with Dirichlet Boundary Conditions. Furthermore, to compare the differences with the speed of
computation, with the precision, with the A.D.I. method and with Comsol.
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In [1] a difference equation xn+1 = βxn − g(xn), n = 0, 1, 2, ..., was analyzed as a single neuron
model, where β > 0 is an internal decay rate and a signal function g is the following piecewise
constant function with McCulloch-Pitts nonlinearity:

g(x) =

{
1, x ≥ 0,
−1, x < 0.

(1)

Now we will study the following non-autonomous piecewise linear difference equation:

xn+1 = βnxn − g(xn), n = 0, 1, 2, ...,

where (βn)
∞
n=0 is a period three sequence

βn =




β0, if n = 3k,
β1, if n = 3k + 1,
β2, if n = 3k + 2,

k = 0, 1, 2, ...

and g is in form (1).
In [2] we have been studied this model where (βn)

∞
n=0 is a period two sequence. The goal of this

paper is to investigate the boundedness nature and the periodic character of solutions. Furthermore,
we will determine the relationships of the periodic cycles relative to the periods of the parameters
and relative to the relationship between the parameters as well. Moreover, we will investigate
which particular periodic cycles can be only periodic and which particular periodic solutions can be
eventually periodic. In addition, we will show the bifurcation diagrams when solutions transition
from periodicity of various periods to unbounded solutions.
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We consider the dynamic equation in a Banach space on unbounded above and below time scales
T:

x∆ = A(t)x+ f(t, x), (1)

with rd-continuous, regressive right hand side, nonlinear term satisfy the Lipschitz condition

|f(t, x)− f(t, x′)| ≤ ε(t)|x− x′|,

and the estimate

sup
x

|f(t, x)| ≤ N(t) < +∞.

where N : T → R+ and ε : T → R+ are integrable scalar functions.
Using Green type mapping [1] we find sufficient condition for the existence of bounded solution

and investigate it’s properties.
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Prediction of future demand and inventory is an important aspect of running and managing man-
ufacturing or trade company. Methods supporting those tasks have been developed by economists
already in the mid of twentieth century, nonetheless they are still being improved as economy still
changes and creates new challenges.
Ma and Feng in [3] proposed the dynamical model of demand and inventory with mechanism

of demand stimulation and inventory limitation. The model describes demand and inventory of
a product at one echelon of supply chain - at retailer. Considered supply chain consists of three
echelons: manufacturer, retailer and customers. Following rules are applied to the model: customers
buy a good from a retailer, a retailer orders a product in the forecasted amount and forecast is
prepared using single exponential smoothing model of Brown ([1]), a manufacturer produces and
delivers exactly ordered amount and production capacity is unlimited, customers’ demand depends
on a retail price, which can be changed by a discount, price cannot be arbitrary changed but the
retailer can offer a discount depending on stock volume: when stock is high, the retailer offers a
discount to encourage customers to buy a product. The model takes a form of the following system
of difference equations 



Dn+1 =

[
AT

(A+ 1)T − Sn

]k
Dn

Sn+1 = Sn −Dn + Ďn

Ďn+1 = αDn + (1− α)Ďn

(1)

where: n ∈ N, Sn is a stock volume, Dn ≥ 0 is a demand volume, Ďn ≥ 0 is a forecast of demand at
n and ordered placed by a retailer at a manufacturer, moreover by assumption of unlimited capacity
it is also delivered quantity at n, A > 0 is a parameter for discount steering, T > 0 is a parameter
for defining the target stock, k > 0 is price elasticity coefficient that regulates dependence between
price, discount and demand, α ∈ (0, 1) is a forecast smoothing coefficient.
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We consider the dynamic equation in a Banach space on unbounded above and below time scales
T:

x∆ = A(t)x+ f(t, x), (1)

with rd-continuous, regressive right hand side, nonlinear term satisfy the Lipschitz condition

|f(t, x)− f(t, x′)| ≤ ε(t)|x− x′|,

and the estimate

sup
x

|f(t, x)| ≤ N(t) < +∞.

where N : T → R+ and ε : T → R+ are integrable scalar functions.
Using Green type mapping [1] we find sufficient condition for the existence of bounded solution

and investigate it’s properties.
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Prediction of future demand and inventory is an important aspect of running and managing man-
ufacturing or trade company. Methods supporting those tasks have been developed by economists
already in the mid of twentieth century, nonetheless they are still being improved as economy still
changes and creates new challenges.
Ma and Feng in [3] proposed the dynamical model of demand and inventory with mechanism

of demand stimulation and inventory limitation. The model describes demand and inventory of
a product at one echelon of supply chain - at retailer. Considered supply chain consists of three
echelons: manufacturer, retailer and customers. Following rules are applied to the model: customers
buy a good from a retailer, a retailer orders a product in the forecasted amount and forecast is
prepared using single exponential smoothing model of Brown ([1]), a manufacturer produces and
delivers exactly ordered amount and production capacity is unlimited, customers’ demand depends
on a retail price, which can be changed by a discount, price cannot be arbitrary changed but the
retailer can offer a discount depending on stock volume: when stock is high, the retailer offers a
discount to encourage customers to buy a product. The model takes a form of the following system
of difference equations 



Dn+1 =

[
AT

(A+ 1)T − Sn

]k
Dn

Sn+1 = Sn −Dn + Ďn
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(1)
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n and ordered placed by a retailer at a manufacturer, moreover by assumption of unlimited capacity
it is also delivered quantity at n, A > 0 is a parameter for discount steering, T > 0 is a parameter
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In [1; 2; 3] three families of non-autonomous epidemic models with general incidence rate given
by general functions were considered and threshold conditions for the persistence and extinction of
the disease were obtained. It was also established that in the case of extinction, we have global
asymptotic stability. The particular autonomous and periodic settings as well as particular forms
for the incidence function were also discussed.
The objective of this talk is to obtain corresponding results for discrete-time versions the models

in [1; 2; 3], that were derived by applying Mickens nonstandard finite difference method [4] to the
corresponding continuous models. Additionally, we discuss the dependence of the thresholds on the
incidence functions.
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The classical reaction-diffusion equation ∂tu(x, t) = k∂xxu(x, t) + f(u(x, t)) describes the evolu-
tion of chemical concentrations, temperatures, or populations. These phenomena combine a local
dynamics (via the reaction function f) and a spatial dynamics (via the diffusion).
Motivated by applications in biology and chemistry, various authors have considered the lattice

reaction-diffusion equation

∂tu(x, t) = k(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + f(u(x, t)), x ∈ Z, t ∈ [0,∞), (1)

as well as the discrete reaction-diffusion equation

u(x, t+ 1)− u(x, t) = k(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + f(u(x, t)), x ∈ Z, t ∈ N0. (2)

Equations (1) and (2) are also interesting from the standpoint of numerical mathematics, since they
correspond to semi- or full discretization of the original reaction-diffusion equation.
In order to study both (1) and (2) in a unified way, we use the language of the time scale calculus

and consider the nonautonomous lattice reaction-diffusion equation

u∆(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t) + f(u(x, t), x, t), x ∈ Z, t ∈ T, (3)

where a, b, c ∈ R, T ⊆ R is a time scale, and u∆ denotes the ∆-derivative with respect to time.
Our results are new even in the special cases T = R (when u∆(x, t) becomes the partial derivative

∂tu(x, t)) and T = Z (when u∆(x, t) is the partial difference u(x, t+1)−u(x, t)). First, we focus on
the local existence and global uniqueness of bounded solutions, as well as continuous dependence
of solutions on the underlying time scale and on initial conditions. The proofs are based on refor-
mulating the reaction-diffusion equation as an abstract dynamic equation, and also on techniques
from the Kurzweil-Stieltjes integration theory. Next, we obtain the weak maximum principle, which
enables us to get global existence of solutions. Finally, we provide the strong maximum principle,
which exhibits an interesting dependence on the time structure.
Special cases of equation (3) include the autonomous Fisher and Nagumo lattice equations, or

nonautonomous logistic population models with a variable carrying capacity.
This talk is based on a joint paper with Petr Stehĺık and Jonáš Volek (University of West Bohemia,

Czech Republic).
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E-mail: csilva@ubi.pt

In [1; 2; 3] three families of non-autonomous epidemic models with general incidence rate given
by general functions were considered and threshold conditions for the persistence and extinction of
the disease were obtained. It was also established that in the case of extinction, we have global
asymptotic stability. The particular autonomous and periodic settings as well as particular forms
for the incidence function were also discussed.
The objective of this talk is to obtain corresponding results for discrete-time versions the models

in [1; 2; 3], that were derived by applying Mickens nonstandard finite difference method [4] to the
corresponding continuous models. Additionally, we discuss the dependence of the thresholds on the
incidence functions.

REFERENCES

[1] Joaquim P. Mateus and César M. Silva. A non-autonomous SEIRS model with general incidence rate. Appl. Math.
Comput., 247 169–189, 2014.

[2] César M. Silva. A generalized epidemic model with latent stage and isolation. Math. Meth. Appl. Sci., 37 1974–
1991, 2014.

[3] Edgar Pereira, César M. Silva and Jacques da Silva. A Generalized Non-Autonomous SIRVS Model. Math. Meth.
Appl. Sci., 36 275–289, 2013.

[4] R. E. Mickens. Discretizations of nonlinear differential equations using explicit nonstandard methods. J. Comput.
Appl. Math., 110 181–185, 1999.

44

Abstracts of PODE 2016, May 17–20, 2016, R̄ıga, Latvia

c© 2016

WELL-POSEDNESS AND MAXIMUM PRINCIPLES
FOR LATTICE REACTION-DIFFUSION EQUATIONS
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In this talk, we deal with discrete- and continuous-time reaction-diffusion equations on general
connected undirected graphs. We briefly discuss our motivation which arises from simple biological
and economic models. First, we discuss the role of the time structure, especially on existence
of solutions and a priori estimate. Next, we reveal that the rich spatial structure (graphs) give
rise to dynamical properties which are not present in standard models (e.g., asymptotically stable
coexistence stationary solutions).
This talk is based on the joint papers with Antońın Slav́ık (Charles University, Prague) and Jonáš

Volek (University of West Bohemia)
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In [2] authors proposed Research Project 6.7.1. and Research Project 6.7.2. about the difference
equation

xn+1 =


1−

k−1∑
j=0

xn−j


 (1− e−Axn), n = 0, 1, ..., (1)

which is a special case of an epidemic model (see [1]).
In [3] authors proposed Open Problem 6.10.14 about the difference equation

xn+1 = (1− xn − xn−1)(1− e−Axn), n = 0, 1, ... (2)

In [8] authors study the oscillation, global asymptotic stability, and other properties of positive
solutions of the difference equation (1). In [6] authors investigate the global stability of the negative
solutions of (1). In [5] authors considered the fuzzy difference equation (1). System of difference
equations related to model (1) are studied in [4] and [7].
We investigate a difference equation

xn+1 = (1− xn − xn−1)(1− e−Axn−Bxn−1), n = 0, 1, ... (3)

where A,B > 0 and the initial values x−1, x0 are arbitrary real positive numbers such that
x−1 + x0 < 1.
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[3] A. Slav́ık, P. Stehĺık, Explicit solutions to dynamic diffusion-type equations and their time integrals.
Appl. Math. Comput. 234 (2014), 486–505.
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In this work, the Hyers-Ulam stability of linear difference equations of the form:

yn+1 − pnyn − rn = 0

and

yn+2 + αnyn+1 + βnyn − rn = 0

are studied, where pn, αn, βn and rn are the sequences of reals.
Keywords : Hyers-Ulam stability, difference equation.
Mathematics Subject Classification (2010) : 39A45, 39B42.
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This is a joint work with Prof. Johnny Henderson (Baylor University, Waco, Texas, USA).
We investigate the system of nonlinear second-order difference equations

{
∆2un−1 + λf(n, un, vn) = 0, n = 1, . . . , N − 1,
∆2vn−1 + µg(n, un, vn) = 0, n = 1, . . . , N − 1,

(1)

with the coupled multi-point boundary conditions

u0 = 0, uN =

p∑
i=1

aivξi , v0 = 0, vN =

q∑
i=1

biuηi
, (2)

where N ∈ N, N ≥ 2, p, q ∈ N, ∆ is the forward difference operator with stepsize 1, ∆un =
un+1 − un, ∆

2un−1 = un+1 − 2un + un−1, ai ∈ R, ξi ∈ N for all i = 1, . . . , p, bi ∈ R, ηi ∈ N for
all i = 1, . . . , q, 1 ≤ ξ1 < . . . < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1, and λ and µ are positive
parameters.
By using the Guo-Krasnosel’skii fixed point theorem, we present sufficient conditions on the

parameters λ, µ and on the functions f, g such that positive solutions of (1) − (2) exist. The
nonexistence of positive solutions for the above problem is also studied (see [1]). For some recent
results on the existence and multiplicity of positive solutions for systems of difference equations with
various uncoupled multi-point boundary conditions see the monograph [2].
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We investigate the system of nonlinear second-order difference equations

{
∆2un−1 + λf(n, un, vn) = 0, n = 1, . . . , N − 1,
∆2vn−1 + µg(n, un, vn) = 0, n = 1, . . . , N − 1,

(1)

with the coupled multi-point boundary conditions

u0 = 0, uN =

p∑
i=1

aivξi , v0 = 0, vN =

q∑
i=1

biuηi
, (2)

where N ∈ N, N ≥ 2, p, q ∈ N, ∆ is the forward difference operator with stepsize 1, ∆un =
un+1 − un, ∆

2un−1 = un+1 − 2un + un−1, ai ∈ R, ξi ∈ N for all i = 1, . . . , p, bi ∈ R, ηi ∈ N for
all i = 1, . . . , q, 1 ≤ ξ1 < . . . < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1, and λ and µ are positive
parameters.
By using the Guo-Krasnosel’skii fixed point theorem, we present sufficient conditions on the

parameters λ, µ and on the functions f, g such that positive solutions of (1) − (2) exist. The
nonexistence of positive solutions for the above problem is also studied (see [1]). For some recent
results on the existence and multiplicity of positive solutions for systems of difference equations with
various uncoupled multi-point boundary conditions see the monograph [2].
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This is a joint work with Petr Stehĺık. We analyze existence and uniqueness of �2-solutions of
the implicit discrete Nagumo reaction-diffusion equation. We study the infinite-dimensional problem
variationally and describe corresponding potentials which have either the convex or mountain pass
geometry. Consequently, we show that the implicit Nagumo equation has a solution for all reaction
parameters λ ∈ R, at least for small time discretization steps h. Moreover, the solution is unique in
the bistable case, λ > 0.
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The k-dimensional system of neutral type nonlinear difference equations with delays in the fol-
lowing form (i = 1, . . . , k − 1)





∆
(
xi(n) + pi(n)xi(n− τi)

)
= ai(n) fi(xi+1(n− σi)) + gi(n)

∆
(
xk(n) + pk(n)xk(n− τk)

)
= ak(n) fk(x1(n− σk) + gk(n)

is considered. The aim is to present sufficient conditions for the existence of nonoscillatory bounded
solutions of the system above with various [(p1(n)), . . . , (pk(n))].
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