This work is done in the University of Latvia with the support of European Regional Development Fund project Nr. 2013/0051/2DP/2.1.1.1.0/13/APIA/VIAA/009

3D simulation of feed rod melting in floating zone silicon single crystal growth

Matīss Plāte, Armands Krauze, Jānis Virbulis

University of Latvia Faculty of physics and mathematics

Symposium in physics of continuous matter: "Environmental, electromagnetic and MHD technologies" 73rd scientific conference of University of Latvia Rīga, 20.02.2015

Open melting front of the feed rod

Overall view of the system

Inhomogeneous structure

Th. Duffar. Crystal Growth Processes Based on Capillarity, 2010

Instabilities

Formation of spikes or "noses" deteriorate the process

M. Wünscher. PhD Thesis, 2011

Existing models for the open melting front

- Only axisymmetric
- The shape is taken from experimental data

The shape is obtained numerically

Fluid film model

G. Ratnieks et al. JCG, 2003

Mathematical model

Aim

Time-dependent distribution of the local melting rate on the open melting front

Balance of the heat flux densities

- Heat conduction q_{diff}
- Thermal radiation q_{rad}
- Induced heat sources q_{EM}

Separate models for:

Temperature field

Heat flux in the feed rod due to diffuse heat transfer

HF EM field

Induced heat sources on the open front

Liquid silicon layer

For the correction of the EM heat sources because heat sources are induced in both $\ensuremath{\mathsf{phases}}$

Melting of the open front found from the heat flux balance

disbalance causes melting or crystallization

Temperature field

Equation

3D unsteady heat conduction in the feed rod:

$$\rho_{\rm s} c_{\rm p} \frac{\partial T}{\partial t} = \vec{\nabla} \cdot \left(\lambda(T) \vec{\nabla} T \right) \tag{1}$$

 $ho_{\rm s}$ – density $c_{\rm p}$ – heat capacity at constant pressure $\lambda(T)$ – temperature dependent heat conductivity

No convective terms – reference frame linked to the feed rod

Boundary conditions

- Constant temperature on the melting fronts: $T_0 = 1687 \,\mathrm{K}$
- On the side surface: $\lambda(T)\frac{\partial T}{\partial n} = \epsilon(T) \left(q_{\text{inc}} \sigma_{\text{SB}} T^4\right) + q_{\text{EM}}$

HF EM field

Main equations

- Introduction of the linear current density \vec{j} : $\vec{\nabla} \cdot \vec{j} = 0$
- Electrical vector potential $\vec{\Psi} = (0, 0, \Psi_n)$: $\vec{\nabla} \times \vec{\Psi} = \vec{j}$

Induced power density

$$q_{\rm EM} = \underbrace{\frac{f_{\rm I}^2}{\delta_{\rm I}\sigma_{\rm I}}}_{\substack{\rm Infinite \\ \rm liquid \\ \rm layer}} \cdot \underbrace{\frac{1 - (1 - \kappa) e^{-2l}}{1 - 2 (1 - \kappa) e^{-l} \cos l + (1 - \kappa)^2 e^{-2l}}}_{\text{Correction due to finite layer thickness}}$$
(2)
Parameters: $\kappa = \sqrt{\frac{\sigma_{\rm S}}{\sigma_{\rm I}}}$ un $l = \frac{h}{\delta_{\rm I}}$, where h – thickness of the fluid film

Liquid silicon layer

Equation

Unsteady mass conservation law:

$$\iint_{S} \frac{\mathrm{d}h}{\mathrm{d}t} \mathrm{d}S = -\oint_{\partial S} \vec{q} \cdot \mathrm{d}\vec{l} + \iint_{S} v_{\mathrm{m}} \frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{l}}} \mathrm{d}S \tag{3}$$

- Velocity is integrated over the film thickness: $\vec{q} = \int_0^h \vec{v} dh$
- Balance of friction and tangential forces: $-\eta \frac{d^2 \vec{v}}{dh^2} = \vec{f}$

Parabolic velocity distribution in the fluid film and force equilibrium

Melting of the open front

Local melting rate:

$$v_{\rm m} = \frac{q_{\rm EM} - q_{\rm diff} - q_{\rm rad}}{L\rho_{\rm s}} \tag{4}$$

L – latent heat

- Heat flux in feed rod: $q_{\text{diff}} = -\lambda_s \frac{\partial T}{\partial n}$
- Net radiation power density: $q_{\mathsf{rad}} = \epsilon_l \left(\sigma_{\mathsf{SB}} T_0^4 q_{\mathsf{inc}}\right)$

Balance of the heat fluxes

Overall calculation scheme

Fluid film calculations

Discretization

• Transient equation for the fluid film:

$$\frac{h_1 - h_0}{\Delta t_h} = \frac{1}{5} \Sigma \Delta l_i q_i + v_m \frac{\rho_c}{\rho_m} \quad (5)$$

Pressure due to surface tension:

$$p_{\rm K} = \gamma \frac{3}{2} \frac{\sum \vec{n}_{\triangle} \cdot (\vec{s}_1 \times \vec{n})}{\sum \vec{S}_{\triangle} \cdot \vec{n}} \qquad (6)$$

Numerical scheme

Calculation results

Conclusions

Generation of 3D element mesh

2D finite elements

Axisymmetric *FZone* calculations

3D boundary elements HF EM field calculations Volume elements

Unsteady temperature field calculations

Surface points coincide for all meshes

The considered 4" FZ system from ICG, Berlin Inductor

Process parameters

Parameter and designation		Value	Dimension
Target zone height	Hz	32.5	mm
Inductor current frequency	f	3	MHz
Crystal pull rate	Vc	2.55	mm/min
Feed rod push rate	Vf	2.76	mm/min
Crystal radius	$R_{\rm crys}$	51	mm
Feed rod radius	R _{feed}	49	mm

Time development of the open front melting

Azimuthal profile at the feed rod rim

The shape stabilizes after $\approx 5\,$ periods

Comparison between axisymmetric and 3D results

Radial profiles of the open front

Melting of the open front

Distribution of the induced power density

- Differences of the induced power density up to $\kappa=\sqrt{\frac{\sigma_{\rm s}}{\sigma_{\rm l}}}\approx 4.9$ times

Melting of the open front

Distribution of the fluid film thickness and melting velocity

- Highest fluid film thickness around the neck
- Lowest fluid film thickness near the feed rod rim
- Melting rate corresponds to the EM heat source distribution

Influence of rotation period

Azimuthal profiles of the open front

Influence of process parameters

Azimuthal profiles of the open front

18

Conclusions

- For the first time a 3D transient mathematical model for feed rod melting has been developed and implemented in a calculation program
- The shape of the open front tends to stabilize after several feed rod revolutions
- The obtained 3D shape of the open melting front remains close to the axisymmetric profile with differences of order $\sim 1\,mm$
- The asymmetry increases with:
 - higher pulling velocity
 - lower feed rod rotation rate
 - narrower main slit of the inductor
- The obtained results are useful for a comparison with experimental data

Thank you for your attention!