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Open melting front of the feed rod

verall view of the system
o y Inhomogeneous structure
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Instabilities
Formation of spikes or "noses” deteriorate the process

M. Wiinscher. PhD Thesis, 2011
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Existing models for the open melting front

= Only axisymmetric

The shape is taken from The shape is obtained
experimental data numerically
Fluid film model
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Mathematical model
Aim
Time-dependent distribution of the local melting rate on the open melting front

Balance of the heat flux densities

= Heat conduction quf
disbalance causes

= Thermal radiation . -
Grad melting or crystallization

= |Induced heat sources gem

Separate models for:

Temperature field

Heat flux in the feed rod due to diffuse heat transfer

HF EM field

Induced heat sources on the open front

Liquid silicon layer
For the correction of the EM heat sources because heat sources are induced in both
phases

Melting of the open front found from the heat flux balance
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Temperature field

Equation

= 3D unsteady heat conduction in the feed rod:

oT .
peco e = V- (MDVT) (1)
t
ps — density
Cp — heat capacity at constant pressure

A(T) — temperature dependent heat conductivity

= No convective terms — reference frame linked to the feed rod

Boundary conditions
= Constant temperature on the melting fronts: Top = 1687 K

= On the side surface: A(T)3L = €(T) (Ginc — 058 T*) + Gem
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HF EM field

Introduction Mathematical model

Main equations

= [ntroduction of the linear current density]':
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= Electrical vector potential U= (0,0,9,):

Induced power density
1 Y
‘ 1-(1—-k)e i )
1-2(1-k)e'cosl+ (1 —k) e ?

Gem = i
M= 5o
~—~

Infinite Correction due to finite layer thickness
liquid
layer

Parameters: sk = Z—T un /= 5% , where h — thickness of the fluid film
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Liquid silicon layer

Equation

= Unsteady mass conservation law:

//7d5_—7§65 dl—i—//vmpsds

= Velocity is integrated over the film thickness: § = foh vdh

. . . 2- iy
= Balance of friction and tangential forces: —n% =f

Feed rod —
V.//X/h
V.——
Fluid film D
:/ /'f;riction
Gos =pg.-gradp

Parabolic velocity distribution in the fluid film and force equilibrium

Conclusions
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Melting of the open front

= Local melting rate:
_ 9eEM — qdiff — Grad

m Lps
L — latent heat
= Heat flux in feed rod: qqif = —)\ng

= Net radiation power density: Grag = € (053 Tg — qinc)

/Eqdiff
Feedrod =R

/ g A
Gas in oo

Balance of the heat fluxes



Numerical scheme

Overall calculation scheme

Initialization

N\ 4 \ s
Fluid film Inductor Mesh de-
thickness rotation formation

J (. J |

N\ 4 \ s
. Local mel-

HF EM field Heat transfer .

ting rate
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Fluid film calculations

Discretization

= Transient equation for the fluid

film:
h1 — ho 1 Pc © - - -

= =Y Alg m— (5

An, s Akt - (5)

. ﬁA 2_’1
= Pressure due to surface tension: 7

3 Aa-(spxn

K = 7_2#—(14) (6) 1
2 ESA -n
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Generation of 3D element mesh

Conclusions
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2D finite elements

»
h
3D boundary elements

Axisymmetric ~ FZone HF EM field calcula- Unsteady temperature
calculations tions

field calculations

Volume elements

Surface points coincide for all meshes
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The considered 4" FZ system from ICG, Berlin

Inductor

main slit
1d
N T

additional slits

Process parameters

Parameter and designation Value  Dimension
Target zone height H, 32.5 mm
Inductor current frequency f 3 MHz
Crystal pull rate Ve 2.55 mm/min
Feed rod push rate %3 2.76 mm/min
Crystal radius Rerys 51 mm

Feed rod radius Rfeed 49 mm
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Time development of the open front melting

Azimuthal profile at the feed rod rim
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The shape stabilizes after ~ 5 periods
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Numerical scheme

Calculation results

Conclusions

Comparison between axisymmetric and 3D results

Radial profiles of the open front
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Melting of the open front

Distribution of the induced power density
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Dry feed rod surface With fluid film correction

= Differences of the induced power density up to k =, /‘;—T ~ 4.9
times
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Melting of the open front

Distribution of the fluid film thichness and melting velocity

h, mm Uy, N/ min
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= Highest fluid film thickness around the neck
= Lowest fluid film thickness near the feed rod rim

= Melting rate corresponds to the EM heat source distribution
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Influence of rotation period

Azimuthal profiles of the open front
At feed rod rim
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Influence of process parameters

Azimuthal profiles of the open front
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Conclusions

Conclusions

For the first time a 3D transient mathematical model for feed rod
melting has been developed and implemented in a calculation
program

The shape of the open front tends to stabilize after several feed rod
revolutions

The obtained 3D shape of the open melting front remains close to
the axisymmetric profile with differences of order ~ 1 mm

The asymmetry increases with:

= higher pulling velocity
= |ower feed rod rotation rate
= narrower main slit of the inductor

The obtained results are useful for a comparison with experimental
data
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