SPECTRUM ANALYSIS OF THE WEIGHTED FINITE DIFFERENCE SCHEME FOR THE WAVE EQUATION WITH INTEGRAL BOUNDARY CONDITIONS∗

JURIJ NOVICKIJ1,2 and ARTŪRAS ŠTIKONAS1,2

1Institute of Mathematics and Informatics, Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
2Faculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
E-mail: jurij.novickij@mif.vu.lt

Consider the hyperbolic equation

\[\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), \quad (x, t) \in (0, L) \times (0, T), \]

with the classical initial conditions

\[u|_{t=0} = \phi(x), \quad \left. \frac{\partial u}{\partial t} \right|_{t=0} = \psi(x), \quad x \in \Omega := [0, L], \]

and the additional nonlocal integral boundary conditions

\[u(0, t) = \gamma_0 \int_0^L \beta^0(x) u(x, t) \, dx + v_l(t), \quad t \in [0, T], \]

\[u(1, t) = \gamma_1 \int_0^L \beta^1(x) u(x, t) \, dx + v_r(t), \quad t \in [0, T], \]

where \(f(x, t), \phi(x), \psi(x), v_l(t), v_r(t) \) are given functions, \(\gamma_0, \gamma_1 \) are given parameters, \(\beta^0 \) and \(\beta^1 \) are weight functions.

We study the spectrum of the weighted difference operator for the formulated problem using the methods described in [1]. We investigate the characteristic function [2], and obtain stability conditions subject to boundary variables \(\gamma_1, \gamma_2 \) and weight functions.

REFERENCES

∗The research was partially supported by the Research Council of Lithuania (grant No. MIP-047/2014).