BLOW-UP SOLUTIONS TO A CERTAIN CLASS OF VOLterra INTEGRAL EQUATIONS

TOMASZ MAŁOLEPSZY

University of Zielona Góra, Faculty of Mathematics, Computer Science and Econometrics
ul. prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland
E-mail: t.malolepszy@wmie.uz.zgora.pl

We present some interesting results [2; 3; 4] from the theory of blow-up solutions to the Volterra integral equation with convolution kernel

\[u(t) = \int_0^t k(t-s)g(u(s))ds, \quad t \geq 0, \]

(1)

for which in particular the condition \(g(0) = 0 \) is fulfilled. We show - among other things - how these results can be applied to improve the estimations of the blow-up time of equation (1) in the case where nonlinearity satisfies \(g(0) > 0 \). Equations with such nonlinearities arise in many mathematical models of physical phenomena like shock-waves propagation [1] and classical [7] as well as anomalous diffusion [6; 8]. As an illustrative example to our talk we use the equation related to the formation of shear bands in steel [5]:

\[v(t) = \xi \int_0^t (v(s) + 1)^\beta \frac{ds}{\sqrt{\pi(t-s)}} \]

(2)

REFERENCES