Abstracts of MMA2015, May 26–29, 2015, Sigulda, Latvia \bigodot 2015

ON THE EIGENVALUE PROBLEM WITH BOUNDARY CONDITION CONTAINING A PARAMETER

ALEXEY FILINOVSKIY

N.E. Bauman Moscow State Technical University, 2 nd Baumanskaya, 5, 105005 Moscow, Russia E-mail: flnv@yandex.ru

We consider the eigenvalue problem

$$\Delta u + \lambda u = 0 \quad \text{in} \quad \Omega, \quad \frac{\partial u}{\partial \nu} + \alpha u = 0 \quad \text{on} \quad \Gamma, \tag{1}$$

where $\Omega \subset \mathbb{R}^n$, $n \geq 1$, is a bounded domain with boundary Γ . By ν we denote the outward unit normal vector to Γ , α is a real parameter. There is a sequence of eigenvalues $\lambda_1(\alpha) < \lambda_2(\alpha) \leq \ldots$ of the problem (1) enumerated according to their multiplicities with $\lim_{k\to\infty} \lambda_k(\alpha) = +\infty$. Also, we consider the sequence of eigenvalues $0 < \lambda_1^D < \lambda_2^D \leq \ldots$ of the Dirichlet eigenvalue problem

$$\Delta u + \lambda u = 0 \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \Gamma \tag{2}$$

with $\lim_{k\to\infty} \lambda_k^D = +\infty$. We study the behavior of $\lambda_k(\alpha)$ for large positive values of α .

THEOREM 1. Let $\Gamma \in C^2$. Then the eigenvalues $\lambda_k(\alpha)$ satisfy the estimates

$$\lambda_k^D - C_1 \frac{\left(\lambda_k^D\right)^2}{\alpha} \le \lambda_k(\alpha) \le \lambda_k^D, \quad \alpha > \alpha_1 > 0, \quad k = 1, 2, \dots,$$
(3)

where the constants C_1 and α_1 does not depend on k.

THEOREM 2. Let $\Gamma \in C^3$. Then

$$\lambda_1(\alpha) = \lambda_1^D - \frac{\int_{\Gamma} \left(\frac{\partial u_1^D}{\partial \nu}\right)^2 ds}{\int_{\Omega} \left(u_1^D\right)^2 dx} \frac{1}{\alpha} + o\left(\frac{1}{\alpha}\right), \quad \alpha \to +\infty, \tag{4}$$

where u_1^D is the first eigenfunction of the Dirichlet problem (2).

The relation (4) shows that first power of α in the denominator in (3) can not be replaced by $\alpha^{1+\delta}$ with any $\delta > 0$.

REFERENCES

- A. Filinovskiy. On the eigenvalues of a Robin problem with a large parameter. Mathematica Bohemica, 139 (2):341–352, 2014.
- [2] A. Filinovskiy. Estimates of eigenvalues of a boundary value problem with a parameter. Mathematical Communications, 19 (3):531–543, 2014.