

A. JAKOVIČS, S. GENDELIS MODELLING OF HEAT BALANCE AND COMFORT CONDITIONS IN A LIVING-ROOM WITH SOLAR RADIATION SOURCE

February, 2013, Ilmenau, Germany

GENERAL PROBLEM FORMULATION

1. Heat balance of the room

2. Thermal comfort conditions

GEOMETRY, BOUNDARY CONDITIONS

SOLAR RADIATION IN LATVIA, 2009

1. HEAT BALANCE OF THE ROOM

Conduction heat losses

Convection heat losses

Solar heat source

Internal heat sources

2. HUMAN THERMAL COMFORT CONDITIONS

- Temperatures T
- Vertical temperature difference ΔT , radiant temperature asymmetry
- Air velocity v
- Other factors

Category of thermal environment A, B, C

CATEGORY OF THERMAL COMFORT CONDITIONS (EN ISO 7730)

	Con e	Radiant	Vertical air	Floor surface		
Category	t_nperati_e,	temperature	temperature	temperature,	velocity	
	°C	asymmetry, °C	difference, °C	°C	cm/s	
Α	22. £ 1.0	<10	<2	19-29	₹ / *	
В	22. <mark>0 ±2.0</mark>	<10	<3	19-29	<16*	
С	22. <u>±</u> 3.0	<13	<4	17-31	1*	

^{*} in winter season, at activity of 70 W/m². Generally depends on metabolic rate.

3D MODELLING, DISCRETISATION

For numerical calculations software *Ansys/CFX* is used with traditional differential equations:

- Reynolds averaged momentum equation (v, p);
- continuity equation;
- energy conservation equation (T);
- SST (k-ω) turbulence model.

MODELLING VARIANTS

Droportico	Variants						
Properties	N	60	45	30	45		
Angle of attack α (degrees)	-	60	45	30	45		
Boundary condition on heater		adiabatic					
Heat amount for the heater (W)	225	173	173	178	0		
Solar power W	0	411	327	228	333		

1. RESULTS: HEAT BALANCE OF THE ROOM

2. RESULTS: COMFORT CONDITIONS

MODELLING VARIANTS: RESULTS

Results	N	60	45	30	А
Maximum mean air velocity v (cm/s)	4	7	8	7	5
Average temperature T (°C)	24.2	32.5	30.8	28.4	26.0
Radiant temperature asymmetry (°C)	9	12	10	10	8
Vertical temperature difference ΔT (°C)	2.0	1.6	1.6	2.4	1.4
Floor surface temperature (°C)	22	31	29	27	25
Category of thermal environment [EN ISO 7730]	A	C	A	В	A

VISUALIZATION. TEMPERATURE

without solar source

with 45° solar source

VISUALIZATION. AIRFLOWS

without solar source

Velocity (XVectorLocalBW)
[m s^-1]

with 45° solar source

VISUALIZATION. TEMPERATURE

with 60° solar source

with 30° solar source

VISUALIZATION. AIRFLOWS

with 60° solar source

with 30° solar source

VISUALIZATION. TEMPERATURE

without solar source

without heater

VISUALIZATION. AIRFLOWS

without solar source

without heater

EXAMPLES OF TEMPERATURE ISOSURFACES

without solar source, 25 °C

with 45° solar source, 32 °C

EXPERIMENTAL VALIDATION

CONCLUSIONS

- ✓ The numerical modeling allows estimation of:
 - ✓ heating consumption of the room,
 - ✓ the temperature field, airflow distribution and the tendencies of its changes.
- ✓ Solar radiation source is very important factor. It has to be included in the numerical simulations to predict the heat balance and comfort conditions more accurately.
- ✓ The use of numerical calculations for the room at design stage allows to
 - ✓ optimize the heat balance and reduce heat losses,
 - ✓ predict the category of thermal environment for different building types.

Thank you very mach for attention!

Acknowledgement: This work was supported by the European Regional Development Fund project Nr. 2011/0003/2DP/2.1.1.1.0/10/APIA/VIAA/041

