1636

Interval lung cancers not detected on screening chest x-rays: How are they different? 
Paul A. Krauel 1, Christine Cole Johnson 2, Martin Tammemaa 1,2,3, Pamela M. Marcus 4, Carl J. Zylicz 5, David L. Spizony 5, William Hocking 6, Martin Oken 7, John Commns 8, Lawrence Ragard 9, Ping Hu 10, Christine Berg 11, Phillip Prockel 12, 1 Division of Pulmonary and Critical Care, Henry Ford Health System, Detroit, MI, United States; 2 Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States; 3 Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States; 4 Division of Cancer Prevention, National Cancer Institute/National Institute of Health, Bethesda, MD, United States; 5 Department of Radiology, Henry Ford Health System, Detroit, MI, United States; 6 Department of Clinical Oncology, Marshfield Clinic, Marshfield, WI, United States; 7 Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States; 8 & O Subcommittee Support, Information Management Services, Inc., Rockville, MD, United States; 9 Research Support, Westat, Rockville, MD, United States; 10 Community Health Sciences, Brock University, St. Catharines, ON, Canada.

Background: The Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial provides us an opportunity to describe interval lung cancers not detected by screening chest x-ray (CXR) compared to screen-detected cancers. Methods: 77445 participants were randomized to the intervention arm with 70,633 screened. Of 5,227 positive screens from any screening round, 298 resulted in screen-detected lung cancer; 152 had potential interval cancers with 128 CXR available for re-review. Cancer was probably present in 45/128 (35.2%) at time of screening; 83 (64.8%) were “true interval” cancers. Compared to screen-detected cancers, true interval cancers were more common among males, persons with <12 years education and those with a history of smoking. True interval lung cancers were more advanced (10.9% vs. 16.7% for electron, p<0.0001), more often small cell (27.3% vs. 7.4%), and less often adenocarcinoma, 25.3% vs. 56.4% (p<0.0001), and less likely to be in the right upper lobe, 16.9% vs. 36.2% (p<0.0001).

Conclusion: True interval lung cancers differ from CXR-screen-detected cancers with regard to demographic variables, stage, cell type and location.

1637

The effect of route of presentation on lung cancer outcome
Laura Succo 1, Elanie Swanson 2, Sue Gauntett 3, James Ramsay 1.
1 Respiratory Medicine, Laton and Dunstable NHS Trust, Laton, Bedfordshire, United Kingdom; 2Clinical Audit, Laton and Dunstable Foundation Trust, Laton, Bedfordshire, United Kingdom.

Background: Lung cancer is the commonest cause of cancer death in the UK, with one year survival lagging behind the rest of Europe. Early lung cancer diagnosis is imperative in achieving the highest chance of curative therapy. Recent Public Health Campaigns have highlighted importance of early lung cancer detection and early presentation to primary care, allowing onward referral. The Laton and Dunstable Hospital is situated north of London, covering a population of 320,000. Observations show when patients present as an emergency, instead of through outpatient referral, disease is at a later stage and limited treatment, if any, available.

Aims: To compare stage of lung cancer, treatment intent and survival, between patients referred from primary care and emergency inpatient presentations.

Methods: 2010 LUCADA data from Laton and Dunstable NHS Trust were analysed, including 144 patients. 63 primary care referrals, and 81 inpatient presentations. Performance status, stage, survival and treatment were compared using the Chi-Squared contingency test.

Results: Patients referred through outpatients had a significantly better performance score (p<0.0001) and an earlier stage disease (p=0.0005) compared to those diagnosed following emergency admission. Survival data (at time of analysis), revealed a greater likelihood of death within the inpatient population (p<0.0001).

A trend existed for more active treatment in outpatient referrals, although this failed to reach statistical significance.

Conclusions: Our data shows outpatient diagnosis is associated with better performance scores, earlier cancer stage and prolonged survival. Early symptom recognition, with early referral is vital in improving life expectancy from lung cancer.

1638

The results of the prevalence screen in Lung SEARCH: A UK based screening trial for lung cancer based on sputum cytology and cytometry, by the Lung SEARCH screening group
Stephen Sturgis 1, Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom.

Lung SEARCH is a screening trial in 9 UK centres of 1658 subjects with a >20 pack/year smoking history, mild or moderate chronic obstructive pulmonary disease (COPD). Randomisation was to a control group who had no active intervention, but an exit chest X-ray (CXR) at the end of 5 years; or a surveillance group who provide sputum samples annually for 5 years, for cytological and cytomterical analysis, and if normal for the duration of the study, an exit CXR. Samples showing abnormalities would undergo annual low-dose computed tomography (CT) and autofluorescent fibreoptic bronchoscopy (AFB) for the remaining years of the five. Our aim is to identify more early stage cancers in the surveillance arm (p<0.05%) than the control (<15%) and literature on COPD suggested we would need 37 cancers in each study group.

We entered 785 subjects into the surveillance, and 783 in the control arms. The two groups were well matched with 52% of men in both groups, 56% and 44% in each group were current or ex-smokers, and their mean ages were 63 years. 75% in each group had moderate COPD and 25% were mild.

Results: Of the 785 subjects in the surveillance arm, 92% provided a sputum sample. Of these only 132 of 742 were inadequate for analysis. 532 (73%) were normal, 128 (17%) were abnormal: 16 were high grade and 112 low grade. All normal, 128 (17%) were abnormal: 16 were high grade and 112 low grade. All 128 are being followed by CT and AFB.

Conclusions: Sputum cytology/cytometry performed within a high risk population gave a higher than expected yield of abnormal samples. The study may prove a promising and cost effective method to identify those at very high risk of developing early lung cancer.

1639

Detection of lung cancer using ion mobility spectrometry in Japan: A pilot study
Hiroshi Handa, Terunomi Miyazawa, Kei Morikawa, Tepper Inoue, Naoki Furuya, Hiroshi Nishine, Seichichi Nogoyama, Takeshi Inoue, Masamichi Mineshita, Takehiko Hiramoto. Division of Respiratory and Infectious Diseases, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.

Background: National Lung Screening Trial (NSLT) reported screening with low-dose CT could reduce mortality from lung cancer. Breath analysis such as sputum cytology/cytometry and ion mobility spectrometry (IMS) may detect volatile organic compounds (VOCs).

Objectives: To detect specific VOC peaks in lung cancer then compare lung cancer and healthy subjects.

Methods: IMS coupled to a multi-capillary column (MCC/IMS) (BioScout: B&S Analytic, Dortmund, Germany) with a 95MBq β-radiation source used to detect VOC peaks. For the Japanese market, regulations restrict 63N β-radiation sources to under 100MBq. Exhaled breath samples were collected at quite breathing in 30 patients with lung cancer and 13 healthy volunteers. Peaks were characterized using Visual Now 2.2 software (B&S Analytic, Dortmund, Germany).

Results: Patients included 17 adenocarcinoma, 3 squamous cell carcinoma, 6 small cell carcinoma and 4 unclassified carcinoma. Forty-seven VOC peaks were detected and 10 VOC peaks showed significant differences between lung cancer and healthy volunteers (p<0.05).

Conclusions: IMS using 95MBq β-radiation source is a feasible screening test in the detection of lung cancer. In the future, IMS may detect histological types of lung cancer and molecular mutation.
1640 Cancer-associated oncogenic BARD1 isoforms: From biomarker expression studies to development of a blood test for early detection of lung cancer
Ingmar Iminger-Finger1,2, Pierre-Alain Andre1,2, Maxim Fygun1,2, Balazs Hegedu3,1, Francesco Piantadosi4, Geoff Laurent5, Andrea Bianco1,2
1 Department of Gynecology-Obstetrics, Geneva University, Geneva, Switzerland; 2 Department of Medical Genetics and Laboratories, Geneva University, Geneva, Switzerland; 3 Medizinische Universitat Wien, Universitat Wien, Austria; 4 Dept Unit of Pneumo-Oncology Day Hospital, High Specialization “Monaldi” Hospital, Naples, Italy; 5 Centre for Respiratory Research, University College London, United Kingdom; 6 Department of Health Sciences, University of Molise, Campobasso, Italy

BARD1 protein binds to, stabilizes, and enhances the tumor suppressor functions of BRCA1. However, highly upregulated expression of aberrant BARD1 isoforms correlates with decreased patient survival in NSCLC.

BARD1 isoforms are tumor drivers and act autonetically to E3 ubiquitin ligase functions of BARD1-BRCA1 heterodimer. In particular, isoform BARD1β is promoting cell proliferation by stabilizing Aurora kinases. Since BARD1β and BARD1γ are upregulated and correlated with poor prognosis in lung cancer they might act as suitable biomarkers of NSCLC detection/progression.

We developed a blood test based on BARD1 isoforms by performing ELISA tests with antibodies against different regions of BARD1 for detection of BARD1 isoforms in blood of NSCLC patients. We also generated a peptide library representing 60 epitopes mimicking BARD1 isoforms, for detection of autoimmune antibodies recognizing epitopes expressed by BARD1 isoforms.

Significant differences between serum samples from 60 chemotherapy-naïve NSCLC patients and from 40 healthy volunteers have been found. Applying a combination of seven peptides, lung cancer was detected with 87 percent sensitivity and 96 percent specificity. Thus, antibodies against BARD1 isoforms are potential candidates for development of a blood test for early detection of lung cancer.

We also generated a peptide library representing 60 epitopes mimicking BARD1 isoforms, for detection of autoimmune antibodies recognizing epitopes expressed by BARD1 isoforms.

We have reported that exhaled volatile organic compound (eVOC) profile of lung cancer (LC) subjects differed from healthy ever smokers (HS).

Aim: To compare eVOC profile of LC subgroups (1) peripheral tumours and (2) early stage disease differ from HS.

Method: LC (n=53) and HS (n=177) subjects provided a breath sample after tidal breathing through an inspiratory port filter for 5 mins. It was analysed with a 32 sensor Cyanose 320 (Smiths Detection). Tumours were staged (7th ed TNM system), and defined as peripheral if located in the outer 2/3 of lung fields on axial CT images. LC subgroups were: Stages I/II (n=27), IIB (n=25), central (n=32) and peripheral tumours (n=21) (n=32). Data were reduced to principal components for canonical discriminant analysis to determine differences between groups.

Conclusion: The eVOC profile distinguished between LC and HS with a cross validation accuracy of 79.9% (p<0.0001). Analysis of HS, early (I/II) and late (IIBIV) stage LC showed an eVOC profile CVV accuracy of 77%.

Results: The eVOC profile distinguished between LC and HS with a cross validation accuracy of 79.9% (p<0.0001). Analysis of HS, early (I/II) and late (IIBIV) stage LC showed an eVOC profile CVV accuracy of 77%.

Conclusion: The eVOC profile distinguished between LC and HS with a cross validation accuracy of 79.9% (p<0.0001). Analysis of HS, early (I/II) and late (IIBIV) stage LC showed an eVOC profile CVV accuracy of 77%.

Results: The eVOC profile distinguished between LC and HS with a cross validation accuracy of 79.9% (p<0.0001). Analysis of HS, early (I/II) and late (IIBIV) stage LC showed an eVOC profile CVV accuracy of 77%.

Conclusion: The eVOC profile distinguished between LC and HS with a cross validation accuracy of 79.9% (p<0.0001). Analysis of HS, early (I/II) and late (IIBIV) stage LC showed an eVOC profile CVV accuracy of 77%.

Results: The eVOC profile distinguished between LC and HS with a cross validation accuracy of 79.9% (p<0.0001). Analysis of HS, early (I/II) and late (IIBIV) stage LC showed an eVOC profile CVV accuracy of 77%.

Conclusion: The eVOC profile distinguished between LC and HS with a cross validation accuracy of 79.9% (p<0.0001). Analysis of HS, early (I/II) and late (IIBIV) stage LC showed an eVOC profile CVV accuracy of 77%.
value of 48.3ng/mg presented 100% of specificity and 33% of sensitivity (Fig. 1C).

Conclusions: The results presented suggest a promising role of HA quantification in the sputum as a novel screening and diagnostic marker for differentiating normal and other type of fibrotic pulmonary problems from lung cancer patients.