Pusvadītāju heterostruktūru kvantu mehāniskie aprēķini: LaAlO₃ plānās kārtiņas uz SrTiO₃ pamatnes – kā rodas vadāmība?

D. Bočarovs, A. Sorokins, V. Kaščejevs un S. Piskunovs

Eiropas Sociālā fonda projekts "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Outline of presentation

- Why LaAlO₃/SrTiO₃? An introduction.
- Modeling from first principles. Theoretical background in short.
- Stability of LaAlO₃(001) surfaces.
- LaAlO₃/SrTiO₃: Electronic structure and charge redistribution.
- Summary and conclusions.

Crystals: LaAlO₃ and SrTiO₃

Why LaAlO₃/SrTiO₃? Motivation

The interface between the two band insulators $LaAlO_3$ and $SrTiO_3$ can be highly conducting...

Ohtomo and Hwang, *Nature* **427** (2004) 423

Perfect LaAlO₃(001) surfaces: terminations

LaO-terminated

LaAlO₃/SrTiO₃?

Why LaAlO₃/SrTiO₃? Motivation

- Depending on film thickness and preparation method LaAlO₃/SrTiO₃ interface can be **insulating** or exhibit high carrier mobility exceeding 10⁴ cm² V⁻¹ s⁻¹ (O vacancies, La/Sr intermixing?)
- Hole-doped interface (p-type) is found to be insulating!
- Electronic structure calculations have contributed significantly, but the physical nature of the polar discontinuity at interface is still unclear.
- In this contribution we simulate plane-by-plane epitaxial growth of LaAlO₃ thin film atop SrTiO₃. Calculated electron charge redistribution at the interface allows us to provide deeper insight into the origin of its conductivity.

Theoretical background: Hartree-Fock method

Wave functions as Slater determinants: $\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(\mathbf{r}_1) & \dots & \phi_N(\mathbf{r}_1) \\ \vdots & & \vdots \\ \phi_1(\mathbf{r}_N) & \dots & \phi_N(\mathbf{r}_N) \end{vmatrix}$

Hartree-Fock equation ($\hbar = m = e = 1$):

$$\left[-\frac{1}{2}\nabla_i^2 + \sum_{\alpha} \frac{-Z_{\alpha}}{|\mathbf{R}_{\alpha} - \mathbf{r}|} + \int \frac{\sum_{j=1}^{N} \phi_j(\mathbf{r}') \phi_j^*(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'\right] \phi_i(\mathbf{r}) - \int \frac{\sum_{j=1}^{N} \phi_j(\mathbf{r}) \phi_j^*(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \phi_i(\mathbf{r}') d\mathbf{r}' = \varepsilon_i \phi_i(\mathbf{r})$$

$$\hat{H}^{HF} = \hat{T}(\mathbf{r};\mathbf{k}) + \hat{V}(\mathbf{r};\mathbf{k}) + \hat{J}(\mathbf{r};\mathbf{k}) + \hat{K}(\mathbf{r};\mathbf{k})$$

 \hat{T} , \hat{V} , \hat{J} and \hat{K} are kinetic, electron-nuclei, Coulomb and non-local exchange operators

Electron correlation problem!!!

Theoretical background: Density Functional Theory

The expectation value of a Hamiltonian, i.e. the total energy *in the ground state*, is a functional of the *electronic density*.

$$E[\rho(\mathbf{r})] = T[\rho(\mathbf{r})] + \int V_{ext}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + \frac{1}{2} \iint \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + E_{xc}[\rho(\mathbf{r})]$$

The Kohn-Sham equation:

$$\begin{bmatrix} -\frac{1}{2}\nabla_i^2 + \sum_{\alpha} \frac{-Z_{\alpha}}{|\mathbf{R}_{\alpha} - \mathbf{r}|} + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \int \frac{\delta E_{xc}[\rho]}{\delta \rho(\mathbf{r})} \end{bmatrix} \varphi_i(\mathbf{r}) = \varepsilon_i \varphi_i(\mathbf{r})$$

with $\rho(\mathbf{r}) = \sum_{i=1}^N |\varphi_i(\mathbf{r})|^2$

Approximations for E_{xc} :

$$E_{xc}^{LDA}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{xc}(\rho(\mathbf{r})) d\mathbf{r} \; ; \; E_{xc}^{GGA}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{xc}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r})) d\mathbf{r}$$

Theoretical background: Hybrid exchange-correlation functionals

$$E_{XC}^{Hybrid}(\rho) = a_{HF} E_X^{HF}(\rho) + a_{DFT} E_{XC}^{DFT}(\rho)$$

$$E_{XC} = E_{XC}^{LSDA} + a_0 \left(E_X^{Fock} - E_X^{LSDA} \right) + a_X \Delta E_X^{B88} + a_C \Delta E_C^{GGA}$$

Semiempirical coefficients $a_0 = 0.20$, $a_X = 0.72$, $a_C = 0.81$

GGA correlation Perdew and Wang = B3PW

• A.D.Becke, J.Chem.Phys. 98 (7), 5648 (1993)

- C.Lee, W.Yang, R.G.Parr, Phys. Rev. B 37 (2), 785 (1988)
- J.P.Perdew, Y.Wang, Phys. Rev. B 45 (23), 13244 (1992)

Results on bulk perovskites: Optical band gap

Flow chart of the CRYSTAL code

Perfect LaAlO₃(001) surfaces: Choosing of model

Models for simulating surfaces starting from a perfect 3D crystal.

(001) slab unit cells periodically repeated in x-y plane as adopted in present calculations.

Thermodynamic stability of perfect LaAlO₃(001) surfaces

Thermodynamic grand potential for $LaAlO_3(001)$ as calculated by means of B3PW. Formation of LaO-terminated surface is **exothermic** reaction.

LaAlO₃/SrTiO₃(001) surfaces structures we study

LaAlO₃/SrTiO₃(001): Conductance vs. termination

	n-type		p-type	
Nr. of planes	Termination	Gap, eV	Termination	Gap, eV
1	LaO-	Cond.	AlO ₂ -	Cond.
2	AlO ₂ -	3.65	LaO-	4.00
3	LaO-	Cond.	AlO ₂ -	Cond.
4	AlO ₂ -	2.91	LaO-	4.05
5	LaO-	Cond.	AlO ₂ -	Cond.
6	AlO ₂ -	1.96	LaO-	4.05
7	LaO-	Cond.	AlO ₂ -	Cond.
8	AlO ₂ -	1.07	LaO-	3.80
9	LaO-	Cond.	AlO ₂ -	Cond.
10	AlO ₂ -	Cond.	LaO-	2.92
11	LaO-	Cond.	AlO ₂ -	Cond.

LaAlO₃/SrTiO₃(001) of n-type: PDOS

Conductance due to closing the gap.

	LAO/ 11-1	STO 1-11	
	<u>r</u> r	LaO	E _F
Am		AlO ₂	
m		LaO	
m		AlO ₂	
m		LaO	
~~~~		AlO ₂	
m		LaO	
m		AlO ₂	
m		LaO	$\sim$
m		AlO ₂	
m		LaO	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
m	TiO ₂		<u></u>
m	SrO		
$\sim$	TiO ₂		m
$\sim$	SrO-		
m	TiO ₂		<u></u>
	SrO		
10 5	t т		
-5	Energy,	eV	2

Typical n-type conductor

## LaAlO₃/SrTiO₃(001) of p-type: PDOS







## LaAlO₃/SrTiO₃(001): electron charge redistribution

	n-type	Cond.		p-type	Cond.
LaO	Cond.	0.19	AlO ₂	Ins.	-0.28
AlO ₂	-0.26	-0.50	LaO	0.08	0.45
LaO	0.44	0.45	AlO ₂	-0.38	-0.38
AlO ₂	-0.44	-0.48	LaO	0.43	0.42
LaO	0.47	0.48	AlO ₂	-0.39	-0.38
AlO ₂	-0.46	-0.48	LaO	0.39	0.41
LaO	0.47	0.49	AlO ₂	-0.38	-0.38
AlO ₂	-0.46	-0.47	LaO	0.38	0.42
LaO	0.48	0.49	AlO ₂	-0.38	-0.38
AlO ₂	-0.47	-0.46	LaO	0.38	0.46
LaO	0.52	0.44	AlO ₂	-0.42	-0.38
TiO ₂	0.04	0.06	SrO	-0.12	-0.01
SrO	-0.05	-0.05	TiO ₂	0.02	0.02

Calculated Mulliken effective net charge with respect to bulk.

## **Summary and conclusions**

- Quantum chemistry accompanied with *ab initio* thermodynamics is a reliable tool to predict stability and electronic properties of a complex surface structures such as LaAlO₃/SrTiO₃ heterointerface.
- LaO-terminated LaAlO₃(001) is the most stable surface at elevated temperatures.
- Our calculations predict the conductance for AlO₂-term. n-type interface due to closing of the band gap if the LaAlO₃(001) film is thicker than 5 u.c., while LaO-term n-type interface is typical n-type conductor. LaO-term. p-type interface is always insulator. However AlO₂-term. p-type heterostructure is predicted to be a p-type conductor.

# **Many Thanks For Your Attention!**