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Abstract

Reversible finite automata with halting states (RFA) were first con-
sidered by Ambainis and Freivalds to facilitate the research of Kondacs-
Watrous quantum finite automata. In this paper we consider some of the
algebraic properties of RFA, namely the varieties these automata gener-
ate. Consequently, we obtain a characterization of the Boolean closure of
the classes of languages recognized by these models.

We also obtain an equality which relates varieties of ordered J -trivial
monoids with the variety of R-trivial monoids.

1 Introduction

In this paper we study reversible finite automata (RFA). Being entirely clas-
sical, the model is however a special case of Kondacs-Watrous quantum finite
automata and was introduced in [5]. Quantum finite automata (QFA) are of a
specific interest, since the family of these models represent finite memory real-
time quantum mechanical devices. On the other hand, recently it has been
demonstrated [3] that these models are worth studying also from the point
of view of classical algebraic automata theory. The first models of QFA are
due to [13] and [15]. Other models are proposed and studied, for example, in
[9, 16, 6, 8, 3, 11, 4], etc. In principle, the different types of QFA reflect the
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different ways how the results of computation can be interpreted, i.e., quan-
tum measurements. By applying various restrictions, it is even possible to get
deterministic and probabilistic special cases of QFA. Such models sometimes
prove to be extremely useful in the research of the properties of QFA. For ex-
ample, probabilistic reversible automata (PRA) [11] are instrumental to prove
that Latvian QFA [3] recognize exactly the regular languages whose syntactic
monoids are block groups. Moreover, PRA and LQFA recognize the same class
of regular languages.

In Section 2 we introduce the finite automata models discussed further in
the paper. Section 3 recalls notation on varieties used in this paper. Section
4 deals with injective finite automata (IFA), which are in turn a special case
of RFA. IFA are closely related to a deterministic special case of Brodsky-
Pippenger QFA [9]. We give an exact characterization of languages which are
recognized by IFA and conclude that the syntactic monoids of this class generate
the variety of commuting idempotent monoids, ECom. In Section 5 we show
that the syntactic monoids of the languages recognized by RFA generate ER1,
the variety defined by the identity xωyωxω = xωyω. Section 6 specifies algebraic
conditions for a language to be recognized by RFA or IFA. In Section 7 it is
proved that semidirect products of ordered J -trivial monoids of opposite order
generate the variety of R-trivial monoids.

A preliminary version of this paper appeared in [12].

2 Preliminaries

In this paper, by minimal automaton of a regular language we understand a
complete minimal deterministic finite automaton recognizing the language (the
transition function is defined for any state and any input letter). Two automata
(deterministic or not) are said to be equivalent if they accept the same language.
We denote by Lc the complement of a language L. We do not recall the general
definition for Kondacs-Watrous QFA, which can be found in [13]. The definition
of RFA is obtained from Kondacs-Watrous QFA by adding the restriction that
any transition is deterministic:

Definition 2.1. A reversible finite automaton A = (Q,Σ ∪ {$}, q0, Qa, Qr, · )
is specified by a finite set of states Q, a finite input alphabet Σ, an end-marker
$ /∈ Σ and an initial state q0 ∈ Q. The set Q is the union of two disjoint
subsets Qh and Qn, called the set of halting and non-halting states, respectively.
Further, the set Qh is the union of two disjoint subsets Qa and Qr of Q, called
the set of accepting and rejecting states, respectively. The transition function
(q, σ) → q ·σ from Q× (Σ ∪ {$}) into Q satisfies the following conditions:

for all σ ∈ Σ ∪ {$}, q1 ·σ = q2 ·σ implies q1 = q2; (1)

if q is non-halting, then q · $ is halting. (2)

The first condition is equivalent to each letter σ ∈ Σ∪{$} inducing a bijection
on Q. A RFA reads any input word starting with the first letter. As soon as
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the automaton enters a halting state, the computation is halted and the word
is either accepted or rejected, depending on whether the state is accepting or
rejecting. The end-marker $ insures that any input word followed by the end-
marker is either accepted or rejected.
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Figure 1: A reversible finite automaton.

In the example of Figure 1, state 4 is accepting and state 3 is rejecting.
States 1 and 2 are non-halting.

A reversible finite automaton is called end-decisive [9], if it accepts a word
only after reading the end-marker $. Dually, if the automaton rejects a word
only after reading $, it is called co-end-decisive. If a reversible finite automaton
is either end-decisive or co-end-decisive, it will be called a deterministic Brodsky-
Pippenger automaton (DBPA).

It can be noticed that any RFA A = (Q,Σ ∪ {$}, q0, Qa, Qr, · ) can be
transformed into a classical finite automaton B = (Q,Σ, q0, F, ·B ), where F =
Qa ∪ {q ∈ Qn | q · $ ∈ Qa} and the new transition function is defined in the
following way: for all σ ∈ Σ and q ∈ Q,

q ·B σ =

{

q ·σ if q is non-halting,

q if q is halting.
(3)

By eliminating in B the states which are not accessible from the initial state, we
obtain an automaton A′ = (Q′,Σ, q0, F

′, · ), where F ′ = Q′∩F , which recognizes
the same language as A. For instance, if A is the automaton represented in
Figure 1, the automata B and A′ are represented in Figure 2.
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Figure 2: The automata B and A′.

Let us call such automaton A′ trivial if |Q′| = 1. A state q such that, for every
σ ∈ Σ, q ·B σ = q, will be called absorbing.

Proposition 2.1. If A′ is non-trivial, a state of Q′ is absorbing if and only if
it is halting.

Proof. By the above construction, any halting state of Q′ is absorbing.
Let q be a state of Q′. Since q is accessible from q0 (in A′), there exists

a word of minimal length u = σ1 · · ·σk ∈ Σ∗ such that q0 ·B u = q. Then,
for 0 6 i 6 k − 1, the states q0 ·B σ1 · · ·σi are non-halting, for otherwise
q0 ·B σ1 · · ·σiσi+1 = (q0 ·B σ1 · · ·σi)·σi+1 = q0 ·B σ1 · · ·σi, a contradiction, since
u is of minimal length. It follows that q0 ·B u = q0 ·u = q.

If now q is absorbing and non-halting, it follows from (3) that for 1 6 i 6 k,
q ·B σi = q = q ·σi. Thus q0 ·u = q ·u = q, and Condition (1) implies that q = q0.
Therefore q0 is absorbing and hence A′ is trivial, a contradiction.

Consider the non-absorbing states of A′, which are also, by Proposition
2.1, the non-halting states. It follows from (3) that each letter of Σ acts on
these states as a partial injective function. All the absorbing states in F ′ are
equivalent, so they can be merged. The same applies to non-final absorbing
states.

The resulting deterministic automaton is equivalent to A. It has at most
two absorbing states and each letter defines a partial injective function on the
set of non-absorbing states. An automaton with these properties will be called
a classical reversible finite automaton (CRFA). Thus we have established the
first part of the following result:

Proposition 2.2. Any RFA is equivalent to some CRFA. Conversely, any
CRFA is equivalent to some RFA.

Proof. To complete the proof of the proposition, it remains to show that any
CRFA C can be transformed into an equivalent reversible finite automaton A =
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(Q,Σ ∪ {$}, s0, Qa, Qr, · ), constructed as follows. Initially let Q be the set of
non-absorbing states of C, let Qa = Qr = ∅ and restrict the transition function
of C to Q. For each transition e = p

σ
−→ q of C such that p is non-absorbing and

q is absorbing, add a new state re to Q and create a new transition p·σ = re.
If q is final in C, add re to Qa, and to Qr, otherwise. Further, for any non-
absorbing state p of C, add a new state q to Q and create a transition p· $ = q.
If p is final in C, add q to Qa, and to Qr, otherwise. Now the automaton A
recognizes the same language as C. Each letter of Σ ∪ {$} still defines a partial
injective function, which can now be completed to a bijection in an arbitrary
way.

If a CRFA has no absorbing states, it is a group automaton (all letters define
permutations on the set of states) and it recognizes a group language. If it has at
most one absorbing state, it will be called an injective finite automaton (IFA), to
suggest the connection of this model with partial injective functions. Similarly
as RFA are equivalent to CRFA, IFA are equivalent to DBPA. We call IFA-A
(resp. IFA-R) an injective automaton whose absorbing state (if it exists) is final
(resp. nonfinal). IFA-A are equivalent to co-end-decisive automata and IFA-R
to end-decisive automata.

h
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σ
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Figure 3: An IFA-A (on the left) and an IFA-R (on the right).

3 Varieties

If x is an element of a monoid M , we denote by xω the unique idempotent of
the subsemigroup of M generated by x.

An ordered monoid (M,6) is a monoid M equipped with a stable order
relation 6 on M which means that, for all u, v, x ∈ M , u 6 v implies ux 6 vx
and xu 6 xv.

Let M be a monoid and let s be an element of M . An inverse of s is an
element s̄ such that ss̄s = s and s̄ss̄ = s̄. An inverse monoid is a monoid in
which every element has exactly one inverse. It is well known that the relation
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6 defined on an inverse monoid M by

x 6 y if and only if x = ye for some idempotent e of M (4)

is a stable partial order, called the natural order of M .
Following [22], we call ordered inverse monoid an inverse monoidM , equipped

with its natural order. We also call dually ordered inverse monoid an inverse
monoid ordered by the dual order of its natural order.

A general overview on varieties of finite semigroups and monoids is given in
[17], whereas introduction to varieties of ordered semigroups and monoids can
be found in [20].

Given a monoid M , one may consider it to be an ordered monoid (M,=)
with equality as order relation. Given a variety of monoids V, one may use the
same notation for the variety of ordered monoids generated by (M,=), where
M ∈ V. Both varieties satisfy the same identities (inequalities) and are related
to the same class of regular languages.

Given two varieties of ordered monoids V and W, their semidirect product
V ∗ W is defined as in [22].

Theorem 3.1. The semidirect product is associative. Given varieties of ordered
monoids U, V and W, (U ∗ V) ∗ W = U ∗ (V ∗ W).

Proof. An analogous statement for ordered semigroups is implied by the theo-
rems in [22, Section 3]. The proofs of those results easily extend to the case of
ordered monoids.

Definition 3.1. For any ordered monoid M , let M† be the ordered monoid
equipped with the dual order of M , that is, for any x, y in M , x 6M† y if and
only if y 6M x.

Definition 3.2. For any variety of ordered monoids V, let V† = {M | M† ∈
V}.

The following proposition is a direct consequence of the definitions above:

Proposition 3.1.

(1) For any ordered monoid M , M†† = M ;

(2) For any variety of ordered monoids V, V† is also a variety of ordered
monoids and V†† = V;

(3) For any varieties of ordered monoids V and W, (V ∗ W)† = V† ∗ W†;

(4) For any variety of monoids V, V† = V.

In this paper, we use the following varieties of ordered monoids, which are
defined by some simple identities:

(1) G = [[xω = 1]], the variety of groups;

(2) J1 = [[x2 = x, xy = yx]], the variety of commutative and idempotent
monoids;
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(3) J+
1

= [[x2 = x, x 6 1]], the variety of ordered idempotent monoids in which
the identity is the maximum element. Order implies xy 6 y, xy 6 x, and
since the monoids are idempotent, xy 6 yx. Hence xy = yx, and J+

1
⊂ J1;

(4) J−
1

= [[x2 = x, 1 6 x]], the variety of ordered idempotent monoids in
which the identity is the minimum element. So J−

1
= (J+

1
)†. Similarly,

J−
1
⊂ J1;

(5) R1 = [[xyx = xy]], the variety of idempotent and R-trivial monoids;

(6) ECom = [[xωyω = yωxω]], the variety of monoids with commuting idem-
potents: the set of idempotents forms a submonoid which belongs to the
variety J1. This variety is known [7] to be equal to Inv, the variety of
monoids generated by inverse monoids. Further, by [14], Inv = J1 ∗ G =
ECom;

(7) ECom+ = [[xωyω = yωxω, xω 6 1]], the variety of ordered monoids
whose idempotents form an ordered submonoid which belongs to the va-
riety J+

1
. This variety is known [22] to be equal to Inv+, the variety

of ordered monoids generated by ordered inverse monoids. Moreover,
Inv+ = J+

1
∗ G = ECom+;

(8) ECom− = [[xωyω = yωxω, 1 6 xω]], the variety of ordered monoids whose
idempotents form an ordered submonoid which belongs to the variety J−

1
.

So ECom− = (ECom+)†. By Proposition 3.1, this variety is equal to
Inv− = (Inv+)†, the variety of ordered monoids generated by dually
ordered inverse monoids. Moreover, Inv− = J−

1
∗ G = ECom−;

(9) ER1 = [[xωyωxω = xωyω]], the variety of monoids whose idempotents form
a submonoid which belongs to the variety R1. Results in [2, 1] imply that
this variety is equal to R1 ∗ G;

(10) J = [[xωx = xω, (xy)ω = (yx)ω]] = [[(xy)ωx = (xy)ω, x(yx)ω = (yx)ω]],
the variety of J -trivial monoids [10];

(11) J+ = [[x 6 1]], the variety of ordered monoids in which the identity is the
maximum element. As noted in [22], J+ ⊂ J;

(12) J− = [[1 6 x]], the variety of ordered monoids in which the identity is the
minimum element. Similarly, J− = (J+)† and J− ⊂ J;

(13) R = [[(xy)ωx = (xy)ω]], the variety of R-trivial monoids.

In the next section, we elaborate upon the results which in turn depend on
the Vagner-Preston theorem [26, 25]. By the Vagner-Preston theorem, monoids
in Inv, Inv+, Inv− are generated by transition monoids of IFA, IFA-A, IFA-R,
respectively.
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4 Injective Finite Automata

In this section we shall describe the languages recognized by IFA, as well as
an algebraic characterization of the Boolean closure of this class of languages.
The transition monoid generated by an injective automaton is isomorphic to
a submonoid of the monoid of injective partial functions from a finite set into
itself, which justifies the name chosen for the model.

The classes of languages recognized by IFA-A and IFA-R will be denoted
by L and Lc, respectively. The intersection of L and Lc is the class of group
languages. Recall that a class of languages is closed under inverse morphism if
for any monoid morphism ϕ : Σ∗ → Γ∗ and for any language L in the class,
the language ϕ−1(L) is also in the class. Given a word u and a language L of
Σ∗, recall that the quotient of L by u on the left (resp. right) is the language
u−1L = {v ∈ Σ∗ | uv ∈ L} (resp. Lu−1 = {v ∈ Σ∗ | vu ∈ L}).

Theorem 4.1. The classes L and Lc are closed under inverse morphisms and
word quotients. Furthermore, the class L is closed under finite union and the
class Lc under finite intersection.

Proof. Let ϕ : Σ∗ → Γ∗ be a monoid morphism and let A = (Q,Γ, i, F, · ) be
an automaton recognizing a language L of Γ∗. Then the language ϕ−1(L) is
recognized by the automaton B = (Q,Σ, i, F, ·B ), where the transition function
is given, for each q ∈ Q and σ ∈ Σ, by q ·B σ = q ·ϕ(σ). It follows that if A is an
IFA-A (resp. IFA-R), then so is B. Therefore both classes L and Lc are closed
under inverse morphisms.

Let A = (Q,Σ, i, F, · ) be an automaton recognizing a language L and let u be
a word. Then the language u−1L is recognized by the automaton (Q,Σ, i·u, F, · )
and the language Lu−1 is recognized by the automaton (Q,Σ, i, F ′, · ), where
F ′ = {q ∈ Q | q ·u ∈ F}. It follows that the classes L and Lc are closed under
quotients.

Consider two languages L1 and L2, recognized by the deterministic automata
A1 = (Q1,Σ, i1, F1, · ) and A2 = (Q2,Σ, i2, F2, · ), respectively.

First assume that A1 and A2 are IFA-A. The language L1∪L2 is recognized
by the automaton (Q1 × Q2,Σ, (i1, i2), (Q1 × F2) ∪ (F1 × Q2), · ), where the
transition function is defined by (q1, q2)·σ = (q1 ·σ, q2 ·σ). This automaton is
not an IFA-A. However, all of its states having at least one absorbing component
are equivalent and therefore can be merged to an absorbing final state. The
resulting automaton is an IFA-A which recognizes L1 ∪ L2.

Suppose now that A1 and A2 are IFA-R. The language L1∩L2 is recognized
by the product automaton (Q1 × Q2,Σ, (i1, i2), F1 × F2, · ). All of its states
having at least one absorbing component are equivalent and therefore can be
merged to an absorbing non-final state. The resulting automaton is an IFA-R
which recognizes L1 ∩ L2.

Theorem 4.2. A language of Σ∗ is in L if and only if it is of the form L0 ∪
(
⋃

σ∈Σ LσσΣ∗
)

, where L0 and the Lσ are group languages.
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Proof. First, if L ⊂ Σ∗ is a group-language and σ ∈ Σ, the languages L and
LσΣ∗ are recognized by IFA-A and therefore are in L. Since by Theorem 4.1,
L is closed under finite union, the languages described in the statement are in
L.

Consider now a language L recognized by an IFA-A A = (Q,Σ, q0, F, · )
having an absorbing state h. Let P = Q \ {h}. Each letter of Σ induces an
injective partial map on P . Completing these partial maps to bijections in
an arbitrary way, we obtain a bijective automaton B = (P,Σ, ·B ). Let L0 be
the language recognized by the automaton A0 = (P,Σ, q0, F \ {h}, ·B ) and,
for each letter σ ∈ Σ, let Lσ be the language recognized by the automaton
Aσ = (P,Σ, q0, Fσ, ·B ), where Fσ = {q ∈ P | q ·σ = h}. If L is the language
recognized by the IFA-A represented in Figure 3, the three automata A0, Aσ and
Aτ are pictured in Figure 4. Then by construction, L = L0∪

⋃

σ∈Σ∗ LσσΣ∗.

σ, τ
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τ

σ, τ

σ

τ

σ, τ

σ

τ

σ, τ

σ

τ

σ, τ

σ

τ

σ, τ

σ

τ

Figure 4: The automata A0, Aσ and Aτ , respectively.

Corollary 4.1. A language of Σ∗ is recognized by an IFA-R if and only if it can
be written as L0 ∩

(
⋂

σ∈Σ(LσσΣ∗)c
)

, where L0 and the Lσ are group languages.

So the class of languages recognized by IFA is characterized by Theorem 4.2
and Corollary 4.1.

By Theorem 4.1, L (Lc, respectively) is closed under finite union (finite
intersection), inverse morphisms and word quotients. Nevertheless, L (Lc, re-
spectively) does not form a disjunctive (conjunctive) variety in the sense of
Polák [24], since it is not closed under inverse free semiring morphisms ψ(−1)

(ψ[−1]) as defined there. Using notations from [24], we consider a free semir-
ing morphism ψ : F (a∗) −→ F ({a, b}∗), where ψ({a}) = {a, b}. Consider the
group languages recognized by the following minimal deterministic automaton:
Q = {q0, q1, q2, q3}, Σ = {a, b}, q0 · a = q0 · b = q1, q1 · a = q0, q1 · b = q2,
q2 · a = q2 · b = q3, q3 · a = q2, q3 · b = q0. The initial state is q0. This automa-
ton recognizes a group language L1, if F = {q2}, and a group language L2, if
F = {q0, q1, q3}. Now ψ(−1)(L1) = aa(aa)∗ and ψ[−1](L2) = {ε} ∪ a(aa)∗. By
Theorem 6.1, none of these two languages is recognized by an RFA. Hence L

is not a disjunctive variety and Lc is not a conjunctive variety (in the sense of
Polák).
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Consider the closure of L under finite intersection. The resulting class of
languages is a positive variety of languages. By [23, Theorem 4.4], the corre-
sponding variety of ordered monoids is J+

1
∗ G = ECom+. Combining this

result with the description of the languages of L given by Theorem 4.2, we
obtain the following result:

Proposition 4.1. Let Z be a language of Σ∗. The following conditions are
equivalent:

(1) Z belongs to the closure of L under finite intersection;

(2) Z is a positive Boolean combination of languages of the form L or LσΣ∗,
where L is a group language;

(3) The syntactic ordered monoid of Z belongs to the variety ECom+.

Similarly, the closure of Lc under finite union is exactly the class of languages
recognized by Pin’s reversible automata and the corresponding variety of ordered
monoids is ECom− [18, 19].

Finally, by [14], the closure of L or Lc under Boolean operations corresponds
to the monoid variety J1 ∗ G = ECom.

5 Reversible Finite Automata

The class of languages recognized by CRFA (which, by Proposition 2.2, is also
the class of languages recognized by RFA) will be denoted by K.

This section gives a necessary condition for membership in K, as well as an
algebraic characterization of the Boolean closure K of this class of languages.

Theorem 5.1. Any language of Σ∗ recognized by a CRFA can be written as
K0∪K1σ1Σ

∗∪ . . .∪KkσkΣ∗, where K0, . . . ,Kk ∈ Lc and σ1, . . . , σk are letters.

Proof. Consider a language Z recognized by a CRFA A = (Q,Σ, q0, F, · ). If A
has less than two absorbing states, the result follows from Theorem 4.2. Hence
assume that A has two absorbing states: a non-final state g and a final state h.
Let J = Q \ {h}. We first decompose Z as the union of two languages K0 and
Z1. The language K0 is recognized by the automaton A0 = (J,Σ, q0, F \{h}, ·′ ),
where

q ·′ σ =

{

q ·σ if q ·σ ∈ J,

g otherwise.
(5)

Then A0 is an IFA-R and thus K ∈ Lc. The language Z1 is recognized by the
automaton A1 = (Q,Σ, q0, {h}, · ). For each transition in

T = {(q, σ) ∈ J × Σ | q ·σ = h} (6)

create an automaton Aq,σ = (Q,Σ, q0, {h}, ·q,σ ), where

p·q,σ τ =

{

p· τ if (p, τ) /∈ T or (p, τ) = (q, σ)

g otherwise.
(7)
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Denoting by Z(q,σ) the language recognized by A(q,σ), we obtain

Z =
⋃

(q,σ)∈T

Z(q,σ).

Further, Z(q,σ) = Kq,σσΣ∗, where Kq,σ is the language in Lc that is recognized
by the automaton (J,Σ, q0, {q}, ·

′
q,σ ), where ·′q,σ is the restriction of ·q,σ to J ,

completed by the transition q ·′q,σ σ = g. Hence Z = K0∪
(

⋃

(q,σ)∈T

Kq,σσΣ∗
)

.

Note that given a language K ⊆ Σ∗ of Lc and σ ∈ Σ, the language KσΣ∗ is
recognized by a CRFA.

Theorem 5.2. The class K is closed under complement, inverse of morphisms
between free monoids and word quotients.

Proof. A multiplication of two transition matrices of a CRFA yields a transition
matrix of a CRFA. Hence CRFA is closed under inverse free monoid morphisms.
Closure under complement and word quotients is trivial.

Corollary 5.1. If a language of Σ∗ is recognized by a CRFA, then it can be
written as Kc

0 ∩ (K1σ1Σ
∗)c ∩ · · · ∩ (KkσkΣ∗)c, where k > 0, K0, . . . ,Kk ∈ Lc

and σ1, . . . , σk ∈ Σ.

Since K is closed under complement, its closure under positive Boolean op-
erations (finite unions and intersections) is equal to its Boolean closure K.

Theorem 5.3. A language belongs to K if and only if its syntactic ordered
monoid belongs to J+

1
∗ (J−

1
∗ G).

Proof. Let L be a regular language and let M(L) be its syntactic ordered
monoid. If L ∈ K, then it is by Theorem 5.1 a positive Boolean combination of
languages of the form K or KσΣ∗, where K ∈ Lc. Thus by [18, 19], M(K) ∈
ECom− = J−

1
∗ G. Therefore by [23, Theorem 4.4], M(L) ∈ J+

1
∗ (J−

1
∗ G).

Suppose now that M(L) ∈ J+
1
∗ (J−

1
∗ G). Then by [23, Theorem 4.4], L

is a positive Boolean combination of languages of the form Z or ZσΣ∗, where
M(Z) ∈ J−

1
∗ G. Further, Z is a positive Boolean combination of languages

of the form Yi and (YjσΣ∗)c, where Yi, Yj are group languages. So Z =
⋃

i

Ki,

where Ki ∈ Lc. Now ZσΣ∗ = (
⋃

i

Ki)σΣ∗ =
⋃

i

(KiσΣ∗). Hence L ∈ K.

By Theorem 3.1, J+
1
∗ (J−

1
∗ G) = (J+

1
∗ J−

1
) ∗ G, hence it is of interest to

describe the variety J+
1
∗ J−

1
. A first step is to prove the following lemma:

Lemma 5.1. Let M be a monoid in J+
1

(whose operation is denoted additively)
and let N be a monoid in J−

1
. Then, for any left action of N on M , for all

m ∈M and n ∈ N , m+ n·m = m.

11



Proof. Let m ∈M and n ∈ N . Since M ∈ J+
1
, m 6 0. Since the order relation

is stable under the action, we obtain n·m 6 0 and consequently, m+n·m 6 m.
On the other hand, since N ∈ J−

1
, 1 6 n. Hence m 6 n·m and m 6 m+ n·m.

Now m 6 m+ n·m 6 m, therefore m+ n·m = m.

Theorem 5.4. The following equalities hold: J+
1
∗ J−

1
= J−

1
∗ J+

1
= R1.

Proof. We first prove the equality J+
1
∗ J−

1
= R1.

Let M ∈ J+
1

and N ∈ J−
1

. Both M and N satisfy the identities xy = yx
and x2 = x. Let us verify that M ∗ N satisfies the identity xyx = xy. Let
(m1, n1), (m2, n2) ∈M ∗N . Using Lemma 5.1, we obtain

(m1, n1)(m2, n2)(m1, n1) = (m1 + n1 ·m2 + (n1n2)·m1, n1n2n1)

= (m1 + (n1n2)·m1 + n1 ·m2, n1n2)

= (m1 + n1 ·m2, n1n2) = (m1, n1)(m2, n2)

Thus M ∗ N ∈ R1. Since the variety J+
1
∗ J−

1
is generated by such semidirect

products, it follows that J+
1
∗ J−

1
⊆ R1.

Let Ur
2 = {1, a, b} be the idempotent monoid defined by ab = a and ba = b.

It is well known (see [21], for instance) that the variety R1 is generated by
Ur

2 . Proving that (Ur
2 ,=) ∈ J+

1
∗ J−

1
will thus suffice to establish the inclusion

R1 ⊆ J+
1
∗ J−

1
.

Let U+
1 = ({0, a},+,6) (respectively U−

1 = ({1, b},6)) be the idempotent
ordered monoid whose operation is denoted additively (respectively multiplica-
tively) and order is defined by a 6 0 (respectively 1 6 b). Thus U+

1 ∈ J+
1

and
U−

1 ∈ J−
1

. Define a left action of U−
1 on U+

1 by setting 1· 0 = 0, b· 0 = 0,
1· a = a, b· a = 0. One can easily verify that the left action satisfies the condi-
tions (1)-(6), defined for left actions of ordered monoids in [22]. Thus we have
defined a semidirect product U+

1 ∗ U−
1 . Let 1 = (0, 1), x = (0, b), y = (a, 1),

z = (a, b) and consider the submonoid T = {1, x, z} of U+
1 ∗ U−

1 . Then the
submonoid M = {(1, 1), (x, z), (z, x)} of T × T is isomorphic to the monoid
(Ur

2 ,=). It follows that (Ur
2 ,=) ∈ J+

1
∗ J−

1
and thus R1 ⊆ J+

1
∗ J−

1
.

Now R1 = J+
1
∗ J−

1
and hence by Proposition 3.1, R1 = J−

1
∗ J+

1
.

The variety of monoids R1 is defined by the identity xyx = xy. Hence by
[2, Corollary 4.3] and [1, Exercise 10.2.4], R1 ∗ G = [[xωyωxω = xωyω]] = ER1.

This yields the following theorem, which essentially says that the languages
recognized by RFA generate the variety ER1:

Theorem 5.5. A language is in K if and only if its syntactic monoid belongs
to the variety ER1.

6 Algebraic Conditions

Let us note that Ambainis and Freivalds have proved [5, Theorems 2 and 3] the
following characterization for the class of languages recognized by RFA:

12



Theorem 6.1. Let A be the minimal automaton of a regular language L. Then
L is recognized by a reversible finite automaton if and only if for any states
q1, q2, q3 of A, such that q1 6= q2, q2 6= q3, and for any input words x, y, A does
not contain the following configuration: q1 ·x = q2, q2 ·x = q2, q2 · y = q3.

q1 q2 q3
x

x

y

Figure 5: The forbidden configuration in a RFA.

The Ambainis-Freivalds condition can be translated into an algebraic condi-
tion. Let L a regular language of Σ∗. We denote by M(L) its syntactic monoid,
by ϕ : Σ∗ −→ M(L) its syntactic morphism and by P = ϕ(L) the syntactic
image of L. Let ∼r be the right congruence on M(L) defined by s ∼r t if and
only if, for all u ∈M(L), su ∈ P is equivalent to tu ∈ P .

Corollary 6.1. A language L is recognized by a reversible finite automaton if
and only if for all s, t, u ∈M(L),

stω ∼r s or stωu∼r st
ω. (8)

Proof. Consider the minimal automaton (Q,Σ, q0, F, · ) of a language L. Due
to Ambainis-Freivalds condition, a language is recognized by a reversible finite
automaton if and only if for all q1, q2, q3 ∈ Q and x, y ∈ Σ∗,

q1 ·x = q2, q2 ·x = q2 and q2 · y = q3 imply q1 = q2 or q2 = q3 (9)

or, equivalently, for all q ∈ Q, for all x, y ∈ Σ∗,

q ·x = q ·x2 implies q = q ·x or q ·x = q ·xy (10)

Now, choose v ∈ Σ∗ such that q = q0 · v and let s = ϕ(v) and t = ϕ(x). We
claim that the condition q ·x = q ·x2 is equivalent to st ∼r st2. Indeed, by
the definition of the Nerode equivalence, the first condition means that, for
every y ∈ Σ∗, q0 · vxy ∈ F if and only if q0 · vx

2y ∈ F , or, equivalently, for all
u ∈M(L), stu ∈ P if and only if st2u ∈ P .

Therefore, Formula (10) can be rewritten as follows: for all s, t, u ∈M(L),

st ∼r st
2 implies s ∼r st or st ∼r stu, (11)

which is in turn equivalent to: for all s, t, u ∈M(L),

s ∼r st
ω or stω ∼r st

ωu. (12)
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Consider an injective automaton A, which is not a group automaton, i.e.,
has one absorbing state. We assume that A is accessible. Then for any state
q and any word w, there exists k > 0 such that q ·wk = q or q ·wk = h,
where h is the absorbing state. Therefore we deduce that the absorbing state is
accessible from any state. So the transition monoid M(A) has a zero element
([17, Exercise 2.7]). Since M(L) divides M(A), M(L) also has a zero element.
One can view the syntactic monoid M(L) as an automaton (M(L),Σ, 1, P, · ),
which recognizes L. Any of its states is accessible from the initial state 1. The
right equivalence class containing 0 corresponds to the absorbing state in the
minimal automaton of L. All the absorbing states of M(L) are in this class.
Hence if for every u, stω ∼r st

ωu, then stω ∼r 0. Thus in the case of DBPA,
Corollary 6.1 may be rewritten as follows:

Corollary 6.2. A language L is recognized by a deterministic Brodsky-Pippen-
ger automaton if and only if, for all s, t ∈M(L), stω ∼r s or stω ∼r 0.

If L is a group language, M(L) does not have a zero, so this condition reduces
to: for all s, t ∈M(L), stω ∼r s, which is in turn equivalent to tω = 1.

Finally, let us note one can prove the following theorem:

Theorem 6.2. Let A be the minimal automaton of a regular language L. Then
M(L) ∈ ER1 if and only if for all states q1, q2, q3 of A, such that q2 6= q3,
and for all input words x, y, A does not contain the following configuration:
q1 · y = q1, q1 ·x = q2, q2 ·x = q2, q2 · y = q3, q3 · y = q3.

q1

y

q2 q3
x

x

y

y

Figure 6: The forbidden configuration corresponding to ER1.

One may notice similarities in Figures 5 and 6.

7 Semidirect Products of Ordered J -Trivial Monoids

of Opposite Order

We proved in Section 5 that J+
1
∗ J−

1
= J−

1
∗ J+

1
= R1. So it is reasonable to

ask whether a similar equality holds for varieties of ordered J -trivial monoids.
Indeed, in this section we prove that J+ ∗ J− = J− ∗ J+ = R.

Let us say that a regular language is R-trivial (respectively J -trivial) if it is
recognized by an R-trivial (respectively J -trivial) monoid. We first recall some
known characterizations of these languages (see [10, 17]).
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Theorem 7.1. A language of A∗ is R-trivial if and only if it is a disjoint
union of languages of the form A∗

0a1A
∗
1a2 · · · anA

∗
n with n > 0, a1, . . . , an ∈ A,

Ai ⊆ A \ {ai+1} for 0 6 i 6 n− 1 and An ⊆ A.

Theorem 7.2 (Simon). A language of A∗ is J -trivial if and only if it is a
Boolean combination of languages of the form A∗a1A

∗a2 · · · anA
∗ with n > 0

and a1, . . . , an ∈ A.

We need a slightly different characterization of the R-trivial languages, which
requires a new definition.

Definition 7.1. An R-basic language of A∗ is a language of the form

A∗
0a1A

∗
1a2 · · ·A

∗
n−1anA

∗
nan+1A

∗

with n > 0, a1, . . . , an+1 ∈ A, Ai = A \ {ai+1} for 0 6 i 6 n − 1 and An ⊆
A \ {an+1}.

We are now ready to prove the announced description of R-trivial languages.

Theorem 7.3. A language of A∗ is R-trivial if and only if it is a positive
Boolean combination of R-basic and J -trivial languages.

Proof. Clearly, any R-basic or J -trivial language is R-trivial. Taking into ac-
count Theorem 7.1, it suffices to show that the language

L = A∗
0a1A

∗
1a2 · · · anA

∗
n

with n > 0, a1, . . . , an ∈ A, Ai ⊆ A \ {ai+1} for 0 6 i 6 n− 1 and An ⊆ A, is a
finite intersection of R-basic and J -trivial languages. The minimal automaton
A of L is represented in Figure 7, where A′

i = A\ (Ai ∪{ai+1}) for 0 6 i 6 n−1
and A′

n = A \An.

q0

A0

q1

A1

qn−1

An−1

qn

An

. . .a1 a2 an−1 an

qn+1

A

A′
0

A′
1 A′

n−1 A′
n

Figure 7: The automaton A.
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We claim that

L =
⋂

06i6n

Li

where, for 0 6 i 6 n− 1,

Li = B∗
0a1B

∗
1a2 · · ·B

∗
i−1aiA

∗
i ai+1A

∗

and

Ln = (B∗
0a1B

∗
1a2 · · ·B

∗
n−1anA

∗
nBnA

∗)c,

with Bi = A \ {ai+1} for 0 6 i 6 n− 1 and Bn = A \An.

The languages L0, . . . , Ln−1 are R-basic. Further, Ln is J -trivial since

B∗
0a1B

∗
1a2 · · ·B

∗
n−1anA

∗
nBnA

∗ =
⋃

a∈Bn

A∗a1A
∗a2 · · ·A

∗anA
∗aA∗

The minimal automata Ai of the languages Li are depicted in Figures 8 and 9.

q0

B0

q1

B1

. . . qi−1

Bi−1

qi

Ai

qi+1

A

a1 a2 ai ai+1

qn+1

A

A′
i

Figure 8: The automaton Ai, for 0 6 i 6 n− 1.

Let u ∈ L. Taking u as an input, the automaton A halts in the final state
qn. Since for all 0 6 i 6 n−1, Ai ⊆ Bi, on the same input u, the automaton Ai

halts in qi+1, which for Ai is the final state. As for the automaton An, it halts
in qn and thus accepts u. Therefore u ∈

⋂

06i6n

Li.

On the other hand, if u /∈ L, then A rejects u and the computation halts in
one of the states q0, . . . , qn−1 or in qn+1. If it halts in one of the states qi, with
0 6 i < n, then the automaton Ai also halts in qi and rejects u. If it halts in
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q0

B0

q1

B1

. . . qn−1

Bn−1

qn

An

qn+1

A

a1 a2 an Bn

Figure 9: The automaton An.

qn+1, then the path of label u visits all the states of some sequence q0, . . . , qi
before reaching qn+1. In this case, the automaton Ai visits the same sequence
of states and hence rejects u. Altogether, there exists i such that u /∈ Li and so
u /∈

⋂

06i6n

Li. Therefore L =
⋂

06i6n

Li.

We are now ready to prove the main result of this section.

Theorem 7.4. The following equalities hold: J+
1
∗ J = J−

1
∗ J = J+ ∗ J− =

J− ∗ J+ = R.

Proof. We first prove the equalities J+
1
∗ J = J+ ∗ J− = R.

It is proved in [10] that R ∗ R = R. Since J ⊂ R, J+ ∗ J− ⊆ R and
J+
1
∗ J ⊆ R. It remains to establish inclusions R ⊆ J+

1
∗J ⊆ J+ ∗J−. As noted

in [22], J = J+ ∨ J−, whence J ⊆ J+ ∗ J−. It follows from [22, Corollary 4.3]
that J+

1
∗ J+ = J+. Thus J+

1
∗ J ⊆ J+

1
∗ (J+ ∗ J−) = (J+

1
∗ J+) ∗ J− = J+ ∗ J−.

Eilenberg’s theorem and the results of [20] show that, to establish the in-
clusion R ⊆ J+

1
∗ J, it is sufficient to prove that any R-trivial language L is

recognized by an ordered monoid in J+
1
∗ J. By Theorem 7.3, L is a positive

Boolean combination of R-basic and J -trivial languages. Consequently, it only
remains to prove that any R-basic language is recognized by a monoid in J+

1
∗ J.

Let K be an R-basic language of A∗, say

K = A∗
0a0A

∗
1a1 · · ·A

∗
n−1an−1A

∗
nanA

∗

with n > 0, a0, . . . , an ∈ A, Ai = A \ {ai} for 0 6 i 6 n − 1 and An ⊆
A \ {an}. Then the language K ′ = A∗

0a0A
∗
1a1 . . . A

∗
n−1an−1A

∗
n is J -trivial and

K = K ′anA
∗. It follows now from [23, Theorem 4.4] that K is recognized by a

monoid in J+
1
∗ J. Therefore R = J+

1
∗ J = J+ ∗ J− and hence by Proposition

3.1, R = J−
1
∗ J = J− ∗ J+.
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