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Abstract

A pocrig (A, ·,→, 1) is a partially ordered commutative resid-
uated integral groupoid. We characterise the class of all residu-
ation subreducts (A,→, 1) of pocrigs.

This is now known well that BCK*-algebras (i.e., order duals of Iseki
BCK-algebras [7]) are subreducts of partially ordered commutative
residuated integral monoids or pocrims—see [11] and references therein.
A similar result holds for porims (partially ordered (bi)residuated in-
tegral monoids that need not be commutative) and so called pseudo-
BCK*-algebras [6, 8].

The present author introduced in [1] the notion of a weak BCK*-
algebra. In particular, it was shown there that residuation subreducts of
partially ordered commutative residuated integral groupoids (pocrigs)
are weak BCK*-algebras. The question which weak BCK*-algebras are
such subreducts was left open in Sect. 4 of [1]. In this paper, we separate
out a subclass of weak BCK*-algebras, called quasi-BCK* algebras, and
prove that a weak BCK*-algebra is a subreduct of a pocrig if and only
if it is a quasi-BCK*-algebra. This is achieved by representing quasi-
BCK*-algebras by means of ternary frames [2, 3, 4]. In fact, much of
the work has already done in [2].

1 Preliminaries

To make this paper independent of [1], we present here the necessary
information on wBCK*-algebras and pocrigs.
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According to [9], an implicative algebra is an algebra (A,→, 1),
where A is a poset with a greatest element 1, and → is a binary oper-
ation on A such that

(→1) : x ≤ y if and only if x → y = 1.

A weak BCK*-algebra, or just wBCK*-algebra for short, is an implica-
tive algebra (A,→, 1) where, in addition,

(→2) : if x ≤ y → z, then y ≤ x → z.

The axiom (→1) can actually be reduced.

Proposition 1 An ordered algebra (A,→, 1) satisfying (→2) is a weak
BCK*-algebra if and only if 1 is its largest element and

(→3) : 1 → x = x

for all x.

Indeed, (→3) implies (→1):

x ≤ y if and only if x ≤ 1 → y if and only if 1 ≤ x → y ≤ 1.

Conversely, (→1) implies that 1 ≤ x → x, i.e. x ≤ 1 → x, and that
1 → x ≤ x, for 1 ≤ (1 → x) → x by (→4) (see below).

The properties

(→4) : x ≤ (x → y) → y,

(→5) : if x ≤ y, then y → z ≤ x → z.

are easy consequences of (→2): the first one follows from the inequality
x → y ≤ x → y, and the other, from x ≤ y ≤ (y → z) → z. The axiom
(→2) can even be replaced by the pair of conditions (→4) and (→5): if
x ≤ y → z, then y ≤ (y → z) → z ≤ x → z.

A poset equipped with a binary operation · that is isotone in both
arguments, is called a partially ordered groupoid (or a pogroupoid). A
(left) residuated groupoid is a system (A, ·,→), where A is a poset, · is
a binary operation on it, and → is another operation related to · by
the requirement

x ≤ y → z if and only if xy ≤ z (1)

or, equivalently, by the four conditions
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(a1): x ≤ y → xy,

(a2): (x → y)x ≤ y,

(a3): if x ≤ y, then z → x ≤ z → y,

(a4): if x ≤ y then xz ≤ yz.

It follows from (a4) that a commutative residuated groupoid is a po-
groupoid. A pocrig is a (partially ordered) commutative residuated
integral groupoid.

Obviously, (→2) holds in every commutative residuated groupoid.
If, in addition, the groupoid is integral, then also the identity (→3)
holds due to (a1) and (a2). Consequently, the residuation reduct of a
pocrig is a wBCK*-algebra. Let us call a wBCK*-algebra satisfying
(a3) a quasi-BCK*-algebra or just qBCK*-algebra. Therefore, the ‘only
if’ part of the following theorem, which is the main result of the paper,
is trivial; the other half is proved in the last section.

Theorem 2 An algebra (A,→, 1) is a subreduct of a pocrig if and only
if it is a qBCK*-algebra.

A poset with an operation → satisfying (→5) and (a3) is an im-
plicational poset in the sense of [2], and an implicational poset that
is an implicative algebra is called there an assertional implicational
poset (and an extended-order algebra in the recent paper [?]). Hence,
qBCK*-algebras form a subclass of assertional implicative posets, and
we can apply to them results obtained for such posets in [2] and adapt
methods used there.

We also note without proof that the class of BCK*-algebras coin-
cides with the class of qBCK*-algebras satisfying the identity

x → (y → z) = y → (x → z).

It follows that, like BCK*-algebras, quasi-BCK*-algebras do not form
a variety [10, 11, 5]. Observe that (→2) is, in fact, the “rule form” of
the above identity.
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2 Assertional frames

In this section, we adapt from [2] the notions of ternary frame and the
associated residuated groupoid of a frame. See also [3] and Sect. 8 in
[4].

A frame is a pair (U,R), where R is a ternary relation on a set U .
We call a frame commutative, if Ruvw implies Rvuw for all u, v, w ∈ U .
The following operations ◦ and Ã are defined on subsets of a frame:

X ◦ Y := {z : Rxyz for some x ∈ X and y ∈ Y },
X Ã Y := {v : w ∈ Y whenever Rvxw for some x ∈ X}

It is easily seen that the structure (P(U), ◦,Ã) is a residuated groupoid
w.r.t. the inclusion relation in P(U), which is commutative if the frame
is commutative. We term it the associated residuated groupoid of the
frame. Subalgebras of such structures are called concrete residuated
groupoids. Recall that a commutative residuated groupoid is necessar-
ily a pogroupoid.

As demonstrated in [2], in order to treat concrete residuated group-
oids with identity, we have to modify the notion of a frame.

A frame (U,R) is said to be articulated if U = (U,v) is an ordered
set and R satisfies the so called tonicity conditions :

if Ruvw and w v w′, then Ruvw′,

if Ruvw and u′ v u, then Ru′vw,

if Ruvw and v′ v v, then Ruv′w.

An articulated frame is said to be assertional if v is defined in terms
of the relation R as follows:

x v y if and only if Rxvy for some v. (2)

Actually, the assertional frames of [2, 3] are slightly more general struc-
tures; the version introduced above is sufficient for our purposes.

Let (U,R) be an articulated frame. An order filter, or an up-set
in U is a subset X such that x ∈ X and x ≤ y imply y ∈ X. The
set P(U)↑ of all up-sets is closed under operations ◦ and Ã, i.e., is
a concrete residuated groupoid. Moreover, the up-set 1I := U is its
largest element and, if the frame is assertional, acts as the right identity
element. Indeed, then X ◦ 1I = {z : x v z for some x ∈ X} = X.
Therefore, we have come to the following proposition.
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Proposition 3 If (U,R) is a commutative assertional frame, then the
algebra (P(U)↑, ◦, Ã, 1I) is a concrete pocrig.

This pocrig is, in fact, even lattice ordered, with intersection in
the role of meet. Moreover, the corresponding lattice is distributive.
It will be shown in the next section that, conversely, every qBCK*-
algebra gives rise to an assertional frame and is isomorphic to a concrete
qBCK*-algebra on this frame.

3 Proof of the main theorem

Thus, let (A,→, 1) be a qBCK*-algebra. Its canonical assertional frame
is constructed as follows: we let U stand for the set P(A)↑, and de-
fine the accessibility relation R on U following [2] (see the proof of
Representation Lemma in Sect. 5 therein):

RXY Z :≡ for all x, y, z ∈ A, if x ∈ X and x → y ∈ Y , then y ∈ Z.

Due to (→4), this frame is commutative: if x → y ∈ X and x ∈ Y ,
then (x → y) → y ∈ Y and y ∈ Z. We consider the set U as ordered
by set inclusion; then the frame is articulated. According to Inclusion
Lemma in [2, Sect. 9], it satisfies (2) and, hence, is also assertional.
Therefore, its associated residuated groupoid is a pocrig.

Now consider the mapping h : A → P(U)↑ defined by h(a) := {X ∈
U : a ∈ X}. In virtue of (a3) and (→5), we can repeat the relevant
portions of the proof of Representation Lemma for implicational posets
in Sect. 5 of [2] to demonstrate that (i) a ≤ b if and only if h(a) ⊆ h(b),
so that the mapping h is injective, and (ii) h(a → b) = h(a) Ã h(b).
Furthermore, h(1) = 1I, as 1 is the largest element of A.

We conclude that h is an embedding of A into its associated pocrig.

Proposition 4 The mapping h : A → P(U)↑ is one-to-one and pre-
serves both → and 1.

Therefore, A is (isomorphic to) a subreduct of a concrete pocrig,
and the proof of Theorem 2 is completed.

It follows from the remark subsequent to Proposition 3 that the
theorem can even be strengthened: the pocrig can be chosen to be
lattice ordered and distributive.
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