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Abstract. In this talk, we describe two recent developments in quantum
algorithms.

The first new development is a quantum algorithm for evaluating a
Boolean formula consisting of AND and OR gates of size N in time
O(\/N ). This provides quantum speedups for any problem that can be
expressed via Boolean formulas. This result can be also extended to span
problems, a generalization of Boolean formulas. This provides an opti-
mal quantum algorithm for any Boolean function in the black-box query
model.

The second new development is a quantum algorithm for solving systems
of linear equations. In contrast with traditional algorithms that run in
time O(N?37) where N is the size of the system, the quantum algo-
rithm runs in time O(log® N). It outputs a quantum state describing the
solution of the system.

1 History of quantum algorithms

1.1 First quantum algorithms

Quantum computing (and, more broadly, quantum information science) is a
new area at the boundary of computer science and physics. It studies how to
apply quantum mechanics to solve problems in computer science and information
processing. The area of quantum computing was shaped by the discoveries of two
major quantum algorithms in mid-1990s.

The first of the these two discoveries was Shor’s polynomial time quantum
algorithm for factoring and discrete logarithms. Factoring and discrete loga-
rithm are very hard number theoretic problems. The difficulty of these problems
has been used to design cryptosystems (such as RSA and Diffie-Helman key ex-
change) for secure data transmission over an insecure network (such as Internet).
The security of data transmission is based on the assumption that it is hard to
factor (or find discrete logarithm of) large numbers. Until recently, this assump-
tion was not in doubt. Mathematicians had tried to devise an efficient way of
factoring large numbers for centuries, with no success.

In 1994, Shor [56] discovered a fast algorithm for factoring large numbers - on
a quantum mechanical computer. This shook up the foundations of cryptography.
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If a quantum mechanical computer is built, today’s methods for secure data
transmission over the Internet will become insecure.

Another, equally strikingly discovery was made in 1996, by Lov Grover [34].
He invented a quantum algorithm for speeding up exhaustive search problems.
Grover’s algorithm solves a generic exhaustive search problem with N possible
solutions in time O(v/N). This provides a quadratic speedup for a range of search
problems, from problems that are in P classically to NP-complete problems.

Since then, each of the two algorithms has been analyzed in great detail.
Shor’s algorithm has been generalized to solve a class of algebraic problems that
can be abstracted to Abelian hidden subgroup problem [39]. Besides factoring
and discrete logarithm, the instances of Abelian HSP include cryptanalysis of
hidden linear equations [18], solving Pell’s equation, principal ideal problem [35]
and others.

Grover’s algorithm has been generalized to the framework of amplitude am-
plification [21] and extended to solve problems like approximate counting [23,
47] and collision-finding [22].

1.2 Quantum walks and adiabatic algorithms

Later, two new methods for designing quantum algorithms emerged: quantum
walks [4,41,9,54,60] and adiabatic algorithms [31].

Quantum walks are quantum generalizations of classical random walks. They
have been used to obtain quantum speedups for a number of problems. The
typical setting is as follows. Assume that we have a classical Markov chain,
on a state-space in which some states are special (marked). The Markov chain
starts in a uniformly random state and stops if it reaches a marked state. If the
classical Markov chain reaches a marked state in expected time T', then there is a
quantum algorithm which can find it in time O(\/T ), assuming some conditions
on the Markov chain [58, 44, 42].

This approach gives quantum speedups for a number of problems: element
distinctness [5], search on a grid [13,59], finding triangles in graphs [45], testing
matrix multiplication [19] and others.

Another application of quantum walks is to the ”glued trees” problem [26].
In this problem, we have a graph G with two particular vertices u, v, designed
as the entrance and the exit. The problem is to find the vertex v, if we start at
the vertex u. There is a special exponential size graph called ”glued trees” on
which any classical algorithm needs exponential time to find v but a quantum
algorithm can find v in polynomial time [26].

Adiabatic computation is a physics-based paradigm for quantum algorithms.
In this paradigm, we design two quantum systems:

— H,, whose lowest-energy state |1)s0;) encodes a solution to a computational
problem (for example, a satisfying assignment for SAT).
— Hgiort whose lowest-energy state |1)stqrt) is such that we can easily prepare

|1/}start> .



We then prepare |1)stq,¢) and slowly transform the forces acting on the quantum
system from Hg;qrt to Hgoy. Adiabatic theorem of quantum mechanics guarantees
that, if the transformation is slow enough, |tstart) is transformed into a state
close to |tsor) [31].

The key question here is: what is ”slowly enough”? Do we need a polynomial
time or an exponential time to transform Hgart to Hgo (thus solving SAT by a
quantum algorithm)? This is a subject of an ongoing debate [31,29, 2].

Adiabatic computation has been used by D-Wave Systems [30] which claims
to have built a 128-bit adiabatic quantum computer. However, the claims of
D-Wave have been questioned by many prominent scientists (see e.g. [1]).

1.3 Most recent algorithms

Two most recent discoveries in this field are the quantum algorithms for for-
mula evaluation [32] and solving systems of linear equations [36]. Both of those
algorithms use the methods from the previous algorithms but do it in a novel,
unexpected way. Formula evaluation uses quantum walks but in a form that is
quite different from the previous approach (which we described above). Quantum
algorithm for formula evaluation uses eigenvalue estimation [46] which is the key
technical subroutine of Shor’s factoring algorithm [56] and the related quantum
algorithms. But, again, eigenvalue estimation is used in a very unexpected way.

These two algorithms are the main focus of this survey. We describe them in
detail in sections 2 and 3.

2 Formula evaluation

2.1 Overview

We consider evaluating a Boolean formula of variables x1,...,xn consisting of
ANDs and ORs, with each variable occuring exactly once in the formula. Such a
formula can be described by a tree, with variables x; at the leaves and AND/OR
gates at the internal nodes. This problem has many applications because Boolean
formulas can be used to describe a number of different situations. The most
obvious one is determining if the input data 1, ...,z satisfy certain constraints
that can be expressed by AND/OR gates.

For a less obvious application, we can view formula evaluation as a black-
box model for a 2-player game (such as chess) if both players play their optimal
strategies. In this case, the game can be represented by a game tree consisting of
possible positions. The leaves of a tree correspond to the possible end positions
of the game. Each of them contains a variable x;, with 2; = 1 if the 15 player
wins and z; = 0 otherwise. If an internal node v corresponds to a position in
which the 15% player makes the next move, then v contains a value that is OR
of the values of v’s children. (The 15¢ player wins if he has a move that leads
to a position from which he can win.) If v is a node for which the 2°¢ player
makes the next move, then v contains a value that is AND of the values of v’s



children. (In this case, the 15¢ player wins if he wins for any possible move of the
274 player.)

The question is: assuming we have no further information about the game
beyond the position tree, how many of the variables x; do we have to examine
to determine whether the 15 player has a winning strategy?

Classically, the most widely studied case is the full binary tree of depth d,
with N = 27 leaves. It can be evaluated by looking at ©(N-7*) leaves and this
is optimal [54, 53,57]. A natural question was whether one could achieve a better
result, using quantum algorithms. This question was a well known open problem
in the quantum computing community since mid-1990s. Until 2007, the only
known result was that Q(\/N ) quantum steps are necessary, for any AND-OR,
tree (3, 14].

2.2 The model

By standard rules from Boolean logic (de Morgan’s laws), we can replace both
AND and OR gates by NAND gates. A NAND gate NAND(y1, ..., yx) outputs
1if AND(y1,...,yx) = 0 (ie., y; = 0 for at least one ¢ € {1,...,k}) and 0
otherwise. Then, we have a tree with x1,...,xy at the leaves and NAND gates
at the internal vertices. The advantage of this transformation is that we now
have to deal with just one type of logic gates (instead of two - AND and OR).

We work in the quantum query model. In the discrete-time version of this
model [6,20], the input bits z1,...,25 can be accessed by queries O to a black
box.

To define O, we represent basis states as |¢, z) where ¢ € {0,1,...,N}. The
query transformation O, (where z = (x1,...,2y)) maps |0, z) to |0, z) and |4, 2)
to (=1)%ii, z) for i € {1,..., N} (i.e., we change phase depending on z;, unless
i = 0 in which case we do nothing).

Our algorithm can involve queries O, and arbitrary non-query transforma-
tions that do not depend on x1,...,xy. The task is to solve a computational
problem (e.g., to compute a value of a NAND formula) with as few queries as
possible.

2.3 Results

In 2007, in a breakthrough result, Farhi et al. [32] showed that the full binary
AND-OR . tree can be evaluated in O(v/N) quantum time in continuous-time
counterpart of the query model.

Several improvements followed soon. Ambainis et al. [27,8,12] translated
the algorithm of [32] to the conventional discrete time quantum query model
and extended it to evaluating arbitrary Boolean formulas with O(N v 2+°(1))
quantum queries.

Soon after, Reichardt and Spalek [52] discovered a far-reaching generalization
of this result. Namely, the quantum algorithm was generalized to evaluating
span programs. A span program is an algebraic model of computation, originally
invented for proving lower bounds on circuit size [40].



In a span program, we have a target vector v in some linear space. We also
have other vectors vq,..., vy, each of which is associated with some condition
x; = 0 or ; = 1. The span program evaluates to 1 on an input zq,...,z, if
v is equal to a linear combination of vectors v, ,...,v;, which are associated
with conditions that are true for the given input x1, ..., z,. Otherwise, the span
program evaluates to 0.

Here is an example of a span program. We have a two dimensional linear
space, with the following vectors:

SOREWESOEN®

where a, b, c are any three distinct non-zero numbers. Vectors vy, va, v3 are asso-
ciated with conditions z1 = 1, o = 1, z3 = 1, respectively.

Given any two of v1,vs,v3, we can express any vector in two dimensions
(including v) as their linear combination. Thus, this span program computes the
majority function M AJ(z1,x2,x3) which is 1 whenever at least 2 of variables
1, T2, T3 are equal to 1.

Logic formulae can be embedded into span programs. That is, if we have two
span programs computing functions fi(z1,...,zy) and fao(x1,...,zN), Wwe can
combine them into span programs for fi AND f, and f1 OR fs in a fairly simple
way.

Reichardt and Spalek [52] invented a complexity measure, witness size for
span programs. This measure generalizes formula size: a logic formula of size
S can be transformed into a span program with witness size S. [52] gave a
quantum algorithm for evaluating a span program of witness size S with O(v/S)
queries. This is a very interesting result because it allows to evaluate formulas
with gates other than AND and OR by designing span programs for those gates
and them composing them into one big span program. The next step was even
more interesting.

The next step was even more surprising. Reichardt [48, 49, 51] discovered that
the span program approach is optimal, for any Boolean function f(z1,...,znN).
That is [51], if Q(f) is the minimum number of quantum queries for evaluating
f (by any quantum algorithm), then there is a span program with witness size
O(Q?(f)). Thus, a span-program based algorithm can evaluate f with O(Q(f))
queries, within a constant factor of the best possible number of queries.

This fact linked two lines of research: quantum formula evaluation algorithms
and ”quantum adversary” lower bounds. ” Quantum adversary” (invented in [3])
is a method for proving lower bounds on the number of queries to evaluate
f(z1,...,zn) by a quantum algorithm. Several progressively stronger versions
of ”quantum adversary” have been invented [7,15,43,38], with the strongest
being the "negative adversary” method of [38].

Finding the best lower bound for quantum algorithms provable via "nega-
tive adversary” method is a semidefinite program (SDP). Reichardt [48, 49, 51]
considered the dual of this SDP and showed that the dual SDP gives the span
program with the smallest witness size. Thus, the span programs are optimal



(in terms of query complexity) for any Boolean function f(z1,...,zy). (Finding
the optimal span program, however, requires solving a semidefinite program of
size 2V.)

As a by-product, this gave a better algorithm for formula evaluation, improv-
ing the complexity from O(N'/2+°(M) in [12] to O(v/N log N) in [50].

2.4 Algorithmic ideas

We now give a very informal sketch the simplest version of formula evaluation
algorithm. We augment the formula tree with a finite "tail” of length L as shown
in Figure 1. We then consider a quantum walk on this tree. At the leaves of the

L L1 4 3 2 1

Fig. 1. A formula tree augmented with a finite "tail”

tree, the transformations that are performed depend on whether the leaf holds
x; = 0 or z; = 1. (This is achieved by querying the respective x; and then
performing one of two transformations, depending on the outcome of the query.)

The starting state is an appropriately chosen quantum state [siare) = >, @4li)
consisting of the states |¢) in the tail. If the quantum walk is set up prop-
erly, an amazing thing happens! Whenever the formula evaluates to 0, the state
|*start) remains almost unchanged. Whenever the formula evaluates to 1, after
O(N'/?+o(1)) steps, the state is almost completely different from |1),¢4,¢). This
means that we can distinguish between the two cases by running the walk for
O(N1/2+0(1)) steps and measuring whether the state is still |t)5¢qrt). Surprisingly,
the behaviour of the walk only depends on the value of the formula and not on
which particular variables x1,...,xn are 1.

The algorithm for evaluating span programs is essentially the same, except
that the quantum walk is performed on a weighted graph that corresponds to
the span program.

For more information on this topic, we refer the reader to the survey [10] and
the original papers.



3 Linear equations

3.1 Overview

Solving large systems of linear equations is a very common problem in scientific
computing, with many applications. We consider solving a system of N linear
equations with N unknowns: Ax = b where

ai; a1z ... A1N T b1

azy a29 ... AG2N xZo bg
A= , T = ,b=

anN1 AN2 ... QNN N bN

A and b are given to us. The task is to find x.

The best classical algorithm for solving a general system Ax = b runs in time
O(N?%37-+). The reason for that was that even outputting the solution requires
time 2(N) because the solution contains values for N variables. Thus, it seemed
that there was no hope for achieving more than a polynomial speedup by a
quantum algorithm.

Recently, Harrow, Hassidim and Lloyd [36] discovered a surprising quantum
algorithm that allows to solve systems of linear equations in time O(log® N) - in
an unconventional sense. Namely, the algorithm of [36] generates the quantum

state
N
) = aili)
i=1

with the coefficients xz; being equal to the values of variables in the solution
x = (21,Z2,...,2N) of the system Az = b.

What can we do with this quantum state? We cannot extract all the values x;
from it. If we measured this state, we would obtain one value i, with probabilities
of different i proportional to |x;|2.

We can, however, estimate some quantities that depend on all of z;. For
example, if all variables in the solution had values 1 or -1, having the quan-
tum state |1)) would enable us to estimate the fraction of variables x; = —1.
Moreover, similar tasks appear to be hard classically. As shown by [36], a clas-
sical O(log® N)-time algorithm for computing any quantity of this type implies
a polynomial time classical algorithm for simulating any quantum computation.
Thus (unless P=BQP), this quantum algorithm provides a genuine speedup over
the classical algorithms.

3.2 More details

In more detail, the running times of both classical and quantum algorithms for
solving systems of linear equations actually depend on several parameters. One
parameter is N, the number of equations (and variables). Another parameter is
K, the condition number of the system. k is defined as Z:’:ﬁ where ftyin and fpay
are the smallest and the largest singular values of the matrix A [37, Chapter 5.8].



Intuitively, the condition number describes the closeness of the matrix A to
a singular matrix. For a singular matrix, ft;ms» = 0 and & = oo. Larger condition
number means that the matrix A is closer to a singular matrix. In this case,
small changes to input data A and b (or small numerical inaccuracies) can cause
large changes to solution z. To compensate, if we have a matrix A with large &,
we have to perform the computation with a higher accuracy. This increases the
running time of all algorithms for solving systems of linear equations but the
exact increase varies greatly from algorithm to algorithm.

The main classical algorithms for solving systems of linear equations are:

1. LU-decomposition [33, Chapter 3] which runs in time O(N?Z-376log®(k))
[24]. Here, w = 2.376... is the constant from the running time O(N™) of the
best matrix multiplication algorithm [28].

2. Conjugate gradient [33, Chapter 10], which runs in time O(m+/k) [55] where
m is the number of non-zero entries in the matrix. If we know that each row
of A contains at most s non-zero entries, this is at most O(Nsy/k).

The running time of the quantum algorithm [36] is O(k?T log® N) where T is
the time necessary to implement the transformation e*4 on a quantum computer.
T varies greatly, depending on A. For sparse A with at most s nonzero values in
each row and each column, 7' = O(s? log N) [16]. Thus, in this case the running
time of the quantum algorithm is O(k%s*log® N). This achieves an exponential
speedup for the case when N is large and k is relatively small (e.g., k = O(1) or
k = O(log N)).

The key bottleneck is the dependence on x which is actually worse than in
the classical algorithms. We have been able to improve it to O(/i”"(l) log® N)
[11]. Unfortunately, further improvement is very unlikely. [36] have shown that
an O(k'~¢log® N) time quantum algorithm would imply BQP=PSPACE.

For non-sparse A, one could use the algorithms of [25, 17] to simulate e*4. The
dependence on N is better than O(N2376+) in the classical LU decomposition
but the speedup is only polynomial.
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