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Abstract. Nonlocal games are used to display differences between clas-
sical and quantum world. In this paper, we study nonlocal games with
a large number of players. We give simple methods for calculating the
classical and the quantum values for symmetric XOR games with one-
bit input per player, a subclass of nonlocal games. We illustrate those
methods on the example of the N-player game (due to Ardehali [Ard92])
that provides the maximum quantum-over-classical advantage.

1 Introduction

Nonlocal games provide a simple framework for studying the differences between
quantum mechanics and classical theory. A nonlocal game is a cooperative game
of two or more players. Given some information, the players must find a solution,
but with no direct communication between any of them.

We can view nonlocal games as games between a referee and some number
of players, where all communication is between the referee and players. Referee
chooses settings of the game by telling some information (or input) xi to each
of the player. After that each player independently must give back some answer
(or output) yi. The rules of the game define a function f(x1, x2, . . . , y1, y2, . . .)
which determines whether the players have won or lost.

The most famous example is so called CHSH game [CHSH69]. This is a game
between referee from one side and players (Alice and Bob) from the other side.
Referee gives one bit to each player. Then he expects equal answers if at least
one input bit was 0. If both input bits were 1, he expects different answers.
Formally, the rules of this game could be expressed by the table:

INPUT Right answer
0, 0 0, 0 or 1, 1
0, 1 0, 0 or 1, 1
1, 0 0, 0 or 1, 1
1, 1 0, 1 or 1, 0

or by the formula:

XOR (OUTPUT ) = AND (INPUT )



Assume that the referee gives to players randomized (uniformly distributed)
inputs from {(0, 0), (0, 1), (1, 0), (1, 1)}. For any pair of fixed (deterministic) play-
ers’ strategies

(A : {0, 1} → {0, 1}, B : {0, 1} → {0, 1})

sum of their answers for all 4 different inputs(
A (0) +B (0)

)
+
(
A (0) +B (1)

)
+
(
A (1) +B (0)

)
+
(
A (1) +B (1)

)
is evidently even. But, since sum of Right answers must be odd, any strategy pair
will lead to at least one error in these 4 cases. (One may think that some kind
of randomized strategies could give better results; the answer is no: an average
result of a randomized strategy is calculated as an average result of some set of
fixed strategies.) So, provably best average result is 3

4 = 0.75. It can be achieved
by answering 0 and ignoring input.

Surprisingly, there is the way to improve this result by permitting players to
use an entangled quantum system before start of the game. In this case, correla-
tions between measurement outcomes of different parts of quantum system (in
physics, nonlocality) can help players to achieve result 1

2 + 1
2
√

2
= 0.853553 . . .

[Cir80]. Such games are called nonlocal or entangled.
In general, the maximum winning probability in a nonlocal game is hard to

compute. It is NP-hard to compute it for 2-player games with quantum inputs
and outputs or 3-player games classically [Kem08].

XOR games are the most widely studied class of nonlocal games. In a XOR
game, players’ outputs y1, y2, . . . , yN are 0-1 valued. The condition describing
whether the players have won can depend only on x1, x2, . . . , xN and y1 ⊕ y2 ⊕
. . .⊕ yN . XOR games include the CHSH game described above.

For two player XOR games (with inputs x1, x2, . . . , xN being from an ar-
bitrary set), we know that the maximum success probability of players can be
described by a semidefinite program [Cir80] and, hence, can be calculated in
polynomial time [CHTW04]. In contrast, computing the classical success prob-
ability is NP-hard.

For XOR games with more than two players, examples of specific games
providing a quantum advantage are known [Mer90,Ard92,PW+08] and there is
some theory in the framework of Bell inequalities [WW01,WW01a,ZB02]. This
theory, however, often focuses on questions other than computing classical and
quantum winning probabilities — which is our main interest.

In this paper, we consider a restricted case of symmetric multi-player XOR
games. For this restricted case, we show that both classical and quantum winning
probabilities can be easily calculated. We then apply our methods to the par-
ticular case of Ardehali’s inequality [Ard92]. The results coincide with [Ard92]
but are obtained using different methods (which are more combinatorial in their
nature). The advantage of our methods is that they can be easily applied to any
symmetric XOR game while those of [Ard92] are tailored to the particular XOR
game.



In this paper we will consider only those games, where each player should
receive exactly one bit of input and answer exactly one bit of output, and is
allowed to operate with one qubit of N -qubit quantum system.

2 Nonlocal XOR Games

A nonlocal N -player game is defined by a sequence of 2N elements

(I00...0, I00...1, . . . , I11...1),

where each element corresponds to some of 2N inputs and describes all right an-
swers for this input: Ix1...xN ⊆ {0, 1}N . Players receive a uniformly random input
x1, . . . , xN ∈ {0, 1} with the ith player receiving xi. The ith player then produces
an output yi ∈ {0, 1}. No communication is allowed between the players but they
can use shared randomness (in the classical case) or quantum entanglement (in
the quantum case). Players win if y1 . . . yN ∈ Ix1...xN and lose otherwise.

For each Ix1...xN , there are 22N possible values. Therefore, there are
(

22N
)(2N)

=

222N
different games. This means 65536 games for N = 2, ≈ 1.8 · 1019 games for

N = 3 and practically not enumerable for N > 3.
We will concentrate on those of them, which are symmetrical with respect

to permuting the players and whose outcome depends only on parity of the sum
of the output (or Hamming weight of the output), i.e. on XOR (|OUTPUT |).
(Actually, this decision was based not on strict analytics, but rather on the
results of numerical experiments: XOR games seem to be the most interesting
in their quantum versions.)

Each such XOR game can be described as a string of N+1 bits: P0P1 . . . PN ,
where each bit Pi represents the correct right parity of the output sum in the case
when the sum of input is i. Typical and important XOR game is the CHSH game:
in our terms it can be defined as “+ + −” (even answer if |INPUT | = 0 or 1
and odd answer if |INPUT | = 2).

3 Methods for Analyzing Nonlocal Games

3.1 Classical XOR Games

In their classical versions XOR games are a good object for analysis and in most
cases turn out to have a little outcome for players.

Imagine a classical version of XOR game, for which we want to find optimal
classical strategies for players. Each player has 4 different choices — (00), (01),
(10), (11). (1st bit here represents the answer on input 0, and 2nd bit represents
the answer on input 1. Thus, (ab) denotes a choice to answer a on input 0 and
answer b on input 1).



Definition 1 (Classical normalized strategy) Classical normalized strategy
for N-player XOR game is one of the following 2N + 2 choice sequences:

(00)N−k (01)k

(00)N−1 (11)
(00)N−k (01)k−1 (10)

Theorem 1 For any classical strategy for N-player XOR game there exists a
normalized strategy, such that these strategies on equal input answer equal parity.

Proof. First of all, remember, that we consider only symmetrical games with
respect to players permutation. Therefore, we always will order players by their
choices.

The second step is choice inversion for a pair of players. If we take any pair of
choices and invert both of them, the parity of the output will not change. Thus,
we can find the following pairs of choices and make corresponding inversions:

(11) (11)→ (00) (00)
(11) (10)→ (00) (01)
(11) (01)→ (00) (10)
(10) (10)→ (01) (01)

If it is impossible to find such pair, there is clearly no more than one choice
from the set {(10) , (11)}, and presence of choice (11) follows that all other
choices are (00). In other words, this strategy is normalized.

This trick allows very efficient search for an optimal strategy for classical
version of a XOR game. Strategy of form

(00)N−k (01)k

has outcome probability

O
(

(00)N−k (01)k
)

=

∑
0≤i≤N
0≤j≤i

(j≡0(mod 2))Y(Ii=+)

(
N − k
i− j

)(
k

j

)

2N

. All other normal strategies has outcomes computable as

O
(

(00)N−1 (11)
)

= 1−O
(

(00)N
)

O
(

(00)N−k (01)k−1 (10)
)

= 1−O
(

(00)k (01)N−k
)

(These formulae are for illustration purposes only and won’t be refered in
this paper.)



3.2 Quantum XOR Games

Consider a possibly non-symmetric XOR game. Let x1, . . . , xN be the inputs
to the players. Define cx1,...,xN = 1 if, to win for these inputs, players must
output y1, . . . , yN with XOR being 1 and cx1,...,xN = −1 if players must output
y1, . . . , yN with XOR being 0.

Werner and Wolf [WW01,WW01a] have shown that, for any strategy in quan-
tum version of an XOR game, its bias (the difference between the winning prob-
ability pwin and the losing probability plos) is equal to

f (λ1, λ2, . . . , λN ) =

∣∣∣∣∣∣ 1
2N

∑
x1,...,xN∈{0,1}

cx1,...,xNλ
x1
1 λx2

2 . . . λxNN

∣∣∣∣∣∣ (1)

for some λ1, . . . , λN satisfying |λ1| = |λ2| = . . . = |λN | = 1. Conversely, for any
such λ1, . . . , λN , there is a winning strategy with the bias being f(λ1, . . . , λN ).

Lemma 1 For symmetric XOR games, the maximum of f(λ1, . . . , λN ) is achieved
when λ1 = . . . = λN .

Proof. We fix all but two of λi. To simplify the notation, we assume that
λ3, . . . , λN are the variables that have been fixed. Then, (1) becomes

a+ bλ1 + cλ2 + dλ1λ2

for some a, b, c, d. Because of symmetry, we have b = c. Thus, we have to maxi-
mize

a+ b(λ1 + λ2) + dλ1λ2. (2)

Let λ1 = eiθ1 and λ2 = eiθ2 . Let θ+ = θ1+θ2
2 and θ− = θ1−θ2

2 . Then, (2) becomes

a+ beiθ+(eiθ− + e−iθ−) + de2iθ+ = A+B cos θ−

where A = a + de2iθ+ and B = 2beiθ+ . If we fix θ+, we have to maximize the
expression A+Bx, x ∈ [−1, 1]. For any complex A,B, A+Bx is either maximized
by x = 1 (if the angle between A and B as vectors in the complex plane is at
most π

2 ) or by x = −1 (if the angle between A and B is more than π
2 ). If x = 1,

we have λ1 = λ2 = θ+. If x = −1, we have λ1 = λ2 = −θ+.
Thus, if λ1 6= λ2, then the value of (1) can be increased by keeping the

same θ+ = θ1+θ2
2 but changing λ1 and λ2 so that they become equal. The same

argument applies if λi 6= λj . ut
Thus, we can find the value of a symmetric XOR game by maximizing

f (λ) =

∣∣∣∣∣ 1
2N

N∑
k=0

(
N

k

)
ckλ

k

∣∣∣∣∣ (3)

where ck = 1 if Pk = 1 and ck = −1 if Pk = 0. The maximal f(λ) is the
maximum possible gap pwin−plos between the winning probability pwin and the
losing probability plos. We have pwin = 1+f(λ)

2 and plos = 1−f(λ)
2 .



4 Ardehali Game

There are 4 games (equivalent to each other up to the input and/or output inver-
sion), which give the biggest gap between “classical” and “quantum” outcomes.
Those games were discovered in the context of Bell inequalities (physics notion
closely related to nonlocal games) by Ardehali [Ard92], building on an earlier
work by Mermin [Mer90].

They can be described as follows:

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) + + − − · · ·
{

+ if N mod 4 ∈ {0, 1}
− otherwise

(4)

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) + − − + · · ·
{

+ if N mod 4 ∈ {0, 3}
− otherwise

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) − − + + · · ·
{

+ if N mod 4 ∈ {2, 3}
− otherwise

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) − + + − · · ·
{

+ if N mod 4 ∈ {1, 2}
− otherwise

For each of those games, the maximum winning probability is pq = 1
2 + 1

2
√

2

for a quantum strategy and pc = 1
2 + 1

2N/2
for a classical strategy [Ard92]. Thus,

if we take the ratio pq−1/2
pc−1/2 as the measure of the quantum advantage, these

games achieve the ratio of 2N/2. Similar ratio was earlier achieved by Mermin
[Mer90] for a partial XOR game:

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) + any − any · · ·
{

+ if N mod 4 ∈ {0}
− if N mod 4 ∈ {2}

In this game, the input of the players is chosen uniformly at random among
all inputs with an even number of 1s. Werner and Wolf [WW01] have shown that
this ratio is the best possible.

We now derive the winning probabilities for Ardehali’s game using our meth-
ods.

4.1 Classical Case

As all of them are symmetrical to each other, we will consider the 1st game only
(4). Any normalized strategy for a classical version of such game can be further
simplified. Once there exists two players with choices (01) and (01), they can be
conversed into (00) and (11) with average outcome remaining the same.



Proof. Let us compare a strategy outcome before and after simplification of
type (01) (01)→ (00) (11). Imagine the situation, where the referee has already
produced inputs for all except two players, whose choices are being changed.
And he is ready to toss up his coin twice in order to decide, what input to give
to remaining players.

If the coin will produce different inputs for these players, their answers will
be the same: one will answer 0 and other will answer 1, so the outcome will
remain unchanged.

If the coin will produce equal inputs for players — 00 or 11 — it is more tricky
case. Let us notice first that the rules of the game require different answers for
00 and for 11. This can be seen from the Table 4: changing |INPUT | by 2,
Right answer changes to opposite value. The second fact to notice is that the
strategy before the simplification resulted in equal answers on input 00 and on
input 11, that is in one correct and one incorrect answer. The third fact is that
the strategy after the simplificaion will do the same (but in opposite sequence):
one answer will be incorrect and other will be correct.

So, the total average is equal for both strategies.

When none of the simplifications can be applied to the strategy, then this
strategy is one from the following set:

(00)N

(00)N−1 (01)
(00)N−1 (10)
(00)N−1 (11)

For N = 8n an optimal strategy is always (00)N . To show this fact, one can
check outcome for all 4 simplified normal strategies. But here we will calculate
only the first of them.

Imagine the players are gambling with the referee: they receive 1 in case of
win and pay 1 in case of loss. Expected value of their gains after 2N rounds of
the game can be calculated by formula:

Outcome
(

(00)8n
)
× 28n =

=
2n−1∑
k=0

((
8n
4k

)
+
(

8n
4k + 1

)
−
(

8n
4k + 2

)
−
(

8n
4k + 3

))
+
(

8n
8n

)

As one could notice, these four summands inside Σ are approximately equal
to each other (and to ± 2N

4 ), so the total value of the sum is not far from 0. But
let us be completely consequent and find precise results.

First, each summand on the odd position has its negation on the same posi-
tion starting from the end of the sum:

+
(

8n
1

)
−
(

8n
3

)
+
(

8n
5

)
− . . .−

(
8n

8n− 5

)
+
(

8n
8n− 3

)
−
(

8n
8n− 1

)
= 0



So, remaining expression (with fake summand −
(

8n
8n+2

)
= 0 appended for the

reason of simplicity) is the following:

Outcome
(

(00)8n
)
× 28n =

2n∑
k=0

((
8n
4k

)
−
(

8n
4k + 2

))
(5)

Further precise calculations consist mainly of
(
N
K

)
replacements with

(
N−2
K−2

)
+

2
(
N−2
K−1

)
+
(
N−2
K

)
(this equality is not quite evident, but can be proved trivially

by induction).

2n∑
k=0

((
8n
4k

)
−
(

8n
4k + 2

))
=

2n∑
k=0

((
8n− 2
4k − 2

)
+ 2
(

8n− 2
4k − 1

)
+
(

8n− 2
4k

)
−

−
(

8n− 2
4k

)
− 2
(

8n− 2
4k + 1

)
−
(

8n− 2
4k + 2

))
= 2

2n∑
k=0

((
8n− 2
4k − 1

)
−
(

8n− 2
4k + 1

))

On the last step we again removed antipode summands
(
8n−2
4k−2

)
and −

(
8n−2
4k+2

)
.

Remaining expression can be further transformed to

2
2n∑
k=0

((
8n− 2
4k − 1

)
−
(

8n− 2
4k + 1

))
=

= 2
2n∑
k=0

((
8n− 4
4k − 3

)
+ 2
(

8n− 4
4k − 2

)
+
(

8n− 4
4k − 1

)
−

−
(

8n− 4
4k − 1

)
− 2
(

8n− 4
4k

)
−
(

8n− 4
4k + 1

))
=

= 4
2n∑
k=0

((
8n− 4
4k − 2

)
−
(

8n− 4
4k

))

On the last step we again removed antipode summands
(
8n−4
4k−3

)
and −

(
8n−4
4k+1

)
.

The resulting sum after removing some zero summands becomes

4
2(n− 1

2 )∑
k=0

((
8(n− 1

2 )
4k + 2

)
−
(

8(n− 1
2 )

4k

))
It turns out to be equal to (5) (for n decreased by 1

2 ) multiplied by −4. Exactly
the same technique shows that

Outcome
(

(00)8n
)
× 28n = (−4)2Outcome

(
(00)8(n−1)

)
× 28(n−1)



and thus immediately provides an induction step for proving the claim:

Outcome
(

(00)8n
)
× 28n = 16n

Replacing n with N
8 and dividing all expression by the number of rounds 2N ,

the best expected outcome in classical version of Ardehali game is

Outcome
(

(00)N
)

=
(

1√
2

)N
While the particular manipulations above are specific to Ardehali’s game,

the overall method of evaluating a sum of binomial coefficients applies to any
symmetric XOR game.

4.2 Quantum Case

The value of the Ardehali’s game can be obtained by maximizing the one-variable
expression in equation (3). In the case of Ardehali’s game, the maximum of this
expression is 1√

2
and it is achieved by λ = eiθ where θ = (2N+1) mod 8

N π + k 2π
N .

The result f(λ) = 1√
2

corresponds to the winning probability of pwin = 1
2 +

1
2
√

2
. The winning strategy can be obtained by reversing the argument of [WW01]

and going from λ to transformations for the N players. There are infinitely
many possible sets of strategies for each of the given θ. One of these strategies is
described in [Ard92]. We include example of another strategy in the appendix.

The optimality of pwin = 1
2 + 1

2
√

2
can be shown by a very simple argument,

which does not involve any of the machinery above.

Theorem 2
1
2

+
1

2
√

2
is the best possible probability for quantum strategy.

Proof. We modify the game by providing the inputs and the outputs of the first
N − 2 players to the (N − 1)st and N th players. Clearly, this makes the game
easier: the last two players can still use the previous strategy, even if they have
the extra knowledge.

Let k be the number of 1s among the first N − 2 inputs. Then, we have the
following dependence of the result on the actions of the last two players.

x1 + x2 + . . .+ xN−2 xN−1 + xN
0 1 2

k + + − if k mod 4 = 0
k + − − if k mod 4 = 1
k − − + if k mod 4 = 2
k − + + if k mod 4 = 3

In either of the 4 cases, we get a game (for the last two players) which is
equivalent to the CHSH game and, therefore, cannot be won with probability
more than 1

2 + 1
2
√

2
.



The fact that 1
2 + 1

2
√

2
is the best winning probability has been known before

[Ard92]. But it appears that we are the first to observe that this follows by a
simple reduction to the CHSH game.
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A Appendix

A common behavior for a player in quantum nonlocal game is to perform some
local operation on his qubit, perform a measurement in the standard basis and
answer the result of the measurement. In other words, a choice for a player can
be expressed with two matrices: one for input 0 and other for input 1. In fact,
players may use equal strategies to achieve the best outcome. So optimal strategy
for any quantum XOR game can be found and proved with numerical optimiza-
tion quite simply. For quantum version of Ardehali game, the two matrices for
all players look like the following:

For input 0 For input 1

1√
2

(
ei(

π
2 +γ) 1
−1 e−i(

π
2 +γ)

)
1√
2

(
eiγ 1
−1 e−iγ

)



with angle γ depending on the number of players: in fact, it is (2N+1) mod 8
4N π.

Assuming x as input bit, these two matrices can be described as one:

1√
2

(
ei(

π
2 ·(1−x)+γ) e0

eiπ ei(−
π
2 ·(1−x)−γ)

)
(6)

Consider a quantum system in starting state ΨGHZ . Lets express all local op-
erations, that players apply to their qubits during the game, as a tensor product
of N matrices M = C1 ⊗ . . .⊗CN . Each cell of M can be calculated as follows:

M[j1...jN , i1...iN ] =
∏N
k=1 Ck [jk, ik]

where i1, . . . , iN , j1, . . . , jN ∈ {0, 1}.
After all local operations are complete, lets express the final state directly as

sum of its amplitudes∑
y1,...,yN∈{0,1} αy1...yN |y1 . . . yN 〉 = M

(
1√
2
|00 . . . 0〉+ 1√

2
|11 . . . 1〉

)
Consider a value of arbitrary amplitude αy1...yN . As there are only two nonzero
amplitudes in the starting state, any αy1...yN will consist of two summands:

αy1...yN = 1√
2

∏N
k=1 Ck [0, yk] + 1√

2

∏N
k=1 Ck [1, yk]

Assuming players got N -bit input x1 . . . xN , lets substitute values from (6)
for each Ck:

αy1...yN = 1√
2

∏N
k=1

1√
2
ei((γ+

π
2 (1−xk))·(1−yk)) +

+ 1√
2

∏N
k=1

1√
2
ei(π+(π2−γ+π

2 ·xk)·yk) =

=
(

1√
2

)N+1

ei
PN
k=1(γ+π

2 (1−xk))·(1−yk)

+
(

1√
2

)N+1

ei
PN
k=1(π+(π2−γ+π

2 ·xk)·yk)

Now we are interested mainly in difference between rotation angles on the
complex plane for these two summands. That is, in∑N

k=1

[(
γ + π

2 (1− xk)
)

(1− yk)−
(
π +

(
π
2 − γ + π

2xk
)
yk
)]

=
∑N
k=1

[(
γ + π

2 −
π
2xk − γyk −

π
2 yk + π

2xkyk
)
−
(
π + π

2 yk − γyk + π
2xkyk

)]
=
∑N
k=1

(
γ + π

2 −
π
2xk −

π
2 yk − π −

π
2 yk
)

=
∑N
k=1

(
γ − π

2 −
π
2xk − πyk

)
Let us concentrate now on the case N = 4n and γ = 1

4N π (but similar
reasoning stays for any N). In this case the difference is expressed by (throwing
out π

2 ×N ≡ 0 (mod 2π), which is now redundant)

1
4π −

1
2π
∑N
k=1 (xk + 2yk)



Table 1. Amplitude angle values for different inputs

|INPUT | |OUTPUT | = y1 + y2 + . . .+ yN

= x1 + . . .+ xN 0 1 2 3 . . .

0 1
4
π − 3

4
π 1

4
π − 3

4
π · · ·

1 − 1
4
π 3

4
π − 1

4
π 3

4
π · · ·

2 − 3
4
π 1

4
π − 3

4
π 1

4
π · · ·

3 3
4
π − 1

4
π 3

4
π − 1

4
π · · ·

4 1
4
π − 3

4
π 1

4
π − 3

4
π · · ·

...
...

...
...

...
. . .

By modulus 2π it is equal to value from Table 1.

If angle between two summands (both of the same length
(

1√
2

)N+1

) is ± 1
4π ,

then their sum is (
1√
2

)N−1

cos π8 =
(

1√
2

)N−1
√

2+
√

2
2 (7)

If angle between two summands (both of the same length
(

1√
2

)N+1

) is ± 3
4π,

then their sum is
(

1√
2

)N−1

cos 3π
8 =

(
1√
2

)N−1
√

2−
√

2
2

As one can see from the Table 1, bigger amplitudes always correspond to
correct answers (and smaller amplitudes correspond to incorrect answers). Sum
of the squares of formula (7), i.e. the measurement result for any fixed input,
will give the probability of right answer:

∑
Angle= ± 1

4π

((
1√
2

)N−1
√

2+
√

2
2

)2

= 1
2 + 1

2
√

2

Note that this probability is stable: it remains the same for all possible inputs
from the referee.


