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Abstract

Classical molecular dynamics (MD) simulations of the Ge K-edge EXAFS have been performed with the aim to estimate the thermal effects within the first three
coordination shells and their influence on the single-scattering and multiple-scattering contributions. The effect of the isotopic mass has been also evaluated.
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The accurate analysis of the Ge K-edge EXAFS in germanium is a long standing problem due to n :mg ;CS’TAL

the presence of multiple-scattering (MS) contributions, which strongly influence the “classical® 15  MDMs Experimental (T - 300 K)
EXAFS analysis, based on the single-scattering (SS) approach [1]. Our previous analysis [2] of —~ 1{ | — Experiment _ _

thermal effects in two isotopes of 7°Ge and 76Ge within the first three coordination shells has been < [ and configuration-averaged
performed using both SS and MS models. We found that while the ratio of the Einstein & - v AAWEA -2 (T = 350 K, up to 6.5 A)
fr_eque_nmes for th_e second_and third she_lls agrees well for the two models, the absolute values of f W \4 Vv Y EXAFS spectra X(k)kz and
Einstein frequencies are slightly overestimated in the SS model [2]. Unfortunately, the MS EXAFS : :

analysis iIs limited by two factors: the simplified description of thermal effects within the MS their Fourier transforms.
model and a large number of correlated model parameters required.

The single-scattering (SS)
and multiple-scattering (MS)
contributions are also

In this work we present for the first time the classical molecular dynamics (MD) simulation of the
Ge K-edge EXAFS using recently developed approach [3].
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Configuration-averaged EXAFS spectra y(k)k? (upper left panel) and their Fourier
transforms (FTs) (lower left panel), calculated in the temperature range from 200 K to
450 K. Multiple-scattering contributions to EXAFS spectra (upper right panel) and
their FTs (lower right panel).
The MS effects are less sensitive to the thermal disorder.

Isotopic effect

Frequency (cm™)

13.7cm’”
N\

PDOS

400
300 |
200 |

100 |

T=RT |

Raman Intensity (a.u.)

290 300 310 320

Raman shift (cm™)

This work was supported by ESF Projects 2009/0202/1DP/1.1.1.2.0/09/APIA/VIAA/141,
2009/02021DP/1.1.1.2.0/09/AP1A/VIAA/044 and Latvian Government Research Grant No. 09.1518.



MOLECULAR DYNAMICS SIMULATIONS
OF EXAFS IN GERMANIUM

J. Timoshenko, A. Kuzmin, J. Purans

2= ESF

EIROPAS SOCIALAIS Institute of Solid State Physics, University of Latvia, Riga, Latvia

FONDS
E-mail: timoshenkojanis@inbox.lv

Abstract

Classical molecular dynamics (MD) simulations of the Ge K-edge EXAFS have been performed with the aim to estimate the thermal effects within the first three
coordination shells and their influence on the single-scattering and multiple-scattering contributions. The effect of the isotopic mass has been also evaluated.

Introduction MD-EXAFS vs. Experiment

2.5
The accurate analysis of the Ge K-edge EXAFS in germanium is a long standing problem due to n :mg ;CS’TAL

the presence of multiple-scattering (MS) contributions, which strongly influence the “classical® 15  MDMs Experimental (T - 300 K)
EXAFS analysis, based on the single-scattering (SS) approach [1]. Our previous analysis [2] of —~ 1{ | — Experiment _ _

thermal effects in two isotopes of 7°Ge and 76Ge within the first three coordination shells has been < [ and configuration-averaged
performed using both SS and MS models. We found that while the ratio of the Einstein & - v AAWEA -2 (T = 350 K, up to 6.5 A)
fr_eque_nmes for th_e second_and third she_lls agrees well for the two models, the absolute values of f W \4 Vv Y EXAFS spectra X(k)kz and
Einstein frequencies are slightly overestimated in the SS model [2]. Unfortunately, the MS EXAFS : :

analysis iIs limited by two factors: the simplified description of thermal effects within the MS their Fourier transforms.
model and a large number of correlated model parameters required.

The single-scattering (SS)
and multiple-scattering (MS)
contributions are also

In this work we present for the first time the classical molecular dynamics (MD) simulation of the
Ge K-edge EXAFS using recently developed approach [3].

1 i i —mpToTaL || | Shown.
Molecular Dynamics (MD) Simulations /\ e
MDMS | .

Interatomic forces: F =-VV(r,r,,..,1,0,0,,..,0_) %3 —experiment || | ThE MS effects contribute

Tersoff potential [4]: gz / mainly Undir the second
V(rlvrz'...rn,@1,@2'...,(9[“):Zvi:%;vij bij:(1+ﬂné‘i?)71/2n E / peak at 38 .
V, = fo(r ay flr by £ ()] Cij:;fc(ﬁk)g(@ijk)emlﬂs(ru_rjk)EJ SU peI'Ce” 5 X 5 X 5
f,(r)=—Bexp(~4,r) | o o2 .
fo(r)= Aexp (- Ar) g(@):“F_ d?+(h—cos®)

11 (:;R3<R_D a; = (L+ay)
e =y SLEL R LI T
0,r>R+D e

Stillinger-Weber (SW) potential [5]:

oo ety Weo(S) MD-EXAFS: Temperature dependence of
il s the multiple-scattering contribution
fz(r):{A(Br“’—r‘q())e?mflé(;—a)), r<a h(qj,qj,@jik):zem[#+riky_a](cos@jik—cos@(,) =
io.5
2.4 — Experimental (T = 300 K) "g,'_'
— Tersoff and configuration-averaged <
1.2 — Experiment | (T = 300 K, up to 6.5 A) w-0.5 g K . ok
) EXAFS spectra y(k)k? and v a0k 0k
2 0 their Fourier transforms for u oK e
n two different force-field -1.5 1.5
1.2 models: 0 5 10 15 20 0 5 10 15 20
1)Stillinger-Weber (SW) k(A') k(A7)
2) Tersoff. ] — 200K ] — 200K
250 K 250 K
The contribution from the . Y /\ . ek
: — 2nd and 3rd shells (peaks = =K ok
— Tersoff at ~3.7 and ~4.4 A) are 3 3
" 3 —Experiment) § | gverestimated Iin the case 2 2
Z of the Tersoff potential " E
o model.
=
-
" The SW potential gives
EXAFS signal being iIn
better agreement with the
experiment and will be
used further. Confi : 5 : :
onfiguration-averaged EXAFS spectra y(k)ks (upper left panel) and their Fourier
transforms (FTs) (lower left panel), calculated in the temperature range from 200 K to
Parallel MSRD (Debye-Waller faCt()rS) 450 K. Multiple-scattering contributions to EXAFS spectra (upper right panel) and
their FTs (lower right panel).
0.024 The MS effects are less sensitive to the thermal disorder.
e S\W, 1st shell
e SW, 2nd shell
e S\W, 3rd shell

0.018 I o Tersoff, 1st shell
@ Tersoff, 2nd shell
o Tersoff, 3rd shell
0012 | © Experiment, 1st shell
O Experiment, 2nd shell
O Experiment, 3rd shell

Isotopic effect

13.7\cm'1 PDOS

o? (A?)

300 |

______
------

200 |

Frequency (cm™)

100

References |

1. J. Purans, N. D. Afify, G. Dalba, R. Grisenti, S. De Panfilis, A. Kuzmin, V. I. Ozhogin, F. Rocca, A. Sanson, S.
|. Tiutiunnikov, P. Fornasini, Phys. Rev. Lett. 100 (2008) 055901.

2. J. Purans, J. Timoshenko, A. Kuzmin, G. Dalba, P. Fornasini, R. Grisenti, N. D. Afify, F. Rocca, S. De Panfilis,
|. Ozhogin, and S. I. Tiutiunnikov, J. Phys.: Conf. Series 190 (2009) 012063 (6pp).

3. A.Kuzmin, R.A. Evarestov, J.Phys.: Condens. Matter 21 (2009) 055401.

4. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

5. K. Ding and H. C. Andersen, Phys. Rev. B 34, 6987 (1986).

T=RT |

Raman Intensity (a.u.)

290 300 310 320
Raman shift (cm")

This work was supported by ESF Projects 2009/0202/1DP/1.1.1.2.0/09/APIA/VIAA/141,
2009/02021DP/1.1.1.2.0/09/AP1A/VIAA/044 and Latvian Government Research Grant No. 09.1518.




MOLECULAR DYNAMICS SIMULATIONS
OF EXAFS IN GERMANIUM

J. Timoshenko, A. Kuzmin, J. Purans

2= ESF

EIROPAS SOCIALAIS Institute of Solid State Physics, University of Latvia, Riga, Latvia

FONDS

E-mail: timoshenkojanis@inbox.lv

Introduction

The accurate analysis of the Ge K-edge EXAFS in germanium is a long standing problem due to
the presence of multiple-scattering (MS) contributions, which strongly influence the “classical®
EXAFS analysis, based on the single-scattering (SS) approach [1]. Our previous analysis [2] of
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Configuration-averaged EXAFS spectra y(k)k? (upper left panel) and their Fourier
transforms (FTs) (lower left panel), calculated in the temperature range from 200 K to
450 K. Multiple-scattering contributions to EXAFS spectra (upper right panel) and
their FTs (lower right panel).
The MS effects are less sensitive to the thermal disorder.
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