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1. INTRODUCTION

Let S be any (meet) semilattice, and let x, y be elements of S.

The pseudocomplement of x relative to y is the element z defined

by

z := max{u: u ∧ x ≤ y}.
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1. INTRODUCTION

Let S be any (meet) semilattice, and let x, y be elements of S.

The pseudocomplement of x relative to y is the element z defined

by

z := max{u: u ∧ x ≤ y}.

The weak pseudocomplement of x relative to y is the element z

defined by

z := max{u: u ∧ x = y}. !! exists only if y ≤ x

S is wr-pseudocomplemented if all possible

wr-pseudocomplements exist.
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Wr-pseudocomplementation appears

¦ in congruence lattices of various structures:
D. Pappert [1964]
J.C. Varlet [1973],
R. Freese, J.B. Nation [1973]
E. Evans [1980]
K. Auinger [1993]
R. Freese, J.B. Nation [1995]
R. Giacobazzi, F. Ranzato [1998]

¦ in subalgebra lattices of certain semigroups and groups:
V.M. Shiryaev [1985, 1993]
E.N. Yakovenko [1999]

¦ in lattices of closure operators:
R. Giacobazzi, C. Palamidessi, F. Ranzato [1996]
F. Ranzato [2002]
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Semilattices of the following types are wr-pseudocomplemented:

¦ relatively pseudocomplemented (implicative, Brouwerian) semi-

lattices,

¦ up-directed meet semilattices with pseudocomplemented closed

intervals (J.Schmidt [1978]),

¦ sectionally pseudocomplemented meet semilattices (J.Schmidt

[1978]),

¦ meet-semidistributive algebraic lattices (V.M. Shiryaev [1985],

I. Chajda, S. Radelecki [2003]).
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2. Weak relative annihilators

• Relative annihilator 〈a, b〉 in a lattice (meet semilattice):

〈a, b〉 := {u: u ∧ a ≤ b}.
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2. Weak relative annihilators

• Relative annihilator 〈a, b〉 in a lattice (meet semilattice):

〈a, b〉 := {u: u ∧ a ≤ b}.

M. Mandelker [1970]:

A lattice is distributive iff all its relative annihilators are ideals.

A lattice is relatively pseudocomplemented iff all its relative

annihilators are principal ideals.
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2. Weak relative annihilators

• Relative annihilator 〈a, b〉 in a lattice (meet semilattice):

〈a, b〉 := {u: u ∧ a ≤ b}.

M. Mandelker [1970]:

A lattice is distributive iff all its relative annihilators are ideals.

A lattice is relatively pseudocomplemented iff all its relative

annihilators are principal ideals.

J.C. Varlet [1973]:

The same for semilattices (an ideal is a hereditary up-directed sub-

set).
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2. Weak relative annihilators

• Relative annihilator 〈a, b〉 in a lattice (meet semilattice):

〈a, b〉 := {u: u ∧ a ≤ b}.

M. Mandelker [1970]:

A lattice is distributive iff all its relative annihilators are ideals.

A lattice is relatively pseudocomplemented iff all its relative

annihilators are principal ideals.

J.C. Varlet [1973]:

The same for semilattices (an ideal is a hereditary up-directed subset).

Y.S. Pawar, N.K. Thakare [1980]:

A semilattice is prime iff all relative annihilators are ideals

(an ideal is a hereditary subset closed under existing finite joins).
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• Weak relative annihilator in a poset :

〈a, b〉 := {u: (u]∩(a] = (b]} = {u: u∧a exists and equals to b}.

Relative annihilator: 〈a, b〉 := {u: u ∧ a ≤ b}.
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• Weak relative annihilator in a poset:

〈a, b〉 := {u: (u]∩(a] = (b]} = {u: u∧a exists and equals to b}.

Lemma 1.

(a) 〈a, b〉 is non-empty if and only if a ≥ b,

(b) 〈a, b〉 is always a herditary subset of [b),

(c) b is the least element of 〈a, b〉,
(d) if x ∈ 〈a, b〉, then [b, x] ⊆ 〈a, b〉,
(e) if u ∈ 〈a, b〉 and u ≤ a, then u = b.
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• ∧-semidistributivity

A lattice is said to be ∧-semidistributive at p if

x ∧ y = p = x ∧ z implies that p = x ∧ (y ∨ z)

and ∧-semidistributive if it is semidistributive at every p.
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• ∧-semidistributivity

A lattice is said to be ∧-semidistributive at p if

x ∧ y = p = x ∧ z implies that p = x ∧ (y ∨ z)

and ∧-semidistributive if it is semidistributive at every p.

A semilattice is said to be ∧-semidistributive at p if

x ∧ y = p = x ∧ z implies that p = x ∧ k for some k ≥ y, z

(M. Erné [1992]).
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• ∧-semidistributivity

A lattice is said to be ∧-semidistributive at p if

x ∧ y = p = x ∧ z implies that p = x ∧ (y ∨ z)

and ∧-semidistributive if it is semidistributive at every p.

A semilattice is said to be ∧-semidistributive at p if

x ∧ y = p = x ∧ z implies that p = x ∧ k for some k ≥ y, z

(M. Erné [1992]).

We say that a poset is ∧-semidistributive at p if

(x] ∩ (y] = {p} = (x] ∩ (z] implies that

{p} = (x] ∩ (k] for some k ≥ y, z,

and that it is ∧-semidistributive if it is ∧-semidistributive at every

p.
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Let P be a poset and p ∈ P .

A (Varlet) ideal of P is a hereditary up-directed subset of P .

By a p-ideal of P we mean any ideal of [p).

A relative ideal is a p-ideal for any p.
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Let P be a poset and p ∈ P .

A (Varlet) ideal of P is a hereditary up-directed subset of P .

By a p-ideal of P we mean any ideal of [p).

A relative ideal is a p-ideal for any p.

Proposition 2. P is ∧-semidistributive iff every wr-annihilator

is a relative ideal of P .

Theorem 3. P is ∧-semidistributive at p if and only if the lattice

of p-ideals of P is pseudocomplemented.

If it is the case, then a wr-annihilator 〈x, p〉 is the pseudocom-

plement of the interval [p, x] (the principal p-ideal generated by x).
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• Wr-pseudocomplementation

Let P be a poset.
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• Wr-pseudocomplementation

Let P be a poset.

The weak pseudocomplement of x relative to y is the element z

defined (for x ≥ y) by

z := max〈x, y〉 = max{u: (u] ∧ (x] = (y]}.
P is wr-pseudocomplemented if all possible wr-pseudocomple-

ments exist.
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• Wr-pseudocomplementation

Let P be a poset.

The weak pseudocomplement of x relative to y is the element z

defined (for x ≥ y) by

z := max〈x, y〉 = max{u: (u] ∧ (x] = (y]}.
P is wr-pseudocomplemented if all possible wr-pseudocomple-

ments exist.

Corollaries:
¦ A poset is wr-pseudocomplemented if and only if all wr-annihila-

tors are principal relative ideals.
¦ A wr-pseudocomplemented poset is ∧-semidistributive.
¦ An up-directed poset which satisfies the ACC is wr-pseudocom-

plemented.
¦ A wr-pseudocomplemented poset has the greatest element.
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3. Sectional and wr-pseudocomplementation

Recall that, in a poset with the least element 0, an element z is

said to be the pseudocomplement of z if it is the largest element

disjoint from x:

z = max{u: (u] ∩ (x] = {0}}.

20



3. Sectional and wr-pseudocomplementation

Recall that, in a poset with the least element 0, an element z is

said to be the pseudocomplement of z if it is the largest element

disjoint from x:

z = max{u: (u] ∩ (x] = {0}}.

A poset P is said to be sectionally pseudocomplemented if every

its upper section [p) is pseudocomplemented as a poset, i.e., if,

for all x, y with y ≤ x,

max{u: [y, u] ∩ [y, x] = {y}}
exists.

Recall that P is wr-pseudocomplemented if, for all x, y with y ≤ x,

max{u: (u] ∩ (x] = (y]},
exists.
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J.Schmidt [1978]:

The following assertions on a semilattice S are equivalent:

(a) S is weakly relatively pseudocomplemented,

(b) S is sectionally pseudocomplemented,

(c) S has the largest element and every closed interval of S is

pseudocomplemented.
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Let P be a poset.

Suppose that P is equipped with a partial binary operation ∗
such that

x ∗ y is defined iff x ≥ y.

Both wr-pseudocomplementation and sectional pseudocomplementation may

be treated as operations of this kind (x∗y is the respective pseudocomplement

of x).
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Let P be a poset.

Suppose that P is equipped with a partial binary operation ∗
such that

x ∗ y is defined iff x ≥ y.
Both wr-pseudocomplementation and sectional pseudocomplementation may

be treated as operations of this kind (x∗y is the respective pseudocomplement

of x).

Lemma 4. P is wr-pseudocomplemented iff the following holds:
(a) if y ≤ x and v ≤ x, x ∗ y, then v ≤ y,
(b) if y is the greatest upper bound of u and x, then u ≤ x ∗ y.

Lemma 5. P is sectionally pseudocomplemented iff the follow-
ing holds:
(a) if y ≤ v ≤ x, x ∗ y, then x ≤ y,
(b) if y is a maximal upper bound of u and x, then u ≤ x ∗ y.
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We say that P has enough meets if, for all x, y, u, the element y

is the meet of u and x in P whenever it is their meet in [y) (the

converse always hold).
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We say that P has enough meets if, for all x, y, u, the element y

is the meet of u and x in P whenever it is their meet in [y) (the

converse always hold).

Theorem 6. Suppose that a poset P has enough meets. Then

(a) z is the weak pseudocomplement of x relatively to y iff z

is the pseudocomplement of x in [y),

(b) P is wr-pseudocomplemented iff it is sectionally pseudo-

complemented.
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We say that P has enough meets if, for all x, y, u, the element y

is the meet of u and x in P whenever it is their meet in [y) (the

converse always hold).

Theorem 6. Suppose that a poset P has enough meets. Then

(a) z is the weak pseudocomplement of x relatively to y iff z

is the pseudocomplement of x in [y),

(b) P is wr-pseudocomplemented iff it is sectionally pseudo-

complemented.

Theorem 7. If P is a meet or join semilattice, then it has

enough meets.
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4. Relative and weak relative pseudocomplementation

J.Varlet [1965]:

Suppose that L is a lattice with pseudocomplemented closed

intervals. The following assertions are equivalent:

(a) L is modular,

(b) L is distributive,

(c) L is Brouwerian (i.e. relatively pseudocomplemented).

Recall that a wr-pseudocomplemented lattice satisfies the supposition..
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Let P be a poset.

Recall that in a poset the pseudocomplement of x relative to y

is defined by

z := max{u: (u] ∩ (x] ⊆ (y]}
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Let P be a poset.

Recall that in a poset the pseudocomplement of x relative to y

is defined by

z := max{u: (u] ∩ (x] ⊆ (y]}.

An element y of P is said to be
¦ modular if

(u] ∩ (x] ⊆ (y] ⊆ (x] implies that (y] = (u′] ∩ (x]

for some u′ ≥ u,
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Let P be a poset.

Recall that in a poset the pseudocomplement of x relative to y

is defined by

z := max{u: (u] ∩ (x] ⊆ (y]}.

An element y of P is said to be
¦ modular if

(u] ∩ (x] ⊆ (y] ⊆ (x] implies that (y] = (u′] ∩ (x]

for some u′ ≥ u,
¦ distributive if

(u] ∩ (x] ⊆ (y] implies that (y] = (u′] ∩ (x′]
for some u′ ≥ u and x′ ≥ x.
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Let P be a poset.

Recall that in a poset the pseudocomplement of x relative to y

is defined by

z := max{u: (u] ∩ (x] ⊆ (y]}

An element y of P is said to be
¦ modular if

(u] ∩ (x] ⊆ (y] ⊆ (x] implies that (y] = (u′] ∩ (x]

for some u′ ≥ u,
¦ distributive if

(u] ∩ (x] ⊆ (y] implies that (y] = (u′] ∩ (x′]
for some u′ ≥ u and x′ ≥ x.

P is modular, resp., distributive, if every element of P is modular,

resp., distributive.
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Lemma 8. Let x, y be elements of P such that x ≥ y. Then

z is the pseudocomplement of x relative to y

if and only if

z is the weak pseudocomplement of x relative to y and y is

modular.
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Lemma 8. Let x, y be elements of P such that x ≥ y. Then

z is the pseudocomplement of x relative to y

if and only if

z is the weak pseudocomplement of x relative to y and y is

modular.

Theorem 9.

Suppose that P is a wr-pseudocomplemented poset . The fol-

lowing assertions are equivalent:

(a) P is modular,

(b) P is distributive,

(c) P is Brouwerian (i.e. relatively pseudocomplemented).
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5. Augmented wr-pseudocomplemented posets

We call a wr-pseudocomplemented poset augmented if it is

equipped with a total binary operation → extending ∗:
x → y = x ∗ y whenever y ≤ x.

The operation is then also said to be an augmented wr-pseudo-

complementation.
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5. Augmented wr-pseudocomplemented posets

We call a wr-pseudocomplemented poset augmented if it is

equipped with a total binary operation → extending ∗:
x → y = x ∗ y whenever y ≤ x.

The operation is then also said to be an augmented wr-pseudo-

complementation.

Proposition 10. The following holds in every augmented wr-

pseudocomplemented poset:

(a) if y ≤ x and v ≤ x, x → y, then v ≤ y,

(b) if y ≤ x, then y ≤ x → y,

(c) if z ≤ x, y and x ≤ y → z, then y ≤ x → z,

(d) if y ≤ x ≤ x → y, then x ≤ y,

(e) if z ≤ y ≤ x, then x → z ≤ y → z,

(f) if y ≤ x, then x ≤ (x → y) → y.

36



We shall deal only with augmented wr-pseudocomplemented

semilattices, considering them as algebras of kind (S,∧,→,1),

and denote the class of all such algebras by AWR∧.
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We shall deal only with augmented wr-pseudocomplemented

semilattices, considering them as algebras of kind (S,∧,→,1),

and denote the class of all such algebras by AWR∧.

Theorem 11. The class AWR∧ is a variety determined by the

semilattice axioms and identities

(a) x ∧ (x → (x ∧ y)) ≤ y,

(b) x ≤ y → (x ∧ y).

The equalities

x → x = 1 and 1 → x = x

also are identities of AWR∧, so the variety is permutable at 1

with the corresponding Mal’cev term y → x.
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6. Four subvarieties of AWR∧

Semi-Brouwerian semilattices (J.Schmidt [1978])

A semilattice with the largest element is semi-Brouwerian if all

the maxima

x → y := max{u: x ∧ u = x ∧ y}
exist.

If y ≤ x, then x → y is the weak pseudocomplementation of x

relative to y; therefore, the class SBS of all semi-Brouwerian

semilattices is a subclass of AWR∧.
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Moreover, every wr-pseudocomplemented semilattice can uniquely

be augmented to a semi-Brouwerian semilattice: SBS consists

just of those AWR∧-algebras in which ∗ is augmented by

x → y := x ∗ (x ∧ y)

(also I.Chajda, R.Halaš [2003] for sectionally pseudocomplemented semilat-

tices).
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Moreover, every wr-pseudocomplemented semilattice can uniquely

be augmented to a semi-Brouwerian semilattice: SBS consists

just of those AWR∧-algebras in which ∗ is augmented by

x → y := x ∗ (x ∧ y).

Therefore, SBS is in fact the subvariety of AWR∧ determined

by the identity

x → y = x → (x ∧ y).

Other equational descriptions of →: J.Schmidt [1978]

y ≤ x → y,

x ∧ (x → y) = x ∧ y,

x → (x ∧ y) = x → y,

and I.Chajda, R.Halaš [2003] (5 identities).
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V.M.Shiryaev, [1998]:

The variety of semi-Brouwerian lattices is arithmetical, with

the corresponding Pixley term ((y → x) ∧ z) ∨ ((y → z) ∧ x).
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V.M.Shiryaev, [1998]:

The variety of semi-Brouwerian lattices is arithmetical, with

the corresponding Pixley term ((y → x) ∧ z) ∨ ((y → z) ∧ x).

J.Schmidt [1978] + V.M.Shiryaev [1998]:

A semi-Brouwerian semilattice S is Brouwerian iff it satisfies

any of the following conditions:

(a) S is distributive (modular),

(b) x → (y ∧ z) = (x → y) ∧ (x → z),

(c) x → (y → z) = (x ∧ y) → z,

(d) x → (y → z) = y → (x → z),

(e) x ≤ (x → y) → y,

(f) x → (y → z) ≤ (x → y) → (x → z),

(g) x → y ≤ (z → x) → (z → y),

(h) x → y ≤ (y → z) → (x → z).
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Semilattices with sectional join-pseudocomplementation

(J.C̄ırulis [2008])

These are wr-pseudocomplemented semilattices augmented by

x → y := max{z ∗ y: x, y ≤ z}.

44



Semilattices with sectional join-pseudocomplementation

(J.C̄ırulis [2008])

These are wr-pseudocomplemented semilattices augmented by

x → y := max{z ∗ y: x, y ≤ z}.
If a semilattice happens to be a lattice, this turns into

x → y := (x ∨ y) ∗ y

as in Chajda [2003]. (‘j’ for ‘join’)

(Semi-Brouwerian semilattices could be called sectionally meet-pseudocom-

plemented: recall that x → y = x ∗ (x ∧ y) there.)

The above maxima need not exist if the initial wr-pseudocom-

plemented semilattice is not a lattice (however, this condition is not

necessary).
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Implication in the class SjPS of all sectionally j-pseudocomplemented

semilattices is characterised by conditions

(a) if x ≤ y → z, then y ≤ x → z,

(b) if x ≤ x → y, then x ≤ y,

(c) x ≤ y → (x ∧ z),

(d) 1 → x = x.
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Implication in the class SjPS of all sectionally j-pseudocomplemented

semilattices is characterised by conditions

(a) if x ≤ y → z, then y ≤ x → z,

(b) if x ≤ x → y, then x ≤ y,

(c) x ≤ y → (x ∧ z),

(d) 1 → x = x.

SjPS is actually a variety (5 identities for →), which is congru-

ence distributive with the majority term

((x → y) → y) ∧ ((y → z) → z),

and congruence permutable with the corresponding Mal’cev term

((x → y) → z) ∧ ((z → y) → x).

Thus, SjPS is arithmetical. In every algebra from SjPS

x ≤ y iff x → y = 1;

it follows that this variety is also 1-regular.
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A sectionally j-pseudocomplemented semilattice is Brouwerian if

and only if it satisfies any of the following conditions:

(a) S is distributive,

(b) S is a BCK-semilattice,

(c) if x ≤ y, then z → x ≤ z → y.
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Sectionally pseudocomplemented semilattices: another look

Halaš, J.Kühr [2007] (also I.Chajda, R.Halaš, J.Kühr [2007])

H&K prove that a semilattice with the greatest element is sec-

tionally pseudocomplemented iff it admits a total binary opera-

tion → subject to the axioms

(a) x → x = 1,

(b) x ∧ (x → y) = x ∧ y,

(c) x ∧ ((x ∧ y) → z) = x ∧ (y → (y → (x ∧ z)).
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Sectionally pseudocomplemented semilattices: another look

R.Halaš, J.Kühr [2007]

H&K prove that a semilattice with the greatest element is sec-

tionally pseudocomplemented iff it admits a total binary opera-

tion → subject to the axioms

(a) x → x = 1,

(b) x ∧ (x → y) = x ∧ y,

(c) x ∧ ((x ∧ y) → z) = x ∧ (y → (y → (x ∧ z)).

Motivated by this, H&K use the name ‘sectionally pseudocom-

plemented semilattice’ for algebras of kind (S,∧,→,1), where

(S,∧,1) is a semilattice and → satisfies the above axioms.

The class SPS-hk of all these algebras is a subvariety of AWR∧
and includes SBS.
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Let S be an algebra from SPS-hk. Then

(a) a filter of S is a congruence kernel if and only if it is a

weakly standard filter,

(b) if S has the greatest coatom, then it is subdirectly irre-

ducible.

The variety SPS-hk is regular at 1 and arithmetical at 1. More-

over, it is congruence distributive.
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The following example of an AWR∧ (H.P.Sankappanavar [2007])

shows that the inclusion SBS ⊆ SPS-hk is proper.

Example. Let 2̃ be the meet semilattice {0,1} with 0 ≤ 1 and

the operation → defined by

x → y = 1 iff x = y.

It belongs to SPS-hk but not to SBS.
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The following example of an AWR∧ (H.P.Sankappanavar [2007])

shows that the inclusion SBS ⊆ SPS-hk is proper.

Example. Let 2̃ be the meet semilattice {0,1} with 0 ≤ 1 and

the operation → defined by

x → y = 1 iff x = y.

It belongs to SPS-hk but not to SBS.

The algebra 2̃ also falsifies two theorems in H&K [2007]:
¦ if an algebra A ∈ SPS-hk is distributive, then A is a Brouwerian

semilattice,
¦ if the transfer from congruences of an algebra A ∈ SPS-hk to

their kernel filters is bijective, then A is a Brouwerian semilattice.
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Semi-Brouwerian semilattices in another sense

(H.P.Sankappanavar [2007])

A Sankappanavar’s semi-Brouwerian algebra is an algebra (S,∧,→
,1), where (S,∧,1) is a semilattice and → satisfies the identities

(a) x → x = 1,

(b) x ∧ (x → y) = x ∧ y,

(c) x ∧ (y → z) = x ∧ ((x ∧ y) → (x ∧ z).

Let SBS-s stand for the class of all such algebras.
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Semi-Brouwerian semilattices in another sense
(H.P.Sankappanavar [2007])

A Sankappanavar’s semi-Brouwerian algebra is an algebra (S,∧,→
,1), where (S,∧,1) is a semilattice and → satisfies the identities
(a) x → x = 1,
(b) x ∧ (x → y) = x ∧ y,
(c) x ∧ (y → z) = x ∧ ((x ∧ y) → (x ∧ z).

Let SBS-s stand for the class of all such algebras.

The axiom (c) can be split into two following:
(c’) x ∧ (y → z) = x ∧ ((x ∧ y) → z),
(c”) x ∧ (y → z) = x ∧ (y → (x ∧ z)).

A look on axioms of SPS-hk
(a) x → x = 1,
(b) x ∧ (x → y) = x ∧ y,
(c*) x ∧ ((x ∧ y) → z) = x ∧ (y → (x ∧ z))
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shows that SBS-s is a subvariety of SPS-hk and, hence, also of

AWR∧.
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shows that SBS-s is a subvariety of SPS-hk and, hence, also of

AWR∧.

On the other hand, the algebra 2̃ belongs to SBS-s; therefore

this variety is not included in SBS. In fact, the intersection of

SBS and SBS-s consists just of Brouwerian semilattices.

In contrast to semi-Brouwerian lattices, the lattices from SBS-s

are distributive but not necessary Brouwerian.
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Main results:

(a) The congruence and filter lattices of an algebra in SBS-s

are isomorphic.

(b) These algebras have equationally definable principal con-

gruences.

(c) SBS-s possesses the Congruence Extension Property.

(d) An algebra from SBS-s is subdirectly irreducible iff it has

a unique coatom.
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