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¦ 4 be a preorder on X (x 4 y is read x (functionally) depends on y),
¦ D be a family of surjective mappings d y

x : Vy → Vx (dependencies) with
x 4 y, such that

dx
x = idVx, d y

xd z
y = d z

x ,

Informally:

− if x 4 y and the currrent value of y is v, then d y
x (v) is the current value of x,

− if x 4 y and the currrent value of x is u, then the current value of y belongs to (d y
x )−1(u).

Two or more variables yi are said to be compatible if there is an variable which
all yi depend on.
Variables x and y are said to be equivalent if each of them depends on the
other.

←↩



We assume that

values of several variables can be detected simultaneously (if and) only
if these variables are compatible.



We assume that

values of several variables can be detected simultaneously (if and) only
if these variables are compatible.

It could be reasonable to assume also that

every compatible subset Y of X is represented by a single variable, i.e.,
there is a variable x such that
¦ all variables in Y depend on x

(i.e., x is an upper bound of Y w.r.t. 4),
¦ the current value of x is completely determined by

the current values of variables from Y
(i.e., x is a least upper bound of Y ).



We assume that

values of several variables can be detected simultaneously (if and) only
if these variables are compatible.

It could be reasonable to assume also that

every compatible subset Y of X is represented by a single variable, i.e.,
there is a variable x such that
¦ all variables in Y depend on x

(i.e., x is an upper bound of Y w.r.t. 4),
¦ the current value of x is completely determined by

the current values of variables from Y
(i.e., x is a least upper bound of Y ).

This assumption, in particular, should turn every initial segment of X into a
complete prelattice. We shall restrict our consideration to finite compatible
subsets and finitary operations.
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¦ there is a least element 0,

Therefore, any finite compatible subset of X has a l.u.b.,
¦ any two elements x and y have a g.l.b. x f y,
¦ the pair (dxgy

x , dxgy
y ) injectively embeds Vxgy into Vx × Vy

i.e., for all u, v ∈ Vxgy,

if dxgy
x (u) = dxgy

x (v) and dxgy
y (u) = d xgy

y (v), then u = v.

Informally, x and y are independet, if this embedding is actually a bijection.

¦ V0 is a singleton.

We call a triple (X,V,D) satisfying the above requirements an information
frame.

←↩



Let

F := (X,V,D) be an information frame.
B := (Bx: x ∈ X) be the family of sets, where each Bx is

the powerset of Vx.



Let

F := (X,V,D) be an information frame.
B := (Bx: x ∈ X) be the family of sets, where each Bx is

the powerset of Vx.

If x 4 y, then there are derived mappings

¦ πy
x: By → Bx defined by

πy
x(b) := {d y

x (v): v ∈ b} (= image of b),

¦ εx
y : Bx → By, defined by

εx
y(a) := {v ∈ Vy: d y

x (v) ∈ a} (= inverse image of a).



Let

F := (X,V,D) be an information frame.
B := (Bx: x ∈ X) be the family of sets, where each Bx is

the powerset of Vx.

If x 4 y, then there are derived mappings

¦ πy
x: By → Bx defined by

πy
x(b) := {d y

x (v): v ∈ b} (= image of b),

¦ εx
y : Bx → By, defined by

εx
y(a) := {v ∈ Vy: d y

x (v) ∈ a} (= inverse image of a).

Roughly:

The family (Bx, ε
x
y)x4y has a certain limit, which gives rise to the logic L

of F , while the inverse family (By, π
y
x)x4y induces a family of quantifiers

on L.



Let

F := (X,V,D) be an information frame.
B := (Bx: x ∈ X) be the family of sets, where each Bx is

the powerset of Vx.

If x 4 y, then there are derived mappings

¦ πy
x: By → Bx defined by

πy
x(b) := {d y

x (v): v ∈ b} (= image of b),

¦ εx
y : Bx → By, defined by

εx
y(a) := {v ∈ Vy: d y

x (v) ∈ a} (= inverse image of a).

Roughly:

The family (Bx, ε
x
y)x4y has a certain limit, which gives rise to the logic L

of F , while the inverse family (By, π
y
x)x4y induces a family of quantifiers

on L.

L will appear as an apropriate quotient algebra of the direct sum of all Boolean algebras Bx.
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A pair (x, a) with a ∈ Bx can be treated as an event

“the value of x lies in a”.
E := the set of all events in F .

We write

(y, b) ⊆ (x, a) to mean that x = y and b ⊆ a,
(y, b) ≤ (x, a) to mean that x 4 y and πy

x(b) ⊆ a.

Under the ordering ⊆, every subset Ex := {x} ×Bx of E becomes a Boolean
algebra isomorphic to Bx. In fact, E is a disjoint union of the algebras Ex.

The preorder ≤ (subsumption) is an extension of ⊆.
←↩



Proposition.
(a) Any two events (x, a) and (y, b) have a l.u.b. w.r.t. ≤.
(b) Events (x, a) and (y, b) have a g.l.b. w.r.t. ≤ if and only if x and y are
compatible (iff (x, a) and (y, b) have a lower bound).



Proposition.
(a) Any two events (x, a) and (y, b) have a l.u.b. w.r.t. ≤.
(b) Events (x, a) and (y, b) have a g.l.b. w.r.t. ≤ if and only if x and y are
compatible (iff (x, a) and (y, b) have a lower bound).

The definitions

(x, a) ∨ (y, b) := (x f y, πx
xfy(a) ∪ πy

xfy(b)),
(x, a) ∧ (y, b) := (x g y, εx

xgy(a) ∩ πy
xgy(b))

provide corresponding operations of join and meet.



Proposition.
(a) Any two events (x, a) and (y, b) have a l.u.b. w.r.t. ≤.
(b) Events (x, a) and (y, b) have a g.l.b. w.r.t. ≤ if and only if x and y are
compatible (iff (x, a) and (y, b) have a lower bound).

The definitions

(x, a) ∨ (y, b) := (x f y, πx
xfy(a) ∪ πy

xfy(b)),
(x, a) ∧ (y, b) := (x g y, εx

xgy(a) ∩ πy
xgy(b))

provide corresponding operations of join and meet.

There is also a natural involutive operation ⊥ on E defined by

(x, a)⊥ := (x, Vx \ a).



Proposition.
(a) Any two events (x, a) and (y, b) have a l.u.b. w.r.t. ≤.
(b) Events (x, a) and (y, b) have a g.l.b. w.r.t. ≤ if and only if x and y are
compatible (iff (x, a) and (y, b) have a lower bound).

The definitions

(x, a) ∨ (y, b) := (x f y, πx
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xfy(b)),
(x, a) ∧ (y, b) := (x g y, εx

xgy(a) ∩ πy
xgy(b))

provide corresponding operations of join and meet.

There is also a natural involutive operation ⊥ on E defined by

(x, a)⊥ := (x, Vx \ a).

We call the preordered partial algebra (E,∧,∨, ⊥) the prelogic of F .
Each Boolean algebra Ex is a subalgebra of E, and E is a direct sum of these.
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Events (x, a) and (y, b) are said to be equivalent (in symbols, (x, a) ' (y, b))
if there is c ∈ Bxfy such that both a and b are preimages of c:

a = εxfy
x (c) and b = εxfy

y (c).

(then, informally, (x, a) occurs iff (x f y, c) occurs iff (y, b) occurs).
(Events belonging to the same Ex are equivalent iff they are equal.)

This relation is indeed an equivalence relation; the corresponding equivalence
classes [x, a] := (x, a)/' are called propositions.

For example, (x, Vx) ' (y, Vy) and (x, ∅) ' (y, ∅) for all x and y. Put

1:= [x, Vx], 0:= [x, ∅].
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¦ L =

⋃
(Lx: x ∈ X),
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Two or more propositions are coherent if all of them belong to some Lx.
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(a) The relation ≤ induced on L by the subsumption relation ≤ of E is an
ordering.

(b) p∧ q (equivalently, p∨ q) is defined if and only if the propositions p and q
are coherent. If it is the case, then p∧ q is the meet, and p∨ q is the join of p
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(c) Each Lx supports a Boolean subalgebra of L isomorphic to Bx.

L itself is a Boolean algebra if and only if all variables in X are compatible.
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Write p ⊥ q for p ≤ q⊥.

Theorem 2. The system (L,≤, ⊥, 0, 1) is an orthomodular poset, i.e.,
satisfies the conditions

¦ (L,≤, 0, 1) is a poset with 0 the least and 1 the greatest element,
¦ the operation ⊥ is an orthocomplementation on L:

p ≤ q implies that q⊥ ≤ p⊥,
p⊥⊥ = p,
1 = p ∨ p⊥, 0 = p ∧ p⊥,

¦ p ⊥ q implies that p ∨ q is defined,
¦ p ≤ q implies that q = p ∨ r for some (unique!) r ⊥ p.

←↩
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Recall that a(n existential) quantifier on a Boolean algebra A may be charac-
terised as an operation Q on A that fulfills the following conditions:

¦ a ≤ Qa,
¦ if a ≤ b, then Qa ≤ Qb,
¦ Q((Qa)⊥) = (Qa)⊥,

or either as a closure operator whose range is a subalgebra of A.

Now let L be the algebra of propositions of a frame F .
We define a quantifier on L to be a closure operator whose range is a total
subalgebra of L.

Proposition. An operation Q on L is a quantifier if and only if it satisfies
the above conditions and

Qp ∧Qq exists whenever p ∧ q exists.

←↩
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Proposition. For every y ∈ X , the operation Qy on E defined by

Qy(x, a) := (x ∧ y, πx
xfy(a))

is stable w.r.t. ' and can be transferred to L.

Equivalently,

Qy(x, a) = (x, a) ∨ (y, ∅).

Theorem 3. In L,

(a) every operation Qy is a quantifier with the range Ly,

(b) Qxfy = QxQy.

We call the algebra (L,∧,∨,⊥ , Qx, 0, 1)x∈X the quantifier logic of F .


