

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Projekts Nr. 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

ON ASSOCIATIVELY AUGMENTED NEARLATTICES

Jānis Cīrulis University of Latvia email: jc@lanet.lv

"Algebra and its applications" Kääriku, April 30–May 2, 2010

OVERWIEV

- 1. Preliminaries
- 2. Examples of nearlattices
- 3. Augmented nearlattices
- 4. Semilattices with overriding
- 5. Examples of semilattices with overriding

1. PRELIMINARIES

Definition [W.Cornish e.a.]. A *nearlattice* is a meet semilattice *A* having the *upper bound property* (every pair of elements having an upper bound has the least upper bound).

Equivalently, every initial segment $A_p := \{x : x \le p\}$ of A happens to be a join semilattice (hence, a lattice) with respect to the natural ordering of A.

If all lattices A_p are distributive (Boolean), the nearlattice itself is said to be *distributive*, resp., *Boolean*.

Proposition. A semilattice is a nearlattice if and only if it becomes a lattice after adding a new top element.

Example: Nearlattice of sets.

Let ${\cal S}$ be a collection of subsets of some set ${\cal X}$ such that

(i) S is closed under \cap ,

(ii) $K \cup L \in S$ whenever $K, L \in S$ and $K, L \subseteq M$ for some $M \in S$.

Then S is a distributive nearlattice. It is Boolean if and only if it is closed also under \searrow .

Proposition [Balbes; Hickman]. Every distributive nearlattice is isomorphic to a nearlattice of sets.

Recall that a *band* is an idempotent semigrouop (S, *) and that its *natural ordering* R is given by x R y if and only if x * y = y = y * x.

The band is said to be *right regular* if it satisfies the identity x * y * x = y * x.

Definition [G.Laslo & J.Leech]. A *paralattice* is an algebra (A, \land, \lor) for which both (A, \land) and (A, \lor) are bands and $x \land y = x = y \land x$ iff $x \lor y = y = y \lor x$.

This absorption equivalence may be replaced by a pair of absorption identities

$$x \wedge (x \vee y \vee x) = x = (x \vee y \vee x) \wedge x,$$

$$x \lor (x \land y \land x) = x = (x \land y \land x) \lor x.$$

Thus, the class PL of all paralattices is a variety.

In virtue of the absorption equivalence, the natural orderings induced by \wedge and \vee agree and give the *natural ordering* \leq of A.

2. FURTHER EXAMPLES OF NEARLATTICES

2.1. Nearlattices in tolerance spaces

A tolerance space is a pair (T, \sim) , where T is a non-empty set and \sim is a reflexive and symmetric binary relation (tolerance) on X. (Think of \sim as of a compatibility relation.) Given subsets X and Y of T, we write $x \sim Y$ to mean that $x \sim y$ for all $y \in Y$, and $X \sim Y$, that $x \sim Y$ for all $x \in X$. A subset X of a tolerance space T is said to be *coherent* if $X \sim X$.

The set C of all coherent subsets of T is a Boolean nearlattice of sets. For $X, Y \in C$,

 $X \cup Y \in \mathcal{C}$ if and only if $X \sim Y$.

2.2 Tree nearlattices

A *tree* is a poset with the least element such that every initial segment of it is a chain.

A tree T is a (lower) semilattice if and only if the set of its initial segments T_p is closed under intersection

(this is the case, for example, when T is finite or satisfies the ascending chain condition).

A tree semilattice is always a distributive nearlattice (a *tree nearlattice*).

Thus, a necessary and sufficient condition for a nearlattice with the least element to be a tree is that two elements in it have the l.u.b. if and only if they are comparable.

2.3. Flat nearlattices

A poset with the least element is said to be *flat* if it has no chain of length > 2. It is always a nearlattice.

Actually, every flat nearlattice is a tree of height \leq 2, and conversely.

2.4. Functional nearlattices

Let I, V be nonempty sets, and let \mathcal{F} be the set of partial functions from I to V. Consider such function as subsets of $I \times V$.

The relation \sim on $I \times V$ defined by

 $(i,u) \sim (j,v) :\equiv i \neq j \text{ or } u = v$

is a tolerance. Then

• $\varphi \sim \psi$ iff φ and ψ agree on dom $\varphi \cap \operatorname{dom} \psi$,

• \mathcal{F} coincides with the set of coherent subsets of the tolerance space $(I \times V, \sim)$.

Thus, \mathcal{F} is a Boolean nearlattice of sets.

Proposition. A nearlattice is embeddable in some \mathcal{F} if and only if it is isomorphic to a subdirect product of flat nearlattices.

3. AUGMENTED NEARLATTICES

We are interested in nearlattices which are augmented in the sense that they are equipped with a total binary operation \lor which extends the partial join operation.

Definition. We call an algebra (A, \land, \lor) of type (2,2) an *augmented nearlattice* if the following holds:

(i) (A, \wedge) be a lower semilattice,

(ii) for every $p, x \lor y$ is the join of x and y whenever $x, y \in A_p$, and say that it is *associatively augmented*, or just *associative*, if \lor is associative.

A indeed is a nearlattice. However, we want a stronger connection between meet and the extended join operation. **Definition.** We call the operation \lor of an augmented nearlattice (A, \land, \lor) a *nearjoin*, and A itself, a *semilattice with nearjoin* or just an *nj-semilattice*, if the following holds:

(iii) $x \leq y$ if and only if $x \lor y = y = y \lor x$.

We say that an nj-semilattice is *right-handed* if it satisfies the condition

(iv)
$$y \leq x \lor y$$
.

So, we have dispensed with the partial nearlattice join.

For example, every lattice is an nj-semilattice.

(i) (A, \wedge) is a meet semilattice,

(ii) for every $p, x \lor y$ is the join of x and y whenever $x, y \in A_p$,

(iii) $x \leq y$ if and only if $x \lor y = y = y \lor x$.

An algebra (A, \land, \lor) satisfies (i), (iii) and has associative \lor if and only if

• it is a paralattice with commutative meet

or, alternatively,

• (A, \lor) is a band which is a lower semilattice with respect

to its natural ordering,

while (ii) adds that it is a nearlattice.

Therefore, another name for an nj-semilattice could be "nearlattice ordered band".

If the operation \vee is associative, then

 $y \leq x \lor y$ ifff $y \lor x \lor y = x \lor y$,

i.e., an nj-semilattice is right-handed if and only if the band (A, \lor) is right regular.

Theorem 1.

(a) The class NJSL of all nj-semilattices is a subvariety of PL.(b) the class NJSLr of right-handed nj-semilattices is a subvariety of NJSL.

For example, the absorption equivalence

(ii) $x \leq y$ iff $x \lor y = y = y \lor x$

may be replaced by the following absorption identities:

 $x \wedge (x \vee y \vee x) = x, \qquad x \vee (x \wedge y) = x = (x \wedge y) \vee x.$

Proposition. The variety NJSL is congruence distributive, with the majority term

 $m(x, y, z) = ((x \land y) \lor (x \land z)) \lor (y \lor z).$

It is neither *n*-permutable for any n > 1 nor regular, hence, it also is not arithmetical.

4. SEMILATTICES WITH OVERRIDING

When is nearjoin associative?

Theorem 2.

(a) A right-handed associative nj-semilattice satisfies the following conditions

$$egin{aligned} &y \leq x \lor y, \ &(x \land z) \lor (y \land z) \leq z, \ &x \lor y \leq ((x \lor y) \land x) \lor y, \ &x \land z \leq x \lor (y \land z). \end{aligned}$$

(b) A semilattice with an operation \lor satisfying these conditions is always a right-handed nj-semilattice.

 $egin{aligned} &y \leq x \lor y, \ &(x \land z) \lor (y \land z) \leq z, \ &x \lor y \leq ((x \lor y) \land x) \lor y, \ &x \land z \leq x \lor (y \land z). \end{aligned}$

Definition. By *overriding* on a semilattice A we mean any operation satisfying the above conditions. $x \lor y$ is read as "x overrided by y".

All these conditions are essentially identities. Thus, the class OSL of all semilattices with overriding (*o-semi-lattices*, for short) is a variety, and

 $OSL \subseteq NJSLr$, AOSL = ANJSLr "A" for "associative".

Definition. Let A be a nearlattice. We say that elements a and b of A are *compatible* if $a, b \in A_p$ for some p (in symbols, $a \downarrow b$).

Theorem 3. A binary operation \vee on a nearlattice is overriding if and only if

 $x \lor y := \sup\{u: (u \le x \text{ and } u \stackrel{|}{\circ} y) \text{ or } u \le y\}.$

Therefore, if overriding on A exists, then it is defined uniquely.

When is overriding associative?

In general, the elements $x \lor (y \lor z)$ and $(x \lor y) \lor z$ of an o-semilattice need not even be comparable.

Definition [Gorbunov & Taimanov]. A lower semilattice has the *Jónsson-Kiefer property* if every its element p is the l.u.b. of all join-prime elements below p.

(a is join-prime if $a \leq \sup(b, c)$ implies that $a \leq b$ or $a \leq c$.)

Theorem 4. In an o-semilattice A,

- if x = y or y = z, then $(x \lor y) \lor z = x \lor (y \lor z)$,
- if $y \stackrel{|}{_{\scriptscriptstyle O}} z$, $x \stackrel{|}{_{\scriptscriptstyle O}} y$ or x = z, then $(x \lor y) \lor z \ge x \lor (y \lor z)$,
- if A is distributive or has the the JK-property, then $(x \lor y) \lor z \le x \lor (y \lor z).$

None of the suppositions can be omitted.

5. EXAMPLES OF O-SEMILATTICES

5.0. Complete semilattices

A *complete semilattice* is a poset *P* in which

(i) every nonempty subset has the greatest lover bound and

(ii) every up-directed subset has the least upper bound.

Condition (ii) here can be replaced by a weaker requirement (ii') *P* is chain-complete (i.e., has the least upper bound for every chain).

A complete semilattice is a nearlattice, and all the suprema needed for the overriding operation exist.

So, a complete semilattice is an o-semilattice.

5.1. Tolerance spaces and overriding

Let C be the nearlattice of all coherent subsets of some tolerance space T.

Consider the binary operation $\overleftarrow{\cup}$ on \mathcal{C} defined as follows:

$$X \overleftarrow{\cup} Y := \{x \in X \cup Y \colon x \sim Y\} = \{x \in X \colon x \sim Y\} \cup Y.$$

C is closed under this operation, and $X \overleftarrow{\bigcup} Y = Y \overleftarrow{\bigcup} X$ if and only if $X \sim Y$, $X \overleftarrow{\bigcup} Y = X \cup Y$ in this case.

The algebra $(\mathcal{C}, \cap, \overleftarrow{\cup})$ is a Boolean o-semilattice.

Proposition. The operation $\overleftarrow{\bigcup}$ is associative if and only if the relation \sqsubseteq defined by

 $X \sqsubseteq Y :\equiv x \sim Y$ for no x in $X \smallsetminus Y$.

is transitive.

Subalgebras of C will be called *concrete* o-semilattices. Every concrete o-semilattice is distributive.

Recall that every distributive nearlattice is isomorphic to a nearlattice of sets.

Theorem 5. Every associative Boolean o-semilattice is isomorphic to a concrete o-semilattice.

Problem. Is it true that every distributive o-semilattice is isomorphic to a concrete o-semilattice?.

5.2. Overriding in trees

In an arbitrary tree semilattice, an operation \vee is overriding if and only if

 $x \lor y = x$ if $y \le x$, $x \lor y = y$ otherwise. Thus, every tree semilattice can uniquely be expanded to an o-semilattice, and always $x \lor y \in \{x, y\}$.

Associative tree o-semilattices have a distinctive structural property.

Let K be the tick-like poset $\{a, b, c, d\}$ with just two maximal chains a > b < c < d. Obviously, it is a tree semilattice.

Theorem 6. Overriding on a tree nearlattice T is associative if and only if T does not include a copy of K.

This criterion may be given a positive form.

A *linear sum* of posets P and Q is obtained by taking the following order relation on $P \cup Q$:

$$x \le y \text{ if and only if } \begin{cases} x, y \in P \text{ and } x \le y \text{ in } P, \text{ or} \\ x, y \in Q \text{ and } x \le y \text{ in } Q, \text{ or} \\ x \in P \text{ and } y \in Q. \end{cases}$$

Corollary 7. Overriding on a tree nearlattice is associative if and only if the semilattice is either a chain or a linear sum of a chain and a non-trivial antichain.

5.3. Flat o-semilattices

Recall that a flat nearlattice is a tree of height \leq 2, and conversely.

It follows from the above corollary, that every flat o-semilattice is necessarily associative. In a flat nearlattice, overriding is characterised also by $x \lor y = y$ if $y \neq 0$, $x \lor y = x$ otherwise.

Lemma 8. Every flat o-semilattice is simple and subdirectly irreducible.

5.4. Functional o-semilattices

 \mathcal{F} – the nearlattice of partial functions $I \rightarrow V$.

For $\phi, \psi \in \mathcal{F}$ let $\phi \overleftarrow{\cup} \psi := \phi | (\operatorname{dom} \phi \smallsetminus \operatorname{dom} \psi) \cup \psi,$ where $\phi | J$ means the restriction of ϕ to J.

Proposition. $(\mathcal{F}, \cap, \bigcup)$ is an associative Boolean o-semilattice.

Subalgebras of o-semilattices of this kind will be called *functional*. Thus every functional o-semilattice is distributive.

Proposition. A concrete o-semilattice is associative if and only if it is isomorphic to a functional o-semilattice.

We denote by **FOSL** the class of algebras isomorphic to a functional o-semilattice.

Corollary 9. Every associative Boolean o-semilattice is in FOSL.

Theorem 10. An algebra of signature $\{\land,\lor\}$ is in FOSL if and only if it is a subdirect product of flat o-semilattices.

Corollary 11. All algebras in FOSL are semisimple.

Corollary 12. An algebra from FOSL is subdirectly irreducible if and only if it is a flat o-semilattice.