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In this work we present the Reverse Monte Carlo (RMC) modeling scheme, designed to probe the local
structural and thermal disorder in crystalline materials by fitting the wavelet transform (WT) of the
EXAFS signal. Application of the method to the analysis of the Ge K-edge and Re L3-edge EXAFS signals
in crystalline germanium and rhenium trioxide, respectively, is presented with special attention to the
problem of thermal disorder and related phenomena.
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1. Introduction

Reverse Monte Carlo (RMC) method is a simulation technique,
which allows one to determine a 3D model of the material atomic
structure by minimizing the difference between its structure-
related experimental and calculated properties [1]. The method
does not require knowledge of interatomic potentials that is its
main advantage over such simulation techniques as conventional
Monte Carlo or molecular dynamics (MD). However, such informa-
tion can be utilized to exclude unphysical solutions as has been
recently demonstrated in the hybrid RMC method [2].

Practical application of the RMC method relies on the high
computing speed, since the involved structural models are usually
large, the calculation of properties can be computationally heavy,
and the minimization algorithm, based on the random (i.e., Monte
Carlo) process, requires very many steps till it converges to a solu-
tion. Therefore, the popularity of the RMC method during the last
two decades [3,4] is driven by the wide spread occurrence of high-
performance computing systems.

Original use of the RMC method [1] and most of its recent
applications [3,5] concern with the reconstruction of the atomic
structure in the disordered materials (glasses and liquids) from
the diffraction (neutron, X-ray, electron) data. However, the ap-
plication of the method to crystalline [6–10] and nanocrystalline
[11–14] compounds is also useful to study deviations from the av-
erage atomic structure due to the presence of thermal disorder or
local structural distortions.
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The application of the RMC method to the analysis of the ex-
tended X-ray absorption fine structure data (EXAFS) has been ad-
dressed in a number of works [15–26]. Most previous EXAFS stud-
ies have been based on the single-scattering approximation formal-
ism, thus accounting only for the contribution of pair-distribution
functions, that limits accurate analysis to the first coordination
shell around the absorber. At the same time, the sensitivity of
EXAFS to higher-order distribution functions through the multiple-
scattering (MS) contributions has been discovered as early as in
1975 in metallic copper [27,28]. It was demonstrated in [27,28]
that the amplitude of scattered photoelectron wave is strongly af-
fected in nearly collinear atomic chains, thus leading to an increase
of the EXAFS signal amplitude from outer coordination shells. This
phenomenon, known as the “focusing” effect, has been later found
and interpreted in many materials, for example, having perovskite-
type structure such as ReO3 [29–31], NaWO3 [32], WO3−x [33],
and FeF3 [34]. Note that the accurate description of the “focus-
ing” effect in perovskites allows the quantitative estimation of the
bonding angles between structural units, in this case, the coor-
dination octahedra, which are strictly connected to the physical
properties of the materials [35]. Besides the outer shell MS con-
tributions, the MS signals generated within the first coordination
shell of the absorber can be also important: their contribution
depends strongly on the path geometry, i.e., structural units distor-
tion, and the atoms involved in the scattering process [36]. Such
MS processes contribute between the peaks of the first and second
coordination shells in the Fourier transform of the EXAFS spec-
tra and are easily observed in the case of the octahedral absorber
coordination as in perovskites [31,32] or ions of 3d-transition met-
als in solutions [37,38].
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Nowadays it becomes a challenging task to extract the infor-
mation on the higher-order distribution functions from the to-
tal EXAFS signal. The possibility to solve such problem has been
demonstrated by Di Cicco et al. [18,19] on the example of liq-
uid copper, where the three-body contribution was clearly iden-
tified from the RMC analysis of the Cu K-edge EXAFS χ(k)k signal
in k-space. The extension of this approach to crystalline com-
pounds, having smaller degree of structural and thermal disor-
der, is heavy computational task, since in the ordered materials
the number of multiple-scattering paths increases rapidly upon
an increase of the radial distance from the absorber. This prob-
lem has been addressed recently within two computer codes –
the RMCProfile code [39] and the SpecSwap-RMC code [25]. In
the method by Krayzman et al. [24,26], implemented as an ex-
tension to the RMCProfile code [39], the calculation of the double-
and triple-scattering events is included in the RMC-EXAFS analy-
sis in approximative way by evaluating the scattering amplitudes
and phase shifts for each path prior to refinements using the
average-configuration model. Another approach is realized within
the SpecSwap-RMC code [25]. In this case, the configuration space
is reduced and is expressed in terms of a discrete set of local struc-
tures, for which the EXAFS signals are pre-computed in advance to
decrease significantly the RMC computation time [25].

The RMC modeling scheme, presented in this paper, is primar-
ily designed but not limited to determine the local structural and
thermal disorder in crystalline materials from the analysis of the
experimental EXAFS signal within the multiple-scattering formal-
ism. Unlike previous works, our RMC algorithm is able to minimize
the difference between experimental and calculated EXAFS signals
not only in the energy (k) or real (R) space independently, but
also simultaneously by comparing their wavelet transforms [40].
Besides, we use slowly reducing “temperature” parameter in the
Metropolis algorithm during the simulations to improve conver-
gence (the so-called simulated annealing method [41]). Since the
RMC scheme can be efficiently parallelized, it has been imple-
mented on the high-performance computing (HPC) cluster at the
Institute of Solid State Physics (Riga) [42], thus allowing one to
solve a typical task within a few days of computational time.

The paper is organized in the four main sections. In Section 2
our RMC simulation scheme is described in details. In Section 3
the application of the RMC method is illustrated on the example
of model configuration-averaged EXAFS signal, calculated from the
results of the MD simulations [43]. Such approach allows us to
validate just the RMC algorithm, thus excluding possible problems
related to the accuracy of the EXAFS signal calculation. In Section 4
the RMC method is applied to the analysis of the experimental
data: Ge K-edge in crystalline germanium (Ge) [44] and Re L3-edge
[45] EXAFS signals in crystalline rhenium trioxide (ReO3).

2. RMC-EXAFS modeling scheme

2.1. Calculation of the EXAFS signal

The RMC procedure requires at each step to calculate the total
EXAFS signal χtot(k), corresponding to the current atomic config-
uration, to be compared with the experimental one χexp(k). The
total EXAFS signal χtot(k) equals to the average of the EXAFS sig-
nals χ(k) for all absorbing atoms of the same type in the atomic
configuration. These signals can be calculated by one of the ab ini-
tio EXAFS codes as, for example, FEFF [46] or GNXAS [47]. In fact,
the accuracy of the atomic structure reconstruction by the RMC
approach is strongly linked to the accuracy of the EXAFS code and,
thus, will be undoubtedly improved in the future following devel-
opments within the EXAFS theory [48].

In this work, we use the ab initio self-consistent real space
multiple-scattering approach as is implemented in the FEFF8 code
[46,49], and the EXAFS signal χ(k) is described by the equa-
tion

χ(k) = S2
0

∑
j

| f j(k,�r1, . . . ,�rm)|
kR2

j

× sin
(
2kR j + φ j(k,�r1, . . . ,�rm)

)
. (1)

Here the summation is carried out over all possible scatter-
ing paths of the photoelectron up to the eight order, when re-

quired. k =
√

(2me/h̄2)(E − E0) is the photoelectron wavenum-
ber (me is the electron mass, h̄ is Planck’s constant, E is the
X-ray photon energy, and E0 is the photoelectron energy origin
(k = 0)), S2

0 is the amplitude reduction factor accounting also
for multi-electron processes, and R j is the half length of the j-
path.

The scattering amplitude f j(k,�r1, . . . ,�rm) and phase shift φ j(k,

�r1, . . . ,�rm) functions describe the interaction of the photoelectron
with the atoms along the scattering path. They depend on the pho-
toelectron energy and both radial and angular characteristics of the
scattering path (�ri is the position of the i-th atom), thus being re-
sponsible for the sensitivity of the total EXAFS signal to many-body
distribution functions, i.e., 3D atomic structure.

The calculation of the f j and φ j functions in the FEFF8 code re-
quires the knowledge of the cluster potential. It can be evaluated
for the average atomic configuration, thus neglecting the potential
variation due to thermal vibrations, or recalculated at each RMC
step. In this work, since we deal with the crystalline compounds
and only thermal disorder is present, the self-consistent cluster
potential was evaluated before the RMC run for the average crys-
talline structure known from diffraction studies. This allowed us to
reduce significantly the total computation time. The self-consistent
cluster potential was constructed within the muffin-tin approx-
imation, and the complex exchange-correlation Hedin–Lundqvist
potential and default values of muffin-tin radii, as provided within
the FEFF8 code [46], were used.

2.2. The RMC scheme

First, we will briefly describe the basic RMC algorithm. More
details can be found in [3,4].

The RMC simulation starts with an arbitrary initial configura-
tion of atoms in a cell of chosen size and shape with periodic
boundary conditions, for which the total EXAFS signal χtot(k) is
calculated as described above in Section 2.1. The number of atoms
in the cell should give the atomic number density equal to the ex-
perimental value. Note that in the case of crystalline material, the
cell is often called as a “supercell”, since it can be composed of
several unit cells.

Next the current atomic configuration is modified by randomly
changing the coordinates of one or all atoms, thus producing
the new atomic configuration, for which the total EXAFS signal
χnew

tot (k) is calculated. The two calculated EXAFS signals χold
tot (k)

and χnew
tot (k) are compared with the experimental one χexp(k),

and the new atomic configuration is either accepted or discarded
depending on the results of this comparison. The procedure is re-
peated as many times as needed till the atoms in the cell will oc-
cupy such positions that the sum of weighted squared differences
ξk between theoretical χtot(k) and experimental χexp(k) EXAFS
spectra

ξk = ‖χtot(k)kn − χexp(k)kn‖2

‖χexp(k)kn‖2
(2)

is minimized in k-space. Here ‖ . . .‖2 denotes the Euclidean norm,
and kn (n = 1, 2, or 3) is the usual EXAFS signal weighting factor.
The final atomic configuration gives a 3D structure that is con-
sistent with the experimental EXAFS data. Note that the function
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χexp(k) can correspond to the full experimental EXAFS signal or
to its part, obtained by the Fourier filtering procedure in the re-
quired R-space range. In fact, the largest distance Rmax, which
can be included in the analysis, is limited by the number of
multiple-scattering paths, which can be treated within the ab ini-
tio EXAFS code, and by the computation time. In this work, we
used Rmax = 6 Å.

Alternatively, one can calculate the Fourier transforms of the
total theoretical and experimental EXAFS signals and perform min-
imization of their differences in the real space (R-space)

ξR = ‖F T tot(R) − F Texp(R)‖2

‖F Texp(R)‖2
. (3)

Third and, to our knowledge, previously unused possibility is to
minimize the difference between theory and experiment in both k
and R spaces simultaneously by using the so-called wavelet trans-
form (WT) of the EXAFS signal [40,50]. While different types of
the WT are known [50], we use the modified Morlet continuous
wavelet transform, described in [40]. In this case, the difference is
calculated as

ξk,R = ‖WTtot(k, R) − WTexp(k, R)‖2

‖WTexp(k, R)‖2
, (4)

where WTtot and WTexp are the WTs of calculated and experimen-
tal EXAFS signals, respectively.

The three methods (Eqs. (2), (3), and (4)) used to estimate
the difference between theoretical and experimental EXAFS signals
have different sensitivity to their behavior due to the peculiarities
of the scattering amplitude f j and phase shift φ j functions for dif-
ferent elements in the Periodic Table. In particular, the criterion in
k-space (Eq. (2)) will better discriminate between heavy and light
elements producing stronger contributions into the total EXAFS
signal at the large and low k-values, respectively. On the contrary,
the criterion in R-space (Eq. (3)) will discriminate contributions
by frequencies (i.e., radial distances), and it can be affected by the
available EXAFS signal range in k-space and by the choice of the
window function used in the Fourier transform. Therefore, we be-
lieve that the use of the criterion based on the wavelet transform
(Eq. (4)) will provide the best results during minimization since it
accounts for the two-dimensional representation of the EXAFS sig-
nal with simultaneous localization in energy and frequency space
domains [40,50].

Since the lattice parameters of the crystalline material can be
determined by diffraction techniques with much higher accuracy
(better than 10−3 Å), compared to that provided by modern EXAFS
analysis (usually about 10−2 Å), the RMC simulation of the EXAFS
signal for a crystal is performed using a fixed box size, defined by
the lattice parameters, and by initial placing of atoms at proper
Wyckoff positions. This allows us to account for the information
available from diffraction data without the need for the direct sim-
ulation of diffraction pattern. However, small random initial dis-
placements for all atoms can be given to include approximately
thermal disorder and, thus, to avoid rapid changes of the resid-
ual at the beginning of the RMC iteration process. Moreover, the
shape of the cell is determined by the crystal symmetry and is not
obligatory cubic.

The EXAFS method is sensitive to the local atomic structure
(usually up to 10 Å around the absorbing atom) due to the re-
strictions imposed by the life time of the excitation, including the
mean free path of the photoelectron and thermal disorder. There-
fore, in a periodic system, one can probe and needs to account for
relatively small amount of atoms in a rather small cell, whose size
should be at least twice the largest radial distance in the Fourier
transform of the EXAFS signal, at which structural contributions
are still visible. For example, in the calculations discussed further,
the number of atoms is between 100 and 300. To compare, the
number of atoms, required for the RMC modeling of disordered
materials, is at least 1000 [5].

Once the initial atomic configuration is chosen, one should de-
fine the procedure for its modification using random atom dis-
placements. For this purpose at each RMC step, one can either
randomly pick one atom and randomly change its coordinates, or
can randomly modify coordinates of all atoms. In this work, the
latter approach is adopted, and the generation of pseudo-random
numbers is performed using the Mersenne–Twister algorithm [51].
Moreover, in the real crystals the displacements of atoms from
their equilibrium positions due to thermal vibrations are nor-
mally less than few tenths of angstrom. Therefore, in the present
work we constrain the displacements of atoms from their equilib-
rium positions that are known from diffraction experiments to be
smaller than 0.2 Å.

2.3. The Metropolis algorithm

Next we will discuss the choice of the “temperature” parameter
T in the Metropolis criterion [52] for the acceptance/discarding of
the atoms movement.

Let the differences between total calculated and experimental
EXAFS signals for the current and new atomic configurations be
equal to ξold and ξnew, respectively. If the new atomic configu-
ration is accepted only for ξnew < ξold then the difference will
always decrease, and after some number of steps it will reach
the local minimum. In order to ensure that the global minimum is
found, it is necessary to accept some of the atomic displacements
for which ξnew > ξold. Such strategy is realized in the most popu-
lar algorithm of the movement acceptance/discarding proposed by
Metropolis [52]:

if ξnew < ξold, the move is accepted,

if ξnew > ξold, the move is accepted, if

exp
(−(

ξnew − ξold)
/T

)
> r,

and discarded otherwise, (5)

where r is a random number in the range between 0 and 1.
The significant problem is the choice of “temperature” parame-

ter T . If T is too large, the system will reach the global minimum,
but will fluctuate around it with large amplitude. If T is too small,
the simulation may stuck at some local minimum. The conven-
tional approach (see, for example, in [15]) is to choose T propor-
tional to the noise level of experimental data, so that the value of
T is small.

In the simulated annealing approach [41], the parameter T is
not fixed but decreases slowly. One starts with large value of T to
stimulate a fast approach to the global minimum. Then the param-
eter T decreases, so that the fluctuations of the system becomes
damped. At the end of the simulation, T is equal to 0 and, if the
annealing has been carried out slowly enough, the system reaches
the global minimum. The efficiency of this approach strongly de-
pends on the so-called “cooling schedule” – the function that con-
trols the decrease of T during the simulation. Note that different
cooling schedules should be used for different parameters of the
modeled system.

In our RMC scheme, we suggest to determine the cooling sched-
ule automatically using the information about the average changes
of the residual during the simulation.

By looking at Eq. (5), one can see that the parameter T is equal
to −(ξnew −ξold)/ ln p, where p is the probability to accept a move
with ξnew > ξold. Let us assume that at the beginning of the sim-
ulation p = 1, i.e., all proposed moves are accepted, but at the end
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Fig. 1. (Color online.) Upper panel: 4 × 4 × 4 supercell (128 atoms), used in the RMC simulations of crystalline germanium; model Ge K-edge EXAFS signal (dots) and EXAFS
signal, obtained in RMC simulations (solid line). Bottom panel: WT moduli for model EXAFS signal and for difference between model and RMC EXAFS signals.
of the simulation p = 0, i.e., only the moves with ξnew < ξold are
accepted, and in between p changes linearly. By denoting the av-
erage change of the difference between theory and experiment per
RMC step as � and the length of the simulation as tmax, one can
obtain simple equation for the parameter T as a function of the
RMC steps number t

T (t) = −�(t)/ ln(1 − t/tmax). (6)

The parameter � can be obtained by averaging the differences
(ξnew − ξold) and depends on the system parameters (for example,
� is smaller for larger number of atoms). During the simulation
the parameter � changes slowly and can be considered constant.

Following the Hajek theorem [53,54], the simulated annealing
algorithm converges if

∑∞
t=1 exp[−d/T (t)] = ∞, where d is posi-

tive constant that characterize the maximal height of barrier that
must be overcome to escape from local minima. In our case, this
condition can be rewritten as

lim
tmax→∞

tmax∑
t=1

(1 − t/tmax)
d/� = ∞, (7)

and it is satisfied for all values of d and �.

3. Application of the RMC-EXAFS method to model data

3.1. The RMC simulation details

To test our RMC scheme, we apply it first to synthetic Ge
K-edge EXAFS signal in crystalline germanium (space group Fd3̄m).
It was calculated using the results of molecular dynamics (MD)
simulation, based on the Stillinger–Weber potential (force field)
[43] and performed within the NVT ensemble for the lattice con-
stant aGe = 5.658 Å [55] at the effective temperature of 395 K. It
has been shown in [43], that the theoretical EXAFS signal, obtained
within such simulation, is very similar to the real Ge K-edge EXAFS
spectrum of crystalline germanium at 300 K.
The RMC simulation cell was composed of 64 unit cells of ger-
manium, forming a 4 × 4 × 4 supercell with 128 atoms inside.
The total number of the RMC steps was 40 000. The difference
ξk between calculated by RMC and model EXAFS signals has been
calculated in k-space by Eq. (2). The obtained result is shown in
Fig. 1, where the supercell, both EXAFS signals and the wavelet
transforms of the model EXAFS signal and difference between the
model and calculated signals are presented. In Fig. 2 the compari-
son between the model and calculated signals is separately shown
for single-scattering and multiple-scattering contributions. It can
be seen, although for the crystalline germanium the changes of
EXAFS signal due to the multiple-scattering effects are relatively
small, they can be accurately reconstructed and analyzed using our
RMC scheme. The time dependencies of the parameters T and ξk

are shown in Fig. 3.
It should be emphasized that the obtained structural solution,

i.e., a set of atomic coordinates, is not unique. Repeating the simu-
lation with the same parameters but with the different sequence of
pseudo-random numbers, one will obtain a different set of coordi-
nates. However, the statistical characteristics, such as mean values
and dispersions of interatomic distances and bond angles, distri-
bution functions for distances and angles, will be close for both
cases, and also close to their “experimental” analogues. This con-
clusion is supported by the results in Fig. 4, where the radial and
angle distribution functions for our MD model are compared with
that obtained from RMC simulations: the agreement between both
sets of functions for the nearest coordination shells of germanium
is very good.

Finally, we compare the values of the mean-square displace-
ments (MSD or 〈u2〉), mean-square relative displacements (MSRD
or σ 2) and the mean coordination shell radii 〈R〉 for the first three
coordination shells of Ge in the starting model and as obtained by
the RMC simulation (see Table 1). As one can see, our RMC method
is able to recover with very good accuracy (less than 1%) the mean
shell radii and reasonably well uncorrelated (MSD) and correlated
(MSRD) thermal vibration amplitudes.
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Fig. 2. (Color online.) Model Ge K-edge EXAFS signal (dots) and EXAFS signal, obtained in RMC simulations (solid line) for single-scattering (SS) and multiple-scattering (MS)
contributions, WT moduli for corresponding model EXAFS signals and corresponding differences between model and RMC EXAFS signals.

Fig. 3. (Color online.) Dependence of the parameter T and the difference ξk on the number of the RMC steps.

Fig. 4. (Color online.) The radial distribution function RDF (Ge–Ge) and the bond angle distribution function BADF (Ge–Ge–Ge) for the model data (lines) and the results of
the RMC simulations (bars) for crystalline germanium.
Table 1
Values of mean-square displacements (〈u2〉), mean-square relative displacements
(σ 2) and the mean coordination shell radii 〈R〉 in crystalline germanium at 395 K
for the starting model and obtained by the RMC simulation for a 4 × 4 × 4 super-
cell.

Starting model RMC result

〈R〉1st shell (Å) 2.45479 ± 0.00006 2.454 ± 0.003

〈R〉2nd shell (Å) 4.00458 ± 0.00006 4.004 ± 0.003

〈R〉3rd shell (Å) 4.69485 ± 0.00007 4.695 ± 0.002

σ 2
1st shell (Å

2
) 0.003262 ± 0.000005 0.004 ± 0.001

σ 2
2nd shell (Å

2
) 0.010716 ± 0.00001 0.0105 ± 0.0003

σ 2
3rd shell (Å

2
) 0.014804 ± 0.00001 0.013 ± 0.001

〈u2〉 (Å
2
) 0.0272 ± 0.0006 0.0214 ± 0.007

3.2. Influence of the cell size and simulation time

The cell size and the simulation time (number of the RMC
steps) are important parameters, which can affect the results of
the RMC simulation. Therefore, their optimal choice is crucial.

We have repeated our simulations also for two smaller super-
cells, 2 × 2 × 2 (16 atoms) and 3 × 3 × 3 (54 atoms), varying
the number of the RMC steps between 10 000 and 80 000. The
obtained results are compared in Fig. 5. The agreement between
calculated and model EXAFS signals improves significantly by in-
creasing the supercell size from 2 × 2 × 2 to 3 × 3 × 3. Further in-
crease of the supercell size does not lead to notable improvement
of the agreement between calculated and model EXAFS signals.
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Fig. 5. (Color online.) Comparison between the model Ge K-edge EXAFS signal (dots) and the EXAFS signals, obtained from the RMC simulations of crystalline germanium
using different parameters (solid lines). The corresponding differences between model signal and RMC signals are shown in the bottom panels. ξk is the final difference,
calculated by Eq. (2). The values of the parameters are: (left panels) the length of simulation is 40 000 RMC steps and the size of the supercells are 2 × 2 × 2, 3 × 3 × 3, and
4 × 4 × 4; (right panels) the size of the supercell is 2 × 2 × 2 supercell, the lengths of simulations are 10 000, 20 000, 40 000, and 80 000 RMC steps.

Fig. 6. (Color online.) Results of the RMC simulations with variable lattice constant for the model Ge K-edge EXAFS signal, obtained from the MD calculations of crystalline
germanium. Left panel: Ge K-edge EXAFS signals for the starting MD model (A) and the result of RMC simulations with (B) the fixed lattice constant a = 5.658 Å, the
difference ξk,R = 0.056; (C) the lattice constant, varying during the simulations: initial value of the lattice constant is a = 5.608 Å, its final value is a = 5.652 Å, the difference
ξk,R = 0.033; (D) the lattice constant, varying during the simulations: initial value of lattice constant is a = 5.708 Å, its final value is a = 5.679 Å, the difference ξk,R = 0.037.
The corresponding differences between model signal and RMC signals are shown in the bottom left panel. Right panels: (A) modulus of the wavelet transform (WT) for the
model EXAFS signal; (B), (C) and (D) the WT moduli of the difference between model and calculated EXAFS signals shown in the left panel.
Therefore the increase of the supercell will not ensure the more
precise determination of structure parameters. Instead, multiple
RMC calculations with the same supercell but different sequences
of pseudo-random numbers can be carried out to improve statisti-
cal error.

The results obtained after 20 000, 40 000 or 80 000 RMC steps
are very close to each other and to the model data. However, the
shorter simulation with just 10 000 RMC steps results in the EXAFS
signal, which deviates strongly from the model one giving the ξk
value about five times larger.

Finally, one can conclude that in the case of crystalline germa-
nium, the good results can be obtained already for the size of the
supercell 3×3×3 and the number of the RMC steps being at least
40 000.

3.3. Determination of the lattice parameters

The RMC simulations discussed above were all performed at the
fixed cell size. However, when the lattice parameters of the crystal
are not known accurately enough (better than 0.01 Å), the cell size
and shape should be adjusted during the RMC run. In this case,
the values of the lattice constants and angles become additional
degrees of freedom and can be slightly and randomly changed at
each RMC step.

For cubic crystalline germanium, there is only one parameter,
the lattice constant aGe, determining the cell. Therefore, it is a
simple case, for which the calculations can be easily performed,
and their results are shown in Fig. 6. The RMC simulation was
done for 3 × 3 × 3 supercell and 40 000 RMC steps. It should be
noted, that the difference between the model and calculated EXAFS
signals has been evaluated using the wavelet transform (Eq. (4)),
since we found that the calculations in k-space were less accu-
rate. This example shows that the use of the WT as a criterion for
minimization has an advantage, even if it is more computationally
heavy.

As one can see in Fig. 6, the variation of lattice constant aGe

during the RMC process results in a good agreement between the
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Fig. 7. (Color online.) Left panel: Experimental and calculated by the RMC method Ge K-edge EXAFS signals for crystalline germanium at T = 20 K. Right upper panel: WT
modulus of experimental EXAFS signal. Right lower panel: modulus of the difference between WT of experimental and calculated EXAFS signals. The difference ξk,R = 0.065
(Eq. (4)).
model and calculated EXAFS signals. The obtained value aGe agree
with the expected one within about 0.02 Å: such accuracy is suffi-
cient for the conventional EXAFS analysis.

4. Application of the RMC-EXAFS method to experimental data

4.1. Crystalline germanium (Ge)

Next we will apply the proposed RMC scheme to the analysis
of experimental Ge K-edge EXAFS in crystalline germanium [44].

While the model discussed in Section 3 is very close to the ex-
perimental EXAFS spectrum, nevertheless, there are several factors
being responsible for the observed difference: (i) the already men-
tioned problem with the value of the lattice parameters; (ii) the
influence of experimental noise; (iii) the influence of outer coor-
dination shells; (iv) the presence of the S2

0 factor reducing the
amplitude of the EXAFS signal and having usually values in the
range between 0.7 and 1.0 [49]; (v) the problem of the E0 choice.
The parameter E0 is never known precisely and, in principle, can
be even different for several measurements of the same sample
due to, for example, instability of the monochromator positions
during the experiment.

The first problem has been already addressed in Section 3.3.
The second and third problems can be treated using proper Fourier
or wavelet filtering of the experimental signal. The fourth and
the fifth problems require to estimate additional parameters S2

0
and E0. In principle, they can be calculated in the same way as the
lattice parameters during the RMC simulations. However, such ap-
proach is complicated due to strong correlations between S2

0 and
the EXAFS signal amplitude, and between E0 and the EXAFS sig-
nal frequency. Therefore, in this work we did not refine S2

0 and E0
during the RMC calculations. Instead, before the simulations we
carried out the conventional analysis of the EXAFS signal from the
first coordination shell [56], and obtained the values of S2

0 and E0,
which were fixed in the further RMC calculations.

For the analysis of the experimental EXAFS spectra of crystalline
germanium (taken from [57]), measured in the temperature range
from 20 K to 300 K, the 3 × 3 × 3 supercell was constructed, and
the RMC simulations were carried out for 40 000 steps. The lattice
constant was fixed during the calculations at the known experi-
mental value aGe = 5.658 Å [55]. The minimization was performed
using the wavelet transform criterion (Eq. (4)).

The experimental Ge K-edge EXAFS spectrum, measured at
20 K, and the result of the RMC simulations are compared in
Fig. 7. Note that while the theoretical EXAFS signal includes all
multiple-scattering contributions in the range up to 6 Å around
the absorber, their importance is not crucial in this case [43]. The
Fig. 8. (Color online.) Temperature dependence of MSRD, obtained by conventional
method [57] (lines and solid symbols), and calculated using the proposed RMC
scheme (open symbols) for the 1st, 2nd, and 3rd coordination shells of Ge in crys-
talline germanium.

temperature-dependencies of the mean-square relative displace-
ment (MSRD) for the first, second and third coordination shells,
obtained from the RMC simulations and using conventional EXAFS
analysis [57], are compared in Fig. 8. The agreement between the
two results is good, so one can conclude that the accuracy of the
proposed method is sufficient to analyze the thermal disorder in
crystalline material.

4.2. Crystalline rhenium trioxide (ReO3)

In this section we apply the RMC method to the analysis of the
Re L3-edge EXAFS spectrum from cubic perovskite-type rhenium
trioxide (space group Pm3̄m). Temperature-dependent experimen-
tal EXAFS data were taken from [45]. As before, the 3 × 3 × 3
supercell, containing 108 atoms, was used in the RMC simulations,
which were carried out for 40 000 RMC steps. The lattice con-
stant was fixed during the calculations at the experimental value
aReO3 = 3.747 Å [58]. The minimization was performed using the
wavelet transform criterion (Eq. (4)).

An example of the used supercell, the experimental Re L3-edge
EXAFS spectrum, measured at 10 K [45], and the results of the
RMC simulation are shown in Fig. 9. The experimental EXAFS sig-
nal is very well reproduced by the simulation in the k-space range
from 1.5 Å−1 to 18 Å−1. It can be also seen that opposite to the
case of crystalline Ge, the multiple-scattering contributions in the
Re L3-edge EXAFS spectrum of ReO3 are very important [31,59–61],
giving major contribution at large k-values. They are fully taken
into account in our RMC simulations.
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Fig. 9. (Color online.) Upper panels: experimental and calculated by the RMC method Re L3-edge EXAFS signals χ(k)k2 at T = 10 K. Single-scattering (SS) and multiple
scattering (MS) contributions are shown separately. Middle panels: WT moduli of experimental EXAFS signal and of the difference between calculated and experimental
EXAFS signals. Lower panels: WT moduli of calculated SS and MS contributions into the total EXAFS signal. The difference ξk,R = 0.107 (Eq. (4)).

Fig. 10. (Color online.) Calculated radial distribution functions RDF (Re–O) and RDF (Re–Re) and the bond angle distribution functions BADF (Re–O–O), BADF (Re–Re–O),
and BADF (Re–O–Re) at T = 10 K (red bars) and T = 573 K (yellow bars) for ReO3. The inset shows the distribution of the Re–O–Re angle at T = 573 K: results of RMC
calculations (yellow bars) and results of the MD simulations [63].
In Fig. 10 the radial (RDF) and bond angle (BADF) distribu-
tion functions, calculated from the final atomic configuration, are
shown for low (T = 10 K) and high (T = 573 K) temperatures. As
one expects, the peaks of the radial distribution function become
broadened upon increasing temperature. An interesting feature of
the BADF is the peak at 170◦–180◦ , corresponding to the angle
Re0–O1–Re1 (here Re0 is the absorbing atom, O1 and Re1 are atoms
in the first and second coordination shells, respectively). The BADF
peak has asymmetric shape, and its maximum is not located at
180◦ , as one could expect for the linear Re–O–Re chain in cubic
ReO3, but is shifted to lower value of ∼ 172◦ . This effect is caused
by the large thermal vibrations of oxygen atoms in the directions
orthogonal to the Re–Re bonds [59,62,63].
5. Conclusions

In this work we propose the improved Reverse Monte Carlo
(RMC) scheme for the analysis of the EXAFS spectra. In our ap-
proach, the difference between theoretical and experiment EXAFS
signals is minimized during the RMC simulation simultaneously in
k and R spaces by using the modified Morlet continuous wavelet
transform of the EXAFS signal (Eq. (4)) [40]. Besides, to improve
convergence during the simulation, we use slowly reducing “tem-
perature” parameter (Eq. (6)) in the Metropolis algorithm (the so-
called simulated annealing method [41]).

The use of the method is demonstrated on the example of the
EXAFS spectra analysis for the model system and experimental
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data for crystalline germanium and rhenium trioxide. It is shown
that the method allows one to reconstruct the 3D atomic structure
of the compound taking into account the thermal disorder and
to obtain the distributions of distances and bond angles describ-
ing the local structure around the absorber. Also the uncorrelated
(MSD) and correlated (MSRD) thermal vibration amplitudes can be
recovered with reasonable accuracy. The obtained results for Ge
and ReO3 are in good agreement with that previously found by
conventional EXAFS analysis and molecular dynamics simulations.
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