* X %

Eiropas Sociala fonda projekts =l ESF *: :*

* 4k

“Datorzinatnes pielietojumi un tas saiknes ar kvantu fiziku” E'ROPﬁgzgg'AlA'S i
Nr.2009/0216/1DP/1.1.1.2.0/09/APIAIVIAA/044 i FIROPAS SAVIENIA
IEGULDIJUMS TAVA NAKOTNE

SIMPLIFIED DESIGN OF TEST CASES
BASED ON MODELS

Guntis Arnicans, Vineta Arnicane

26.05.2011

12th International Conference Theory and Practice of Software Testing (TAPOST 2011)
"Forming Basis of Globally Mature Testing"

Model-based testing

1. A formal model that PRACTICAL
describes the behavior of MODEL-BASED

the software TESTING
N -

2. A test generation
algorithm or criteria

A
TOOLS
AAAAAAAA

3. Tools that support a test
infrastructure (test cases
generation, management,
implementation,
evaluation of results, etc.)

nnnnnnnnnnnnnn

Problems with model-based testing

 Most of the steps have to be automated

 Model have to be described by formal notation (e.g.
UML, Finite state machines)

 The need to have good knowledge of formal testing,
lack of good specialists

e Difficulty to translate data generated by the model to
final test cases

 Model of the whole system is welcomed

* Natural complexity (at least the same as of the source
code)

Most of model-based testing approaches are not
empirically verified and used in the industry

Case study from insurance

Tariffication module for a compulsory motor third
party liability insurance

Simplified model in Excel
Test case generation from Excel model

Running test cases with tariffication module developed
in Oracle and Excel

If results of test case are different then manual
investigation is performed

More than 50’000 automated test cases

Model was used and testing was automated due the
importance of this module (expensive, but worth)

Design of test cases from models

Pick up from the model-based testing approach
the simplest ideas and techniques, and use
them at least in the design of test cases

* Develop several small models

 Any model can be described by its own
informal notation

* Recreate models and test case specifications

Use graphs with any notation

These are the steps to use a graph
model to design test cases:

1. Define the graph.
2. Define the relation.

3. Design node-cover tests (tests that Black-Box Testing
confirm that the nodes are there). |

4. Design link-cover tests (that confirm
all required links and no more).

5. Test all weights.

6. Design loop tests.

Boris Beizer, Black-box Testing : Techniques for Functional Testing of Software and Systems

ication

sharm = Mot_inwcked
Vindow = hiain

Sefling = Analog

Display = Chock_Only
'.-\'In:lm'\.'@:-lze_- ke rnized

Microsoft Windows® clock appl

Systerm = Mob_nwoked
Vindow = kiain

Extiimg = Analog
Diisplay = All
WinoowSize = Restarsd

Syztem = Moi_lmiokes

L iy = bdain

o = Analog

ay = Clock_Oniy
T - Fmstoned

System = Not_lnvaked
WIndow = kiain

Seiting = Analog

Display = All

Wimdowesize - Maxmizad

In'.-:n-:el T Tarminate_aysimie
.

Temminate_FKeysiroke Terminatie_Meyshroks
Irreoie| Temminate_Keysiroks rsoie Termminate_Close Invoke Terminatie_Close
T Biadmize L] - -
; E . DoubleCock . - . .
: * Deoubleilck 4
r i HMo_Thle i o Fesions_ Window ™ ™ —
. - Mio_THe
[\¥- 1 . *__ : B
M b—— .
1O About About out_O
] » DoulieClicH - -
- - = CoubisCdlck -
. . -] .] T lf—
Wgrmion A1 [131: Survice Pack. 5
| j. ' I3 g ighi (L) 1561 -1 596 M imrvack G] . -
k. THr o bcermnd i 4 s | T
SRCFRAR B Femstore |
Festone | Hionack - |:_|:r.i.| e
W o
i Mirsoms lsbie b Wrd KT: TTLRD EB Mmnimizy
Aralog Cigtal Amaiog Cigial
- & spout Anout &
System = Moi_Imoked hinimitze AR System = Mot_lnvoked
Window = kialn WINdDwW = himin
Setting = Analog ; Digltal ~ 1 + * [n Sebing = Analog / Digha
Cisgiay = A < m— - = = ; o Dispiay = All
WindowE e = Mnimizes_From_Pesiored - e — 15l Clock = incowSze = Mnimlzed_From_kMaxdmized
Restor o o | f * | Restore_Window / Masdmikze
& e
| i ! BNz Mnlnu.cl 1 -
Diocubie | e .qM M_
Cick Mmomize DioubieCilick
o _TIE Py _THI
—Tie= - Eagipras Wincows AT
2:51 PM 2:51 PM o= g—
. Fani -
Doubie
Font_OK,
Shck E nt_ ok “ = CoubiClick
—— Fant_ - Careel | Fant_Cancel
Cancel

Terminate_Feysircks

Im-:m.-T lTﬂn-ab:_H:r:u-nhc Invake

Terminate_Closs

Systen = Mot_invoked
Windiow = kMain

Setting = Digial

Display = Clock_Cnhy
Windowisize = Festored

shem = Fot_imeoked
AINCkoW = Rlain
Setling = Cigltal

Display = All
WindowsSize = Restared

Font_SelectFont
Font_TypeFont

Tarminate_Feysirose
nokE Tarmninate_Closs

I-WHCT lTernlna'.g_l"eys‘.m-:e

System = Mot_lnvaked
W Imdowy = Kiain
Setting = Digtal

Cosplay = All

Windowesize = bAaxirnized

sherm = Mot_inwoked
Winoow = kiain

THmg = Cigital
Display = Chock_Only

WinoowSize = hMasdmized

From S. Rosaria, H. Robinson, Applying Models in your Testing Process

Many models

* Create many small models instead of one large
— preferably no more than 10 main objects in a model
* Create models from the various aspects
— different points of view
— diverse testing can reveal different problems
* Create several models for the chosen aspect

— each tester has own viewpoint to the task
— various opinions what software has to do

If an inconsistency between test cases is discovered, then
additional analysis and investigation have to be done

Test generation is based on well
known graph coverage criteria

e Tester can adapt any coverage criteria from the
structural testing

— node coverage
— node pair coverage
— edge coverage
— in-out edge pair coverage for node
— path coverage with or without cycles
— etc.
* |f some node or edge has attributes and constraints,

then principles of equivalence class testing and
boundary testing methods could be applied

Coffee break model

poured out pour_in (X)
amount
| cup_voLuw |
take away take
poured out pour_in(X)
Cupin 1\ _ take away m cup

dishwasher

drink(X)

amount

Coffee break model

poured out

Cup in bring R
@ o\ Clean cup

amount

take away

pour_in (X)

poured out

Cup in take away

dishwasher

<

take

pour_in(X)

\ Used cup

amount

drink(X)

Coffee break model

poured out pour_in (X)
amount
| cup_voLuw |
take away take
poured out pour_in(X)
: Y“
disil\j\?alsr;mer I fake away \ Used c

amount drink(X)

Coffee break model

poured out pour_in (X)

Cup in bring R
@ » Clean cup

take

pour_in(X)

poured out

take away Y

« Used cup

Cupin
dishwasher

drink(X)

amount

Coffee break model

poured out pour_in (X)
A
Cup in bring
@ » Clean cup
amount
take away ake
poured out pour_in(X)

Cupin \ _ take away
dishwasher

drink(X)

amount

Breadth testing principle to design and

organize the test cases

We have many different small models
From each one we can design test cases

At first we advise to execute tests that are easily
obtainable and cover many aspects

A sample:

1)
2)
3)
4)
5)
6)

90% node coverage in each model

90% edge coverage in each model

90% edge pair coverage for each node in each model
testing of cycles

testing of attributes

other criteria.

Informal models

‘\C(tﬁ" QJ“ L1a) F(o

* Model can be created informally
 Hand-drawn model also is worth
* Model may be incomplete

Other principles

Models are created for various levels of
abstraction

Test cases are designed at logical level

Create library of exploited models and
patterns

Try and throw away

Conclusions

The proposed method might be useful for
exploratory testers

Models help to design test cases, organize
them

Models reveal the most important issues of
system from various points of view

Use models as you can and like (without
formal notations, without automation)

