
SIMPLIFIED DESIGN OF TEST CASES
BASED ON MODELS

Guntis Arnicans, Vineta Arnicane

26.05.2011

12th International Conference Theory and Practice of Software Testing (TAPOST 2011)

"Forming Basis of Globally Mature Testing"

Eiropas Sociālā fonda projekts

“Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku”

Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Model-based testing

1. A formal model that
describes the behavior of
the software

2. A test generation
algorithm or criteria

3. Tools that support a test
infrastructure (test cases
generation, management,
implementation,
evaluation of results, etc.)

Problems with model-based testing

• Most of the steps have to be automated
• Model have to be described by formal notation (e.g.

UML, Finite state machines)
• The need to have good knowledge of formal testing,

lack of good specialists
• Difficulty to translate data generated by the model to

final test cases
• Model of the whole system is welcomed
• Natural complexity (at least the same as of the source

code)

Most of model-based testing approaches are not
empirically verified and used in the industry

Case study from insurance

• Tariffication module for a compulsory motor third
party liability insurance

• Simplified model in Excel

• Test case generation from Excel model

• Running test cases with tariffication module developed
in Oracle and Excel

• If results of test case are different then manual
investigation is performed

• More than 50’000 automated test cases

• Model was used and testing was automated due the
importance of this module (expensive, but worth)

Design of test cases from models

Pick up from the model-based testing approach
the simplest ideas and techniques, and use

them at least in the design of test cases

• Develop several small models

• Any model can be described by its own
informal notation

• Recreate models and test case specifications

Use graphs with any notation

These are the steps to use a graph
model to design test cases:

1. Define the graph.

2. Define the relation.

3. Design node-cover tests (tests that
confirm that the nodes are there).

4. Design link-cover tests (that confirm
all required links and no more).

5. Test all weights.

6. Design loop tests.

Boris Beizer, Black-box Testing : Techniques for Functional Testing of Software and Systems

Microsoft Windows® clock application

From S. Rosaria, H. Robinson, Applying Models in your Testing Process

Many models

• Create many small models instead of one large
– preferably no more than 10 main objects in a model

• Create models from the various aspects
– different points of view
– diverse testing can reveal different problems

• Create several models for the chosen aspect
– each tester has own viewpoint to the task
– various opinions what software has to do

If an inconsistency between test cases is discovered, then

additional analysis and investigation have to be done

Test generation is based on well
known graph coverage criteria

• Tester can adapt any coverage criteria from the
structural testing
– node coverage

– node pair coverage

– edge coverage

– in-out edge pair coverage for node

– path coverage with or without cycles

– etc.

• If some node or edge has attributes and constraints,
then principles of equivalence class testing and
boundary testing methods could be applied

Coffee break model

Cup in
dishwasher

Cup in
cupboard

Clean cup

Used cup

amount

amount

bring

take away

pour_in (X)

pour_in(X)

take

poured out

poured out

take away

drink(X)

CUP_VOLUME

COFFEE_VOLUME

Coffee break model

Cup in
dishwasher

Cup in
cupboard

Clean cup

Used cup

amount

amount

bring

take away

pour_in (X)

pour_in(X)

take

poured out

poured out

take away

drink(X)

CUP_VOLUME

COFFEE_VOLUME

Coffee break model

Cup in
dishwasher

Cup in
cupboard

Clean cup

Used cup

amount

amount

bring

take away

pour_in (X)

pour_in(X)

take

poured out

poured out

take away

drink(X)

CUP_VOLUME

COFFEE_VOLUME

Coffee break model

Cup in
dishwasher

Cup in
cupboard

Clean cup

Used cup

amount

amount

bring

take away

pour_in (X)

pour_in(X)

take

poured out

poured out

take away

drink(X)

CUP_VOLUME

COFFEE_VOLUME

Coffee break model

Cup in
dishwasher

Cup in
cupboard

Clean cup

Used cup

amount

amount

bring

take away

pour_in (X)

pour_in(X)

take

poured out

poured out

take away

drink(X)

CUP_VOLUME

COFFEE_VOLUME

Breadth testing principle to design and
organize the test cases

• We have many different small models

• From each one we can design test cases

• At first we advise to execute tests that are easily
obtainable and cover many aspects

• A sample:
1) 90% node coverage in each model

2) 90% edge coverage in each model

3) 90% edge pair coverage for each node in each model

4) testing of cycles

5) testing of attributes

6) other criteria.

Informal models

• Model can be created informally
• Hand-drawn model also is worth
• Model may be incomplete

Other principles

• Models are created for various levels of
abstraction

• Test cases are designed at logical level

• Create library of exploited models and
patterns

• Try and throw away

Conclusions

• The proposed method might be useful for
exploratory testers

• Models help to design test cases, organize
them

• Models reveal the most important issues of
system from various points of view

• Use models as you can and like (without
formal notations, without automation)

