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Model-based testing

1. A formal model that PRACTICAL
describes the behavior of MODEL-BASED

the software TESTING
N -

2. A test generation
algorithm or criteria

A
TOOLS
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3. Tools that support a test
infrastructure (test cases
generation, management,
implementation,
evaluation of results, etc.)
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Problems with model-based testing

 Most of the steps have to be automated

 Model have to be described by formal notation (e.g.
UML, Finite state machines)

 The need to have good knowledge of formal testing,
lack of good specialists

e Difficulty to translate data generated by the model to
final test cases

 Model of the whole system is welcomed

* Natural complexity (at least the same as of the source
code)

Most of model-based testing approaches are not
empirically verified and used in the industry



Case study from insurance

Tariffication module for a compulsory motor third
party liability insurance

Simplified model in Excel
Test case generation from Excel model

Running test cases with tariffication module developed
in Oracle and Excel

If results of test case are different then manual
investigation is performed

More than 50’000 automated test cases

Model was used and testing was automated due the
importance of this module (expensive, but worth)



Design of test cases from models

Pick up from the model-based testing approach
the simplest ideas and techniques, and use
them at least in the design of test cases

* Develop several small models

 Any model can be described by its own
informal notation

* Recreate models and test case specifications



Use graphs with any notation

These are the steps to use a graph
model to design test cases:

1. Define the graph.
2. Define the relation.

3. Design node-cover tests (tests that Black-Box Testing
confirm that the nodes are there). |

4. Design link-cover tests (that confirm
all required links and no more).

5. Test all weights.

6. Design loop tests.

Boris Beizer, Black-box Testing : Techniques for Functional Testing of Software and Systems
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From S. Rosaria, H. Robinson, Applying Models in your Testing Process



Many models

* Create many small models instead of one large
— preferably no more than 10 main objects in a model
* Create models from the various aspects
— different points of view
— diverse testing can reveal different problems
* Create several models for the chosen aspect

— each tester has own viewpoint to the task
— various opinions what software has to do

If an inconsistency between test cases is discovered, then
additional analysis and investigation have to be done



Test generation is based on well
known graph coverage criteria

e Tester can adapt any coverage criteria from the
structural testing

— node coverage
— node pair coverage
— edge coverage
— in-out edge pair coverage for node
— path coverage with or without cycles
— etc.
* |f some node or edge has attributes and constraints,

then principles of equivalence class testing and
boundary testing methods could be applied
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Breadth testing principle to design and

organize the test cases

We have many different small models
From each one we can design test cases

At first we advise to execute tests that are easily
obtainable and cover many aspects

A sample:

1)
2)
3)
4)
5)
6)

90% node coverage in each model

90% edge coverage in each model

90% edge pair coverage for each node in each model
testing of cycles

testing of attributes

other criteria.



Informal models
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* Model can be created informally
 Hand-drawn model also is worth
* Model may be incomplete




Other principles

Models are created for various levels of
abstraction

Test cases are designed at logical level

Create library of exploited models and
patterns

Try and throw away



Conclusions

The proposed method might be useful for
exploratory testers

Models help to design test cases, organize
them

Models reveal the most important issues of
system from various points of view

Use models as you can and like (without
formal notations, without automation)






