Eiropas Sociālā fonda projekts "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044



# SIMPLIFIED DESIGN OF TEST CASES BASED ON MODELS

Guntis Arnicans, Vineta Arnicane

26.05.2011

12th International Conference Theory and Practice of Software Testing (TAPOST 2011)

"Forming Basis of Globally Mature Testing"

## Model-based testing

- A formal model that describes the behavior of the software
- 2. A test generation algorithm or criteria
- 3. Tools that support a test infrastructure (test cases generation, management, implementation, evaluation of results, etc.)



## Problems with model-based testing

- Most of the steps have to be automated
- Model have to be described by formal notation (e.g. UML, Finite state machines)
- The need to have good knowledge of formal testing, lack of good specialists
- Difficulty to translate data generated by the model to final test cases
- Model of the whole system is welcomed
- Natural complexity (at least the same as of the source code)

Most of model-based testing approaches are not empirically verified and used in the industry

## Case study from insurance

- Tariffication module for a compulsory motor third party liability insurance
- Simplified model in Excel
- Test case generation from Excel model
- Running test cases with tariffication module developed in Oracle and Excel
- If results of test case are different then manual investigation is performed
- More than 50'000 automated test cases
- Model was used and testing was automated due the importance of this module (expensive, but worth)

## Design of test cases from models

Pick up from the model-based testing approach the simplest ideas and techniques, and use them at least in the design of test cases

- Develop several small models
- Any model can be described by its own informal notation
- Recreate models and test case specifications

## Use graphs with any notation

These are the steps to use a graph model to design test cases:

- 1. Define the graph.
- 2. Define the relation.
- 3. Design node-cover tests (tests that confirm that the nodes are there).
- 4. Design link-cover tests (that confirm all required links and no more).
- 5. Test all weights.
- 6. Design loop tests.



Boris Beizer, Black-box Testing: Techniques for Functional Testing of Software and Systems

### Microsoft Windows® clock application



From S. Rosaria, H. Robinson, Applying Models in your Testing Process

## Many models

- Create many small models instead of one large
  - preferably no more than 10 main objects in a model
- Create models from the various aspects
  - different points of view
  - diverse testing can reveal different problems
- Create several models for the chosen aspect
  - each tester has own viewpoint to the task
  - various opinions what software has to do

If an inconsistency between test cases is discovered, then additional analysis and investigation have to be done

## Test generation is based on well known graph coverage criteria

- Tester can adapt any coverage criteria from the structural testing
  - node coverage
  - node pair coverage
  - edge coverage
  - in-out edge pair coverage for node
  - path coverage with or without cycles
  - etc.
- If some node or edge has attributes and constraints, then principles of equivalence class testing and boundary testing methods could be applied











## Breadth testing principle to design and organize the test cases

- We have many different small models
- From each one we can design test cases
- At first we advise to execute tests that are easily obtainable and cover many aspects

#### A sample:

- 90% node coverage in each model
- 2) 90% edge coverage in each model
- 3) 90% edge pair coverage for each node in each model
- 4) testing of cycles
- 5) testing of attributes
- 6) other criteria.

### Informal models



- Hand-drawn model also is worth
- Model may be incomplete

## Other principles

- Models are created for various levels of abstraction
- Test cases are designed at logical level
- Create library of exploited models and patterns
- Try and throw away

#### Conclusions

- The proposed method might be useful for exploratory testers
- Models help to design test cases, organize them
- Models reveal the most important issues of system from various points of view
- Use models as you can and like (without formal notations, without automation)

