IEGULDIJUMS TAVA NAKOTNE

EIROPAS SOCIALAIS

EIROPAS SAVIENIBA

Transformation of the Software
Testing Glossary into a
Browsable Concept Map

Guntis Arnicans, Uldis Straujums
University of Latvia

International Conference on Engineering Education,
Instructional Technology, Assessment, and E-learning (EIAE 12)

The work is partly supported by a European Social Fund Project
No. 2009/0216/1DP/1.1.1.2.0/09 /APIA/VIAA/044 and by the Latvian National Research Program Nr. 2
»,Development of Innovative Multifunctional Materials, Signal Processing and Information Technologies for
Competitive Science Intensive Products” within the project Nr. 5
»New Information Technologies Based on Ontologies and Model Transformations”

a Snake!

Glossary of a domain

Software Testing Glossary

Last updated: Thursday, 24-May-2012 05:03:00 PDT

ABCDEFGHIJKLMMNOPQRSTUVWXYZ
A (return to top of page)

Acceptance Testing: Testing conducted to enable a user/customer to determine whether to accept a software product. Mormally
performed to validate the software meets a set of agreed acceptance criteria.

Accessibility Testing: Verifying a product is accessible o the people having disabilties (deaf, blind, mentally disabled etc.).

Ad Hoc Testing: A testing phase where the tester tries to 'break’ the system by randomly trying the system's functionality. Can
include negative testing as well. See also Monkey Testing.

Agile Testing: Testing practice for projects using agile methodologies, treating development as the customer of testing and
emphasizing a test-first design paradigm. See also Test Driven Development.

Application Binary Interface (ABI): A specification defining requirements for portability of applications in binary forms across
defferent system platforms and environments.

Application Programming Interface (API): A formalized set of software calls and routines that can be referenced by an application
prograrm in order to access supporting system or network senvices.

Automated Software Quality (ASQ): The use of software tools, such as automated testing tools, to improve software quality.
Automated Testing:
* Testing gmplwing software tools which execute tests without manual intervention. Can be applied in GUI, performance, API,
. EaI'1;1':tﬂ: EEEZUSE éuﬂ:ware to control the execution of tests, the comparison of actual outcomes to predicted outcomes, the setting
up of test preconditions, and other test control and test reporting functions.
B (return to top of page)

Backus-Naur Form: A metalanguage used to formaly describe the syntax of 2 Bnguage.

Lightweight concept map of a
domain

[| \ —
|—| | et i g Nt -_': oG mEmg mw-'; B bp-cen g

= f % . /

/

oand i o detaineEon balking
rreed o it chec mon me g
o e rrd 8 ot g

From glossary to concept map or ontology

Software Testing Glossary

Last updated: Thursday, 24-May-2012 05:03:00 PDT

ABCDEFGHIJKLMMNOPQRSTUVWXYZ
A (return to top of page)

Acceptance Testing: Testing conducted to enable a user/customer to determine whether to accept a software product. Normaly
performed to validate the software meets a set of agreed acceptance criteria.

Accessibility Testing: Verifying a product is accessible to the people having disabilities (deaf, blind, mentally disabled etc.).

Ad Hoc Testing: A testing phase where the tester tries to 'break’ the system by randomly trying the system's functionality. Can
include negative testing as well. See also Monkey Testing.

Agile Testing: Testing practice for projects using agile methodologies, treating development as the customer of testing and

emphasizing a test-first design paradiom. See also Test Driven Development ey
Application Binary Interface (ABL): A specification defining reguirement 1‘«1‘ m_‘ ——
defferent systemn platforms and environments. [] E 1

el I
/T~ | -
BT
Automated Software Quality (ASQ): The use of software tools, such a . | S || TELET
prree — i =
Automated Testing: " |+""‘,H ~= R

e e

Application Programming Interface (APT): A formalized set of software
program in order to access supporting system or network servicas.

| cmeme

+ Testing employing software tools which execute tests without manui
etc. testing.

* The use of software to control the execution of tests, the comparisa
up of test preconditions, and other test control and test reporting fu

CAY
B,

e A A
bt

N

B (return to top of page)

Backus-Naur Form: A metalanguage used to formally describe the syntax :I

Domain
ontology
developed by
experts

e H.Zhu and Q. Huo,
2005

* Ontology for an
agent-based
software
environment to test
web-based
applications

 About 100 concepts

Entity

——Human

— Tester ——Software Agent
—Team
—Unit Test
L Context —Integration Test .
| Svstem Test —Test Planning
- Reoression Test —Test Case Generation
——Activity Test Case Execution
Error-based [f=—Test Result Verification
sung —Coverage Measuremen
Testing se M :
Fault-base . .
Technique ‘Testin‘g L Report Generation
Structural Control-flow
: 2 :
- — Testing
— Method Testing Program-based E
thac Structure Testing ata-flow
Program-based _ Structure Testing Data-fl
: Testing
testing g
Approach - cificats Program
apect 1cat1911- HTML File
based Testing
——XML File
—Image
r/].:ormat =
——Objects under Test —Sound
——Testing Result Video
——Test Plan Java Applet
—— JavaScript
——Test Suite
Arrefaf:t< Type
——Test Script
——Error Report
—Test Coverage
History &
— Specification Tvype
H'u'cl“ are {Model
L Environment Manufacrurer_gpermmg System

Product ——Compiler
l3crfmare Type —Database

Version JeeWeh Server®

—Web Browser

Related works (1/2)

Proposal of parallel construction of domain
ontology and construction of complete domain

terminology.

L. Bozzato, M. Ferrari, and A. Trombetta.
Building a domain ontology from glossaries: a
general methodology. In A. Gangemi, J. Keizer,
V. Presutti, and H. Stoermer, editors, Semantic
Web Applications and Perspectives, SWAP 2008,
volume 426 of CEUR Proceedings, 2008.

Related works (2/2)

Obtaining of the ontology OntoGLOSE from the
“IEEE Standard Glossary of Software Engineering
Terminology”.

Creating in some phases uses semi-automatic steps
and uses semi-automatic linguistic analysis.

(No details of the automatization and results available)

Hilera José R., Pages Carmen, Martinez J. Javier,
Gutierrez J. Antonio, De-Marcos Luis, An Evolutive
Process to Convert Glossaries into Ontologies,
Information technology and libraries, vol. 29,
no4(2010), 195-204.

ONTOG6 Meta-Ontology top level simplified visualization

O Framewtek,) ﬁansnlon
) Subjective Iity . . &, D.Event
- @ Humaf WRbstraction
Propefty
®Actdr] AN A4 N

@ Relatiehship A

7\
.PhysiQ reali
. shlem ;
.Qﬁex
‘) \J ~
ﬁ_ < ow .What v
Al —EDTTF
pdrspective < B Infor
@ Goal lpfoducing-cont & 4 " Paradiar
(W Threa Y ¥ 4 4 YA Resoufcs
| [Wealkness Plan[]

ivArse i ool
nverse gl discojirse 4

Initial document - glossary

/

ISTQB

International Software
Testing Qualifications Board Glossa ry contains

800 terms

on testing where the lowest level

Standard glossary of terms used in Software Testing [ifate the testing of higher level
1ent at the top of the hierarchy is

Version 2.2 (dd. October 19™, 2012)

is on the edge of an equivalence
Produced by the ‘Glossary Working Party’ :r side of an edge. for example the

International Software Testing Qualifications Board

boundary value analysis: A black boxX test design technique in which test cases are designed
based on boundary values. See also boundary value.

boundary value coverage: The percentage of boundary values that have been exercised by a
test suite.
boundary value testing: See boundary value analysis.

branch: A basic block that can be selected for execution based on a program construct in
which one of two or more alternative program paths is available. e.g. case. jump. go fto. if-
then-else.

10

Standard glossary of terms used in Software Testing

bottom-up testing: An incremental approach to integration testing where the lowest level
components are tested first, and then used to facilitate the testing of higher level
components. This process is repeated until the component at the top of the hierarchy is
tested. See also infegration testing.

boundary value: An input value or output value which is on the edge of an equivalence
partition or at the smallest incremental distance on either side of an edge. for example the
minimum or maximum value of a range.

boundary value analysis: A black box test design technique in which test cases are designed
based on boundary values. See also boundary value.

boundary value coverage: The percentage of boundary values that have been exercised by a
test suite.

boundary value testing: See boundary value analysis.

branch: A basic block that can be selected for execution based on a program construct in
which one of two or more alternative program paths is available. e.g. case. jump. go fto. if-
then-else.

* The glossary contains 800 entries

* For comparison, “IEEE Standard Glossary of
Software Engineering Terminology” (1990)
contains approximately 1300 entries

11

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure

of the component or system.
specification-based testing: See black box testing.

functional testing: Testing based on an analysis of the
specification of the functionality of a component or
system. See also black box testing.

configuration control board (CCB): A group of people
responsible for evaluating and approving or

disapproving proposed changes to configuration items,

and for ensuring implementation of approved changes
[IEEE 610]

12

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure
of the component or system.

specification-based testing: See flack box testing.

specification of the functionaljty of a component or

functional testing: Testing basej' an analysis of the
I
system. See also black box tegt/ng.

configuration control board (CEB)/ A group of people
responsible for evaluating and £
disapproving proposed changsg
and for ensuring implementg
[IEEE 610]

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure

of the component or system.
specification-based testing: See black box testing.

functional testing: Testing based on an analysis of the
specification of the functionality of a component or
system. See also black box testing.

configuration control board (CCB):[K group of people

responsible tof evaluating and approving or
disapproving groposed changes to configuration items,
and for ensuripg implementation of approved changes.

[IEEE 610] A

' I
Term Definition

14

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure

of the component or system.
specification-based testing: See black box testing.

functional testing: Testing based on an anglysis of the
specification of the functionality of a corjponent or
system. See also black box testing.

configuration control bodrd (CCB): A group oY people
responsible for evaluating and approving or
disapproving proposgd changey to configuratjon items,
and for ensuring imglementatioR of approvec\changes.

[IEEE 610]

Source Cross-reference Acronym Synonym I

Finding of significant aspects (words)

control board (CCB): A group of people for}
evaluatlng and approving or dlsapprovmg proposed changes to

We can observe that:

1. The most semantically significant word of a
term is at right hand side, usually it is the last
word of term;

2. The most semantically significant word or
words of definition are located at the
beginning part of definition.

16

Glossary entry normalization

functional testing: Testing based on an analysis
of the specification of the functionality of a

component or system. See also black box
testing.

\ 4

functional testing : testing based analysis
specification functionality component system

17

Indexing of words

* Assign an index to each instance of word
— from right to left in term
— from left to right in definition

functional(1) testing(0) : testing(0) based(1)
analysis(2) specification(3) functionality(4)
component(5) system(6)

18

Weighting of words

* Assign a weight to each instance of word

— r y
+ Formula: 2~ Werd. index

functional(271) testing(2") : testing(2°)
based(2~1) analysis(2~%) specification(2)
functionality(2™%) component(2~>) system(2~°)

Total weight for word «testing» in the entry is

20 +20 =2

Total weight for word «analysis» in the entry is
2-% = ON2s 1

Rank Count Word Word
1 512 test >< testing
2 345 testing test
3 180 software tool
4 137 system \\4 software
5 125 process process
6 118 component analysis
7 87 product capability
8 77 based technique
9 75 design coverage
10 75 tool ~~based
11 68 quality -~ f - quality
12 67 technique ,set
13 60 execution \\,'i,management
14 60 cowrage //')j,\ -condition
15 59 analysis 7~ “component
16 58 data \ , model
17 54 requirements A /,’/ percentage
18 52 condition % box
19 52 control \ /risk
20 51 development N }f\ document
21 49 management SO\ black
22 48 level s IR ‘system
23 46 set ," \\\ report
24 44 model f \'product
25 42 activities ‘design
26 42 defect review
27 40 project approach
28 40 decision integration
29 40 risk \ case
30 39 user \\ development
31 39 determine N orresult
32 39 phase \,)\’/ criteria
33 38 specified O\ white
34 34 capability o Y\ statement
35 34 result B A\ path
36 34 performance _.5-specification
37 33 coce _.-~"\ “control
38 33 input ,,/’/ ‘\‘ degree
39 33 specification -~ \ type
40 33 time “level

Word weighting process result (1/2)

Weight

228.49

120.07
57.54
50.67
49.26
33.69
29.71
27.03
26.35
21.17
19.53
19.21
18.61
18.05
17.43
17.31
16.25
15.25
14.86
14.57
14.56
14.37
14.01
13.85
13.68
13.32
13.07
12.42
11.60
11.50
11.43
10.77
10.56
10.54
10.53
10.39
10.35
10.08
10.03
10.00

20

Word weighting process result (2/2)

Rank Count Word

1 512 test

2 345 testing

3 180 software
4 137 system

5 125 process

6 118 component
7 87 product

8 77 Dbased

9 75 design

10 75 tool

11 68 quality

12 67 technique
13 60 execution
14 60 cowrage
15 59 analysis

Word

— —| testing
= — test
— tool
\ software

" process
analysis
capability
technique
coverage

~~based

\\,'/,management

/

/2%~ condition
/77 T
component

Weight

228.49

120.07
57.54
50.67
49.26
33.69
29.71
27.03
26.35
21.17
19.53
19.21
18.61
18.05
17.43

21

250

200 -

150 -

100 -

50 -

Word weight distribution

— 1 testing
2 test

/ 3 tool
// 4 software
5 process
/ / 6 analysis
7 capability

8 technique
% 9 coverage

i T

123 456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

= Weight

22

Creation of the aspect graphs

An aspect graph is a set of nodes, which corresponds to terms, and
edges (relations) among them.

At first we find all entries that belong to a given aspect according to
the aspect word.

Then a graph is created

— any two nodes are connected by edge if a relation between corresponding
terms is discovered

— graph is simplified by reducing nodes (merging of nodes that correspond to
synonym terms) and by reducing edges (deleting excessive relations assuming
that all relations are transitive)

The details of algorithms are described in

— G.Arnicans, D.Romans, and U.Straujums, “Semi-automatic Generation of a
Software Testing Lightweight Ontology from a Glossary Based on the
ONTOG6 Methodology”, Databases and Information Systems VII, Selected
Papers from the Tenth International Baltic Conference, DB&IS 2012, I0OS

Press, 14 p., in press.

23

Results

expected result =

bageline component specification desk checking expected outcome = load profile specified mput

test specification

predicted outcome

st proc
test design specification = test proc

test design

,//

edure specification =

test procedure =

test scenario

test script

N

black box testing

specification-based testing

test caze specification

test design teclmicue = \

test caze design technique =
test specification technique =

finctional testing

test technique

Y

black box test design technicue =
black box technique =
spectfication-based technique =
spectfication-based test design technique

The weightiest 9 words testing, test, tool, software, process,
analysis, capability, technique, coverage contain 70% of all term-

nodes.

Total number of aspect graphs is 325 containing 608 unique term-

nodes and 170 uniqgue word-nodes.

These 9 aspects include 425 term-nodes (70%).

24

Example of concept map browsing

test design specification =
Commonly used to refer to a test procedure test dESIQH
specification, especially an automated one.
Syllabus_code F ATM

\'\ J test design (2)

test procedure specification = <O

test procedure = <— test specification
test scenario

i specification

procedure

Example of concept map browsing

@ test design specification =
Commonly used to refer to a test procedure test dESIQH
specification, especially an automated one.

Syllebus cede FATM

test design (2)

test procedure epemfcatlen = <O
test procedure = «<——(test specification

.{L 7

precedure

specification

v

xample of concept
- G

test procedure specification =
test procedure =
test scenario

test case specification
-

test specification

test design technigue =
test case design technique =
test specification technique =
testtechnique

o Cleer >
test design specification = | testdesign (2) 8,

test design

testing =
evaluation
-

.
ot coverag
test coverage
)
degree
)

e
coverage item

v

xample of concept

test procedure specification =
test procedure =
test scenario

test caze specification

test specification

test design technique =
testcase design technigue =
test specification technique =
testtechnique

test design (2) o

test design specification = |
test design

(1) See test design specification. (2} The process of
transforming general testing objectives into tangible
test conditions and test cases. Syllabus_code F ATM ATA

3

testing =
evaluation

process

degree

coverage item

percentage

xample of concept map browsin

degree

coverage item

elementary comparison testing

coverage =
test coverage

decision testing LCSA] testing

condition testing

data flow testing

decision table testing pairwise testing

test design specification = checklist-based testing
test design - process cycle test
path testing
random testing branch testing =
algorithm test =
arctesting

test design (2)

test specification

specification syntax testing

test design technique =
test case design technique =
testing = test specification technigue =

evaluation boundary value analysis = testtechnique
boundary value testing / 1(f

state transition testing =
finite state testing

user story testing

statement testing

process

equivalence paritioning =
partition testing

use case testing =
scenario testing

test design tool =0
statistical testing

activities

Conclusion and future work

It is possible to semi-automatically generate a
concept map from glossary

We offer the principles and algorithms how to
discover the significant concepts and to find simple
relations between concepts in a glossary

The initial concept map already allows to conceive
the surroundings of a term in a browsable way

We are going to continue work to deepen
morphological analysis, to improve visualization of
surroundings, to support concept map editing, etc.

30

Thank you very much for your
attention

Complementary material to the paper
http://science.df.lu.lv/as12/

31

http://science.df.lu.lv/as12/
http://science.df.lu.lv/as12/
http://science.df.lu.lv/as12/
http://science.df.lu.lv/as12/

