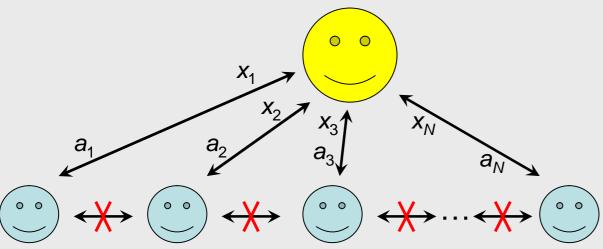
Symmetric XOR Games

Eiropas Sociālā fonda projekts "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

University of Latvia, Faculty of Computing, Dmitry Kravchenko, kravchenko@gmail.com

Definitions

- Game between *referee* & number of *players*
- Players receive questions $a_1, a_2, ..., a_N$
- Players are prohibited to communicate
- Players must return answers $x_1, x_2, ..., x_N$



If all a_i and x_i are 1-bit values, then:

• outcome of symmetric game depends only on

• outcome of **XOR game** depends only on $a_1, a_2, ..., a_N$ and parity of $\sum x_i$

Complexities

Classical version

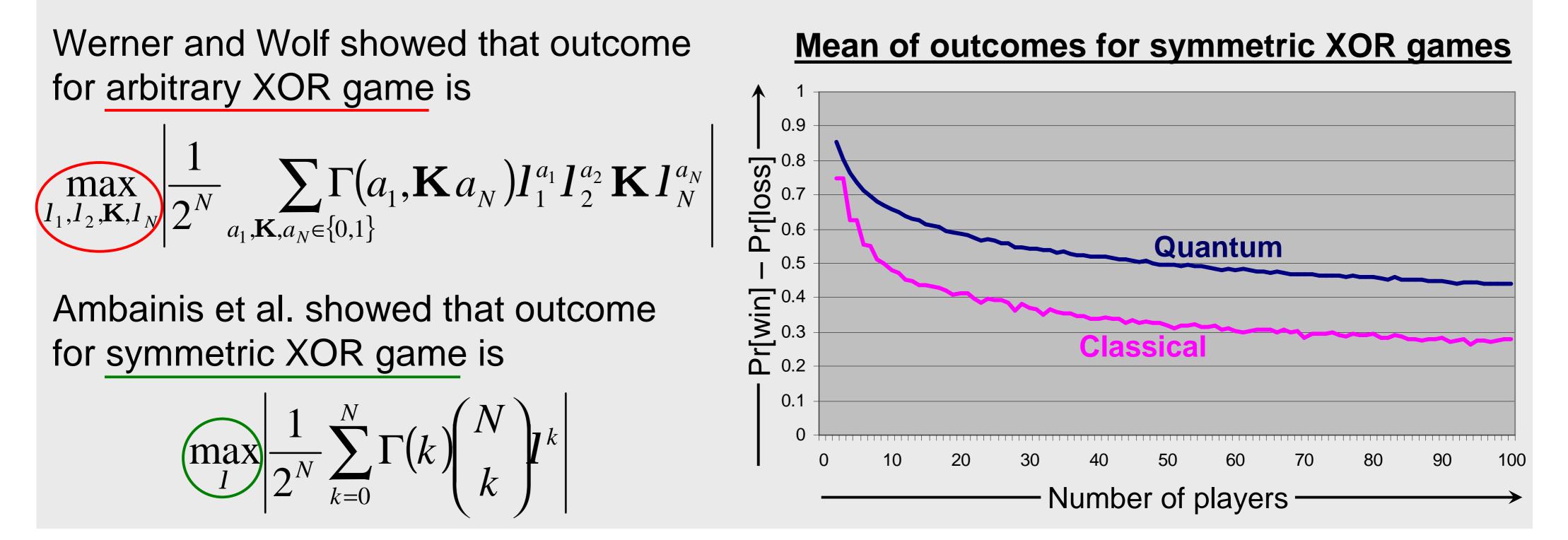
Each player must choose his answers for each of 2 inputs. Totally, he has 4 choices: **00**, **01**, **10**, **11**.

- Winning probability of *arbitrary XOR* game is NP-hard
- Winning probability of symmetric game seems to be $O(N^7)$
- Winning probability of symmetric XOR game is O(N³)
 <u>Quantum version</u>

All players share quantum system in state $|0...0\rangle + |1...1\rangle$. Each player chooses local operations for each of 2 inputs. Each player answers according to his measurement result.

- Optimal strategy for *arbitrary XOR* game is somewhere in *N*-dimensional space [Werner, Wolf, 2001]
- Optimal strategy for symmetric XOR game is somewhere In 1-dimensional space [Ambainis et al., 2010]

Search for optimal strategy



Arbitrary symmetric input distribution in CHSH

CHSH is typical symmetric XOR game. We study its modification, where referee produce inputs with any probabilities $[P_{00}, P_{01}, P_{10}, P_{11}]$ but with restriction of symmetry: $P_{01} = P_{10}$.

Optimal classical strategy is one of the following:

Answers of player 1		Answers of player 2		Inputs, for which strategy
Input 0	Input 1	Input 0	Input 1	gives correct answer
0	0	0	0	0,0 0,1 1,0 💢
0	1	0	0	0,0 0,1 7,0 1,1
0	1	0	1	0,0 🔀 1,0 1,1
0	1	1	0	0,1 1,0 1,1
It gives linear outcome: $1 - 2\min(P_{00}, P_{01}, P_{10}, P_{11})$ Optimal quantum outcome can be expressed as				
$\underline{P_{00} + P_{11}} \left(\frac{(P_{00} + P_{11})^2 + (1 - 2P_{00})(1 - 2P_{11})}{(P_{00} + P_{11})^2 + (1 - 2P_{00})(1 - 2P_{11})} \right)$				

2

 $P_{00}P_{11}$

