
Arbitrary symmetric input distribution in CHSH
CHSH is typical symmetric XOR game. We study its modification, where referee produce 
inputs with any probabilities [P00,P01,P10,P11] but with restriction of symmetry:    P01 = P10.
Optimal classical strategy is one of the following:

It gives linear outcome:
Optimal quantum outcome can be expressed as:

Search for optimal strategy
Werner and Wolf showed that outcome
for arbitrary XOR game is

Ambainis et al. showed that outcome
for symmetric XOR game is
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Definitions
• Game between referee & number of players
• Players receive questions a1, a2, …, aN
• Players are prohibited to communicate
• Players must return answers x1, x2, …, xN

If all ai and xi are 1-bit values, then:
• outcome of symmetric game depends only on

∑ai and      ∑xi
• outcome of XOR game depends only on

a1, a2, …, aN and      parity of ∑xi

⋯

x1

x2 x3 xN
a1 a2 a3 aN

Complexities
Classical version
Each player must choose his answers for each of 2 inputs.
Totally, he has 4 choices: 00, 01, 10, 11.

• Winning probability of arbitrary XOR game is          NP-hard
• Winning probability of symmetric game seems to be   O(N 7)
• Winning probability of symmetric XOR game is           O(N 3)

Quantum version
All players share quantum system in state |0…0〉 + |1…1〉.
Each player chooses local operations for each of 2 inputs.
Each player answers according to his measurement result.

• Optimal strategy for arbitrary XOR game is somewhere
in N-dimensional space [Werner, Wolf, 2001]

• Optimal strategy for symmetric XOR game is somewhere
In 1-dimensional space [Ambainis et al., 2010]

Search for optimal strategy
Werner and Wolf showed that outcome
for arbitrary XOR game is

Ambainis et al. showed that outcome
for symmetric XOR game is
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Mean of outcomes for symmetric XOR games
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