Quantum chemical simulations of doped TiO₂ nanotubes for photocatalytic hydrogen generation Oleg Lisovski¹, Sergei Piskunov²³⁴, Yuri Zhukovskii⁴, Juris Ozolins¹ ¹Faculty of Material Science and Applied Chemistry, Riga Technical Univerity ²Faculty of Computing, University of Latvia ³Faculty of Physics and Mathematics, University of Latvia ⁴Institute of Solid State Physics, University of Latvia, Riga, Latvia e-mail: oleg.lisovski@gmail.com #### Introduction One of the ways how to generate H_2 is to use a photoactive catalyst. In the present study, we consider single-walled TiO_2 -NTs with negative strain energy that can be folded from TiO_2 nanosheets (anatase, (001), 9 atomic layers) of tetragonal morphology. Dopants introduced into NT structure induce midgap states which adjusts band gap width and positions of bands increasing catalyst ability to split water – through allowing it to generate excited electrons and electron holes at a proper energetic level and therefore to employ visible light energy. ## **Computational details** To perform calculations, we used the Density Functional Theory/HartreeFock hybrid exchange-correlation method and the hybrid B3LYP exchange correlation functional consisting of the nonlocal HF exchange, DFT exchange, and generalized gradient approximation correlation functionals. HF contribution percentage occurred to play an important role it had to be optimized before further calculations. The calculations were carried out using the CRYSTAL computer code, with atom-centered Gaussian-type functions as basis set. ### Results We compared NTs with 8 different configurations - 4 morphologies and two different variations of chirality indexes for each morphology: - Anatase (101), 3 layers (n,n) and (n,0) - Anatase (101), 6 layers (n,0) and (0,n) - Anatase (001), 6 layers (n,0) and (0,n) - Anatase (001), 9 layers (n,0) and (0,n) Anatase (001), 9 layers (0,n) appeared to be the most stable nanotube which means this configuration would prevail in synthesis mixture. Fig.2. Strain energy for anatase (001) 9 layered nanotubes with different diameters Fig. 3 Undoped TiO_2 nanotube (001), (0,36) 9 atomic layers, side view (left) and front view (right) The latter NT were doped with Fe (Ti position), C, N and S (in all nonequivalent O positions). Nonequivalent O vacancies were simulated as well. N doped NT's are not presented on the graph as far as they occur to be conductors. Best results were acquired for S doped NT. Fig. 4. Positions of band edges for TiO₂ nanosheet and doped NTs. Table 1. Formation energies for S doped nanotubes were calculated in order to predict the most probable dopant position. | Dopant | E, eV | |--------|-------| | S1 | 2.61 | | S145 | 3.60 | | S217 | 4.34 | | S361 | 5.33 | | S433 | 5.65 | | S577 | 3.37 | ## Summary The most stable configuration of TiO_2 nanotubes is found – it is 9-layer anatase (001) structure with chirality indexes (0,n). We predict that nanotubes with S dopants will demonstrate the highest photocatalytic activity. Energetically favorable S dopant position is in the outer NT surface.