

Eiropas Sociālā fonda projekts "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

SrTiO₃ Nanotubes with Negative Strain Energy Predicted from First Principles

S. Piskunov^{1,2,3} and E. Spohr⁴

¹Faculty of Computing, University of Latvia, Raina Blvd. 19, LV-1586, Riga, Latvia

²Faculty of Physics and Mathematics, University of Latvia, Zellu Street 8, LV-1002, Riga, Latvia

³Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1010 Riga, Latvia

⁴Department of Theoretical Chemistry, University of Duisburg-Essen, Universitaetstr. 2, 45141 Essen Germany

Motivation

- Nanostructures made of perovskite materials have recently attracted considerable interest because of demonstrated increase of ferroelectric (BaTiO₃, Pb(Ti,Zr)O₃), magnetic (LaMnO₃), photocatalytic (doped SrTiO₃) responses.
- Nanotubes made of SrTiO₃ have been proposed as Sr-delivery platforms for medical applications.
- Up to now, knowledge obtained on perovskite nanotubes are mainly from experimental site.
- The only pioneering theoretical study on ABO₃-nanotubes: Evarestov R.A., Bandura A.V., (2011) IOP Conf. Ser.: *Mater. Sci. Eng.* **23**, 012013.
- Due to its high symmetry simple cubic structure at room temperature SrTiO₃ is an excellent model material for the whole class of ABO₃ perovskites.
- In order to provide deeper understanding of atomic and electronic structure of the model ABO₃ nanotubes, in this contribution we perform comprehensive theoretical modeling of SrTiO₃ nanotubes taking into account all possible morphologies.

Objectives

- Define the atomic structure of the most energetically stable SrTiO₃ nanotube:
 - 2D morphology
 - Chirality indexes
 - Number of walls
- Theoretically predict its electronic structure and chemical properties:
 - Band edges positions
 - Net charges and bond populations

Computational details

Calculation method:

Hybrid exchange-correlation functional

$$E_{XC}^{B3PW} = E_{XC}^{LSDA} + a_0 \left(E_X^{Fock} - E_X^{LSDA} \right) + a_X E_X^{B88} + a_C E_C^{PW} + (1 - a_C) E_C^{VWN}$$

$$a_0 = 0.20$$
, $a_X = 0.72$, $a_C = 0.81$

A.D.Becke, J. Chem. Phys. 98 (7), 5648 (1993)

J.P.Perdew, Y.Wang, *Phys. Rev. B* **45** (23), 13244 (1992)

LCAO(CO)-GTF

Sr - (ECP)311d1G, Ti - (ECP)411d311G, O - 8-411d1G

Computer code:

CRYSTAL 2009

Dovesi R., Saunders V.R., Roetti C., et al. (2010) CRYSTAL-2009 User Manual: University of Turin, Italy.

Theoretical model

- In the labs SrTiO₃-nanotubes are synthesized through sophisticated thermochemistry processes using TiO₂-nanotubes as precursor. Most of them are polycrystalline structures having hundreds nanometers in diameter, however synthesis of monophasic SrTiO₃-nanotubes with smallest inner/outer diameter of 4/8 nm have been also reported:

 Y. Mao, S. Banerjee, S. Wong, *Chem. Commun.* **2003** (2003) 408
- Studied nanotubes are modeled using *layer folding approach*, which means the formation builds of cylindrical nanotube structure by rolling up the stoichiometric 2D nanosheet cut from SrTiO₃ bulk parallel to its low index surfaces. In this respect the most stable nanotube should posses:
 - The lowest nanosheet formation energy with respect to the bulk and
 - The negative strain energy indicating stability of the nanotube relative to the corresponding flat nanosheet.

Surfaces of cubic ABO₃ perovskites

SrTiO₃-nanosheet energy of formation

SrTiO ₃ -nanosheet	Lattice morphology	E _{form} , eV/SrTiO ₃				
Single-layer (001)	Square	1.84				
Double-layer (001)	Square	1.10				
Single-layer (110)	Rectangular	1.81				
Double-layer (110)	Rectangular	1.41				
Single-layer (111)	Reconstruction to SL-(110)-NS					
Double-layer (111)	Hexagonal	2.83				

SrTiO₃ (110) nanosheet:

Schematic representation of DL-(110)-NS: (a) as cut from the bulk and (b) after full atomic relaxation without symmetry constraints.

Strain energy vs. nanotube's diameter and chirality

Calculated strain energies (Estrain) of nanotubes as a function of the nanotube inner diameter (D). Strain energy per SrTiO₃ formula unit is defined as the difference between the total energies calculated for the nanotube and the corresponding flat nanosheet.

All nanotubes folded from (001) nanosheet have positive E_{strain} .

Double layered nanotubes demonstrate extremely high strain energy.

SrTiO₃ (110) nanotube (18,0):

Side view (left) and front view (right) of single layered SrTiO-terminated (inner side) $SrTiO_3(110)$ nanotube (18,0). Unshaded area of inset depicts irreducible atoms of nanotube unit cell. Calculated band gap 6.10 eV *vs.* 3.64 eV in the bulk.

Mulliken population analysis

	Q_{Sr}	Q_{Ti}	Q_{O1}	Q_{O2}	Q_{O3}	l _{Ti-O1}	l _{Ti-O2}	$l_{\text{Ti-O3}}$	P _{Ti-O1}	P _{Ti-O2}	P _{Ti-O3}
SL-SrTiO-(110)-NT	1.85	2.22	-1.40	-1.34	-1.32	0.178	0.177	0.188	138	136	106
SL-(110)-NS	1.83	2.22	-1.38	-1.31	-1.37	0.177	0.176	0.195	156	150	102
Bulk	1.87	2.35	-1.41	-1.41	-1.41	0.196	0.196	0.196	88	88	88

Calculated Effective Mulliken Charges (Q in e), TiO Bond Lengths (I in nanometers), and TiO Bond Populations (P in milli e) of SL-SrTiO-(110)-NT (18,0), SL-(110)-NS, and SrTiO₃ Bulk.

Multiwalled SrTiO₃ (110) nanotube (12,0)@(24,0)@(36,0):

Inner diameter 1.19 nm, outer diameter 4.26 nm, interwall distance 0.46 nm. Band gap 3.72 eV $\it vs. \, \, 3.64$ eV calculated for $\rm SrTiO_3$ bulk. Energy gain 0.013 eV/SrTiO3 relative to constituents.

Summary and conclusions

- Our calculations allows us to predict that the most energetically stable (multiwalled) nanotubes made of SrTiO₃ (ABO₃) perovskite can be rolled up from (110) nanosheet of rectangular morphology;
- Quantum confinement effect lead to the widening of the nanotube band gap making them attractive for further doping (photocatalysis);
- The increase of the TiO bond covalency in the outer nanotube shell may lead to an enhancement of adsorption properties.

Acknowledgements

Authors thank:

Eiropas Sociālā fonda projekts

"Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

IEGULDĪJUMS TAVĀ NĀKOTNĒ

For the financial support!

R. A. Evarestov, and Yu. F. Zhukovskii

For the many fruitful discussions!

Many Thanks For Your Attention!