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Unstructured search 

 Search in the unsorted array 

 

 

 

 We have a function given as a black-box: 
 

         f(x) : {0,1}n → {0,1} 
 

 The unstructured search problem is to find x  {0,1}n 

such that f(x) = 1, or to conclude that no such x exists. 
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 Unsorted array 

 

 

 

 Trivial algorithm: sequential check 

 

 

 

 “Clever algorithm”: use another fixed array element 

sequence. This does not change anything.     

Classical case 

Best case:   1  step 

Worst case: N steps 
Average case: N/2 steps 
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 Unsorted array 

 

 

 

 Trivial algorithm: check k random array elements. 

 

 

 

 How many we need to rerun the algorithm ? 

 What is the optimal value of k ? 

Probabilistic case 

0 0 0 1 ... 0 0 

Probability of finding a solution p(k) = k/N 

Run the algorithm until it finds a solution 



Probabilistic algorithms 

 We have a probabilistic algorithm, which finds a solution 

with probability p. 

 

 How many times we need to run the algorithm to find a 

solution with probability 1 ? 

 

 On the average we should run the algorithm 1/p times. 



Probabilistic algorithms 

 If after k steps the probability of finding a solution is p(k), 

the average running  time of the algorithm is k / p(k). 
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Can stop at any step 

Better to wait until the end 



Probabilistic case 

 The algorithm: check k random array elements. 

 

 Probability of finding a solution p(k) = k/N grows linearly 

with k. 

 

 To find a solution with probability 1 we should repeat the 

algorithm 1/p = 1 / (k/N) times on the average. 

 

 The average running time = k / (k/N) = N.  

  Does not depend on k. 



Quantum case 

 Unsorted array 

 

 

 

 Classical case: optimal algorithm performs O(N) checks. 

 

 Quantum case: optimal algorithm performs O(N) checks. 

  Let M be the number of steps of the algorithm. 
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Quantum case 

 The probability of finding a solution after k steps is  

sin2 (k / 2M) 

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0



Quantum case 

 If we stop the computation after k steps the average 

running time of the algorithm is k / p(k). 
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Quantum case 

 If p(k) = k/M, the average running time is M. 
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Quantum case 

 If p(k) < k/M, the average running time > M. 
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Quantum case 

 If p(k) > k/M, the average running time < M. 
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Quantum case 

 The optimal moment to end the computation is the 

minimum of the k/p(k) = k / sin2 (k / 2M) function.  

 

 Calculation gives k  0.74202 and the average running 

time k/p(k)  0.87857. 

 

 That is the average number of steps can be reduced by 

approximately 12.14%. 



Conclusions 

 The average number of Grover's algorithm steps  can be 

reduced by approximately 12.14%. 

 

 The same argument can be applied to a wide range of 

other quantum query algorithms, such as amplitude 

amplification, some variants of quantum walks and 

NAND formula evaluation, etc. 



Thank you ! 


