
On the optimality of

Grover's algorithm

Nikolay Nahimov, Alexander Rivosh

Eiropas Sociālā fonda projekts

“Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku”

Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Unstructured search

 Search in the unsorted array

 We have a function given as a black-box:

 f(x) : {0,1}n → {0,1}

 The unstructured search problem is to find x  {0,1}n

such that f(x) = 1, or to conclude that no such x exists.

0 0 0 1 ... 0 0

 Unsorted array

 Trivial algorithm: sequential check

 “Clever algorithm”: use another fixed array element

sequence. This does not change anything.

Classical case

Best case: 1 step

Worst case: N steps
Average case: N/2 steps

0 0 0 1 ... 0 0

 Unsorted array

 Trivial algorithm: check k random array elements.

 How many we need to rerun the algorithm ?

 What is the optimal value of k ?

Probabilistic case

0 0 0 1 ... 0 0

Probability of finding a solution p(k) = k/N

Run the algorithm until it finds a solution

Probabilistic algorithms

 We have a probabilistic algorithm, which finds a solution

with probability p.

 How many times we need to run the algorithm to find a

solution with probability 1 ?

 On the average we should run the algorithm 1/p times.

Probabilistic algorithms

 If after k steps the probability of finding a solution is p(k),

the average running time of the algorithm is k / p(k).

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Can stop at any step

Better to wait until the end

Probabilistic case

 The algorithm: check k random array elements.

 Probability of finding a solution p(k) = k/N grows linearly

with k.

 To find a solution with probability 1 we should repeat the

algorithm 1/p = 1 / (k/N) times on the average.

 The average running time = k / (k/N) = N.

 Does not depend on k.

Quantum case

 Unsorted array

 Classical case: optimal algorithm performs O(N) checks.

 Quantum case: optimal algorithm performs O(N) checks.

 Let M be the number of steps of the algorithm.

0 0 0 1 ... 0 0

Quantum case

 The probability of finding a solution after k steps is

sin2 (k / 2M)

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Quantum case

 If we stop the computation after k steps the average

running time of the algorithm is k / p(k).

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Quantum case

 If p(k) = k/M, the average running time is M.

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Quantum case

 If p(k) < k/M, the average running time > M.

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Quantum case

 If p(k) > k/M, the average running time < M.

Number of steps

Probability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Quantum case

 The optimal moment to end the computation is the

minimum of the k/p(k) = k / sin2 (k / 2M) function.

 Calculation gives k  0.74202 and the average running

time k/p(k)  0.87857.

 That is the average number of steps can be reduced by

approximately 12.14%.

Conclusions

 The average number of Grover's algorithm steps can be

reduced by approximately 12.14%.

 The same argument can be applied to a wide range of

other quantum query algorithms, such as amplitude

amplification, some variants of quantum walks and

NAND formula evaluation, etc.

Thank you !

