On the optimality of Grover's algorithm

Nikolay Nahimov, Alexander Rivosh
Unstructured search

- Search in the unsorted array

| 0 | 0 | 0 | 1 | ... | 0 | 0 |

- We have a function given as a black-box:

\[f(x) : \{0,1\}^n \rightarrow \{0,1\} \]

- The unstructured search problem is to find \(x \in \{0,1\}^n \) such that \(f(x) = 1 \), or to conclude that no such \(x \) exists.
Classical case

- Unsorted array

| 0 | 0 | 0 | 1 | ... | 0 | 0 |

- Trivial algorithm: sequential check

 Best case: 1 step
 Worst case: N steps
 Average case: N/2 steps

- “Clever algorithm”: use another fixed array element sequence. This does not change anything.
Unsorted array

| 0 | 0 | 0 | 1 | ... | 0 | 0 |

Trivial algorithm: check k random array elements.

Probability of finding a solution $p(k) = k/N$
Run the algorithm until it finds a solution

How many we need to rerun the algorithm?
What is the optimal value of k?
We have a probabilistic algorithm, which finds a solution with probability p.

How many times we need to run the algorithm to find a solution with probability 1?

On the average we should run the algorithm $1/p$ times.
Probabilistic algorithms

- If after k steps the probability of finding a solution is $p(k)$, the average running time of the algorithm is $\frac{k}{p(k)}$.

![Graph showing probability vs. number of steps.

- Can stop at any step.
- Better to wait until the end.

Number of steps

Probability

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

Probabilistic case

- The algorithm: check k random array elements.

- Probability of finding a solution $p(k) = k/N$ grows linearly with k.

- To find a solution with probability 1 we should repeat the algorithm $1/p = 1 / (k/N)$ times on the average.

- The average running time $= k / (k/N) = N$. Does not depend on k.
Quantum case

Unsorted array

Classical case: optimal algorithm performs $O(N)$ checks.

Quantum case: optimal algorithm performs $O(\sqrt{N})$ checks.

Let M be the number of steps of the algorithm.
The probability of finding a solution after k steps is $\sin^2 \left(\frac{\pi k}{2M} \right)$.
Quantum case

If we stop the computation after k steps the average running time of the algorithm is $k / p(k)$.

![Graph showing the relationship between number of steps and probability.](image-url)
Quantum case

- If $p(k) = k/M$, the average running time is M.
Quantum case

- If $p(k) < k/M$, the average running time $> M$.
Quantum case

- If \(p(k) > k/M \), the average running time \(< M \).
The optimal moment to end the computation is the minimum of the $k/p(k) = k / \sin^2(\pi k / 2M)$ function.

Calculation gives $k \approx 0.74202$ and the average running time $k/p(k) \approx 0.87857$.

That is the average number of steps can be reduced by approximately 12.14%.
Conclusions

- The average number of Grover's algorithm steps can be reduced by approximately 12.14%.

- The same argument can be applied to a wide range of other quantum query algorithms, such as amplitude amplification, some variants of quantum walks and NAND formula evaluation, etc.
Thank you!