On the optimality of
Grover's algorithm

Nikolay Nahimov, Alexander Rivosh

= ESF real Eiropas Sociala fonda projekts
*

[x x

EIROPAS SOCIALAIS Xk

FONDS EIROPAS SAVIENTBA Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044
IEGULDIJUMS TAVA NAKOTNE

“Datorzinatnes pielietojumi un tas saiknes ar kvantu fiziku”

Unstructured search

Search in the unsorted array

We have a function given as a black-box:
f(x) : {0,1}" — {0,1}

The unstructured search problem is to find x € {0,1}"
such that f(x) = 1, or to conclude that no such x exists.

Classical case

Unsorted array

Trivial algorithm: sequential check

Best case: 1 ste
P Average case: N/2 steps

Worst case: N steps

“Clever algorithm”: use another fixed array element
sequence. This does not change anything.

Probabilistic case

Unsorted array

Trivial algorithm: check k random array elements.

Probability of finding a solution p(k) = k/N
Run the algorithm until it finds a solution

How many we need to rerun the algorithm ?
What is the optimal value of k ?

Probabilistic algorithms

We have a probabilistic algorithm, which finds a solution
with probabllity p.

How many times we need to run the algorithm to find a
solution with probability 1 ?

On the average we should run the algorithm 1/p times.

Probabilistic algorithms

If after k steps the probability of finding a solution is p(k),
the average running time of the algorithm is k / p(k).

A Probability

1__
"1 Can stop at t
.| Canstop atany s ep///
0.7+ /f"

Py
0.6 e
z’/l

0.5

0.4

0.3

T / |
A - Better to wait until the end
0.2 //
0.1+
//’ | | ;

Number of steps

5 ; ; ; ; ; ; >

Probabilistic case

The algorithm: check k random array elements.

Probabillity of finding a solution p(k) = k/N grows linearly
with K.

To find a solution with probability 1 we should repeat the
algorithm 1/p = 1/ (k/N) times on the average.

The average running time = k / (k/N) = N.
Does not depend on K.

Quantum case

Unsorted array

Classical case: optimal algorithm performs O(N) checks.

Quantum case: optimal algorithm performs O(VN) checks.

Let M be the number of steps of the algorithm.

Quantum case

The probability of finding a solution after k steps is
sin? (nk / 2M)

A Probability
l__

0.9t
0.8
0.7
0.6
0.5
0.4+
0.3+
0.2
0.1

umber of sgeps

-

0

Quantum case

If we stop the computation after k steps the average
running time of the algorithm is k / p(k).

A Probability

1
_r’;’r;
0.9+ /
,-r“'rrrf

0.8
0.7t
0.6
0.5t
0.4+
0.3
0.2

0.1+

Number of steps

>

0

‘ Quantum case

w If p(k) = k/M, the average running time is M.

A Probability

1
_r’;’r;
0.9+ /
,-r“'rrrf

0.8
0.7
0.6
05T
0.4
0.3t
0.2+

0.1+

Number of steps

L L L L L L L L
O T T T T T T T T T T

‘ Quantum case

w If p(k) < k/M, the average running time > M.

A Probability
l__
T
—

0.9+ / -
0.8 -

f,fr’
0.7+ et

0.6 P
0.5

;-/
0.4+ e
0.3 "/H/
0.2 ﬂ/,_r"
0.1 _ﬂ;’_,_.f";rr

WELE aeill ; ; ; ; ; ; ; Npmber of St?‘ﬁ

0

‘ Quantum case

w If p(k) > k/M, the average running time < M.

A Probability
l__
T
—

0.9+ / -
0.8 -

f,fr’
0.7+ et

0.6 P
0.5

;-/
0.4+ e
0.3 "/H/
0.2 ﬂ/,_r"
0.1 _ﬂ;’_,_.f";rr

WELE aeill ; ; ; ; ; ; ; Npmber of St?‘ﬁ

0

Quantum case

The optimal moment to end the computation is the
minimum of the k/p(k) = k / sin? (nk / 2M) function.

Calculation gives k = 0.74202 and the average running
time k/p(k) ~ 0.87857.

That Is the average number of steps can be reduced by
approximately 12.14%.

Conclusions

The average number of Grover's algorithm steps can be
reduced by approximately 12.14%.

The same argument can be applied to a wide range of
other quantum query algorithms, such as amplitude
amplification, some variants of quantum walks and
NAND formula evaluation, etc.

Thank you !

