Better algorithms for search by quantum walks on two-dimensional grid

A.Ambainis, A.Backurs, N.Nahimovs, A.Rivosh

Faculty of Computing University of Latvia

CEQIP 2012

Outline

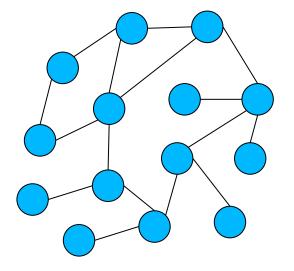
- Motivation (history of the problem, etc.)
- Quantum walks on two-dimensional grid
- Results and implications

 [Gro96] L. Grover. A fast quantum mechanical algorithm for database search.

Unstructured search space of N elements can be searched in $O(\sqrt{N})$ steps

Grover's algorithm uses "global" operations, i.e. operations affecting all items (elements of the search space)

- What if elements of the search space are arranged in some structure ?
 - We can query the value of an item, or
 - We can move to neighboring item
- [Ben02] P. Benioff. Space searches with a quantum robot.



Search on a two-dimensional $\sqrt{N} \times \sqrt{N}$ grid needs $\Omega(N)$ steps.

 [AA03] A. Ambainis, S. Aaronson. Quantum search of spatial regions.

N items arranged in d-dimensional hypercube can be searched in:

- $O(\sqrt{N} \log^2 N)$ steps for d = 2
- $O(\sqrt{N})$ steps for d \ge 3

Algorithm's idea: simulation of Grover with multilevel recursion

 [AKR05] A. Ambainis, J. Kempe, A. Rivosh. Coins make quantum walks faster.

N items arranged in d-dimensional hypercube can be searched in:

- $O(\sqrt{N} \log N)$ steps for d = 2
- $O(\sqrt{N})$ steps for d \ge 3

Algorithm's idea: quantum walks

Quantum walk on d-dimensional grid

- N items arranged in d-dimensional hypercube can be searched in:
 - O(N) steps for d = 1 (line) optimal
 - $O(\sqrt{N} \log N)$ steps for d = 2 ???
 - $O(\sqrt{N})$ steps for d ≥ 3 optimal
- For d = 2 no non-trivial lower bound is known.

Quantum walks on graph

- We have a graph G=(V,E)
- Every G vertex v_i has an associated variable x_i
- Quantum walk can query a value of a vertex or move to adjacent vertexes.
- Our task is to find vertex v_i with $x_i = 1$

Quantum walks on 2-dimensional grid

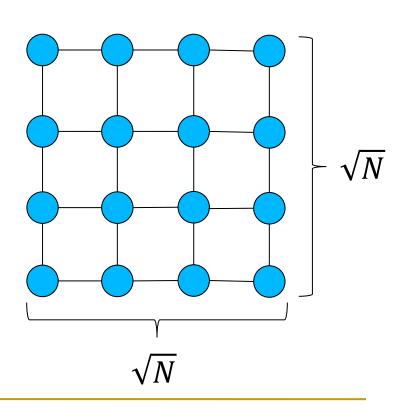
Define a plane, i.e. define basis states $|x, y\rangle$, where

$$x, y \in \{1, \dots, \sqrt{N}\}$$

Define evolution operator U

$$|\psi_{t+1}\rangle = U|\psi_t\rangle$$

Unfortunately there is no non-trivial unitary transformation of this form.

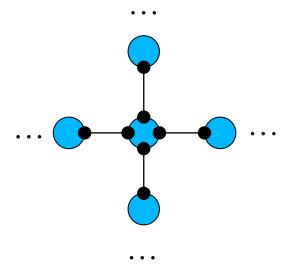


[ARK05] algorithm: state space

To use non-trivial evolutionary operators we add an additional "direction" register with four possible states:

 $| \Leftarrow \rangle, | \Rightarrow \rangle, | \Uparrow \rangle, | \Downarrow \rangle$

Basis states for the combined space are now $|x, y\rangle \otimes |d\rangle$, where $x, y \in \{1, ..., \sqrt{N}\}$ and $d \in \{\Leftarrow, \Rightarrow, \Uparrow, \Downarrow\}$



[ARK05] algorithm

Prepare initial state

$$|\psi_{start}\rangle = \frac{1}{\sqrt{4N}} \sum_{x,y} |x, y, \Leftarrow\rangle + |x, y, \Rightarrow\rangle + |x, y, \Uparrow\rangle + |x, y, \Downarrow\rangle$$

• $O(\sqrt{N \log N})$ times repeat

- Apply query transformation Q
- Apply coin flip transformation C
- Apply shift transformation S

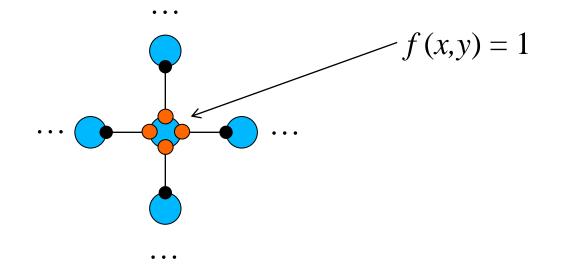
Evolution operator U

Measure

[ARK05] algorithm: query

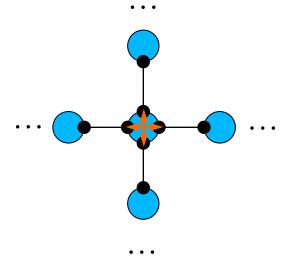
[AKR05] algorithm uses standard query

$$Q|x,y\rangle \otimes |d\rangle = (-1)^{f(x,y)}|x,y\rangle \otimes |d\rangle$$



[ARK05] algorithm: coin flip

- Coin flip transformation C rearranges amplitudes in the direction register
- [AKR05] algorithm uses Grover's diffusion transformation



[ARK05] algorithm: shift

 Shift transformation exchanges amplitudes associated with the ends of an edge

$$|x, y, \Rightarrow\rangle \mapsto |x + 1, y, \Leftrightarrow\rangle \qquad \cdots$$
$$|x, y, \Leftrightarrow\rangle \mapsto |x - 1, y, \Rightarrow\rangle$$
$$|x, y, \Uparrow\rangle \mapsto |x, y + 1, \Downarrow\rangle$$
$$|x, y, \Downarrow\rangle \mapsto |x, y - 1, \Uparrow\rangle$$

[ARK05] algorithm: running time

For 2-dimensional grid [AKR05] algorithm

- Takes $O(\sqrt{N \log N})$ steps
- Finds a marked element with $O(1 / \log N)$ probability
- Thus needs to be executed $O(\sqrt{\log N})$ times (amplitude amplification)

• Total runing time
$$O(\sqrt{N \log N}) \times O(\sqrt{\log N}) = O(\sqrt{N \log N})$$

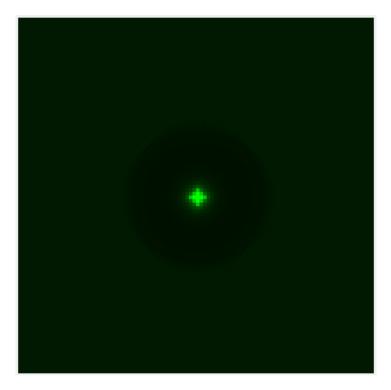
Quantum walk Amplitude amplification

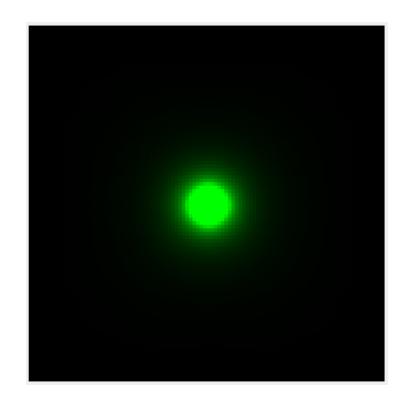
Quantum walk on d-dimensional grid

- N items arranged in d-dimensional hypercube can be searched in:
 - O(N) steps for d = 1 (line) optimal
 - $O(\sqrt{N} \log N)$ steps for d = 2 ???
 - $O(\sqrt{N})$ steps for d ≥ 3 optimal

Numerical simulations

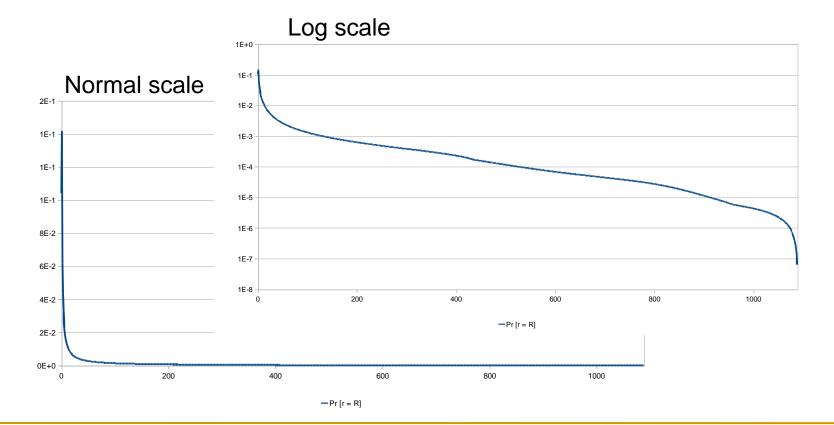
Quantum walk state: at the begining and close to the end





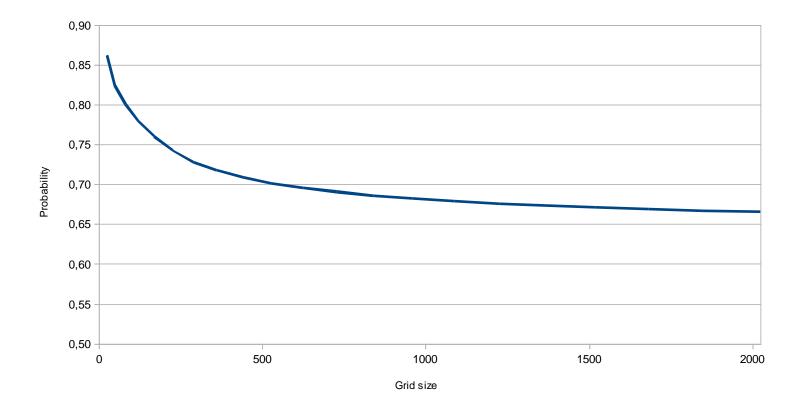
Numerical simulations

Probability by distance from the marked location



Numerical simulations

Probability to be within \$\forall N\$ distance from the solution



Analysis

- Express the final state of the algorithm in terms of the eigenvectors of one step of the algorithm
- Lower bound the probability to be within N^e neighborhood of the marked location.

15 pages long proof

Our result

Theorem:

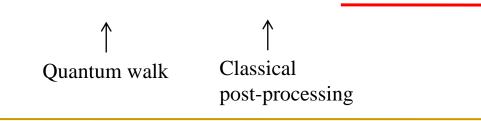
If we run quantum walk algorithm with one marked location for $t = O(\sqrt{N \log N})$ steps and measure the final state, the probability to get item within N^{ϵ} neighborhood of the marked location is $\Omega(\epsilon)$.

• Taking $\epsilon = \frac{1}{2}$ we get: probability to be within \sqrt{N} neighborhood of the marked location is $\Omega(1/2)$.

Our result

The algorithm:

- Run [AKR05] quantum walk for $O(\sqrt{N \log N})$ steps
- Search for the marked item within ∜N distance from the measurement result.
- The probability of success is $\Theta(1)$.
- The total time complexity is $O(\sqrt{N \log N}) + O(\sqrt{N}) = O(\sqrt{N \log N})$



On the proof

- Denote Pr[0] the probability to find the marked location and Pr[R] the probability find an element at distance R from the marked location.
- For small *R* values ($R \ll \sqrt{N}$), the $\Pr[R] = \Theta\left(\frac{\Pr[0]}{R^2}\right)$
- There are 4R values at distance R from the marked location, thus the probability to be at distance $\sqrt[4]{N}$ from the marked location is:

$$S = \sum_{R=1}^{4\sqrt{N}} 4R \times \Theta\left(\frac{\Pr[0]}{R^2}\right) = \Pr[0] \times \sum_{R=1}^{4\sqrt{N}} \frac{1}{R} = \Pr[0] \times \Theta(\log N) = \Theta(1)$$

Related woks

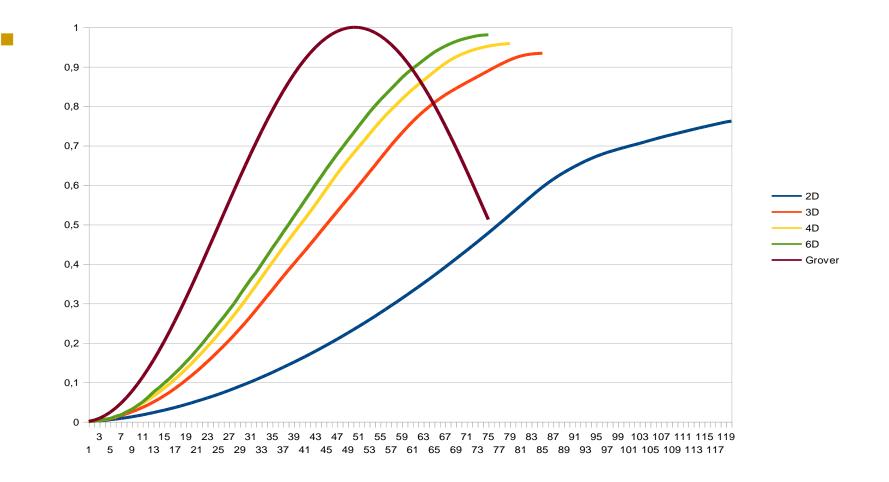
First $O(\sqrt{N \log N})$ algorithm was introduced by

A. Tulsi. Faster quantum-walk algorithm for the two-dimensional spatial search. *Physical Review A volume 78*, 012310, 2008

• Another $O(\sqrt{N \log N})$ algorithm was introduced by

H. Krovi, F. Magniez, M. Ozols, J. Roland. Finding is as easy as detecting for quantum walks. *ICALP'10 Proceedings of the 37th international colloquium conference on Automata, languages and programming*, 2010

Compare with Grover



Things to be done

- Tight lower bound for d = 2 case.
- Better framework for analyzing quantum walks on general (non-regular) graphs.
- Does the same property stays true for general (non-regular) graphs ?
- Can our approach be used for an approximate search ?

Thank you !

Bibliography

- [AA03] A.Ambainis, S. Aaronson.
 Quantum search of spatial regions.
 FOCS '03 Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003
- [AKR05] A. Ambainis, J. Kempe, A. Rivosh.
 Coins make quantum walks faster.
 Proceedings of SODA'05, pages 1099-1108, 2005.

[Ben02] P. Benioff.
 Space searches with a quantum robot.
 AMS Contemporary Math Series, Vol 305, (2002).

Bibliography

• [Gro96] Lov K. Grover.

A fast quantum mechanical algorithm for database search. *Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC)*, pages 212-219, 1996.

- [KM+10] H. Krovi, F. Magniez, M. Ozols, J. Roland.
 Finding is as easy as detecting for quantum walks.
 ICALP'10 Proceedings of the 37th international colloquium conference on Automata, languages and programming, 2010
- ITul08] A. Tulsi.

Faster quantum-walk algorithm for the two-dimensional spatial search. *Physical Review A volume 78*, 012310, 2008