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Outline 

 Motivation (history of the problem, etc.) 

 

 Quantum walks on two-dimensional grid 

 

 Results and implications 



History 

 [Gro96] L. Grover. A fast quantum mechanical algorithm 

for database search. 

 

 Unstructured search space of N elements can be searched in 𝛰 𝑁  

 steps 

 

 Grover’s algorithm uses “global” operations, i.e. 

 operations affecting all items (elements of the search 

 space) 



History 

 What if elements of the search space are arranged in 

some structure ? 

 

 We can query the value of an item, or 

 

 We can move to neighboring item 

 

 [Ben02] P. Benioff. Space searches 

 with a quantum robot. 
 

 Search on a two-dimensional 𝑁 × 𝑁 grid needs Ω(𝑁) steps. 

 



History 

 [AA03] A. Ambainis, S. Aaronson. Quantum search of 

spatial regions. 
 

 N items arranged in d-dimensional hypercube can be searched in: 
 

 𝑂( 𝑁 log2𝑁)    steps for d = 2  
 

 𝑂( 𝑁)        steps for d ≥ 3 

 

 Algorithm’s idea: simulation of Grover with multilevel recursion 



History 

 [AKR05] A. Ambainis, J. Kempe, A. Rivosh. Coins make 

quantum walks faster. 
 

 N items arranged in d-dimensional hypercube can be searched in: 
 

 𝑂( 𝑁 log𝑁 )     steps for d = 2 
 

 𝑂( 𝑁)        steps for d ≥ 3 

 

 Algorithm’s idea: quantum walks 



Quantum walk on d-dimensional grid 

 N items arranged in d-dimensional hypercube can be 

searched in: 
 

  𝑂(𝑁)    steps for d = 1 (line)  
 

  𝑂( 𝑁 log𝑁 )  steps for d = 2 
 

  𝑂( 𝑁)           steps for d ≥ 3 

 

 For d = 2 no non-trivial lower bound is known. 

 

 

optimal 

optimal 

??? 



Quantum walks on graph 

 We have a graph G=(V,E) 

 

 Every G vertex vi has an associated variable xi 

 

 Quantum walk can query a value of a vertex or move to 

adjacent vertexes. 

 

 Our task is to find vertex vi with xi = 1 



Quantum walks on 2-dimensional grid 

 Define a plane, i.e. define basis states 𝑥, 𝑦 , where 

 

 

 

 Define evolution operator U 

 

𝑁 

𝑁 
𝜓𝑡+1 = 𝑈|𝜓𝑡⟩ 

𝑥, 𝑦 ∈ {1,… , 𝑁} 

Unfortunately there is no non-trivial 

unitary transformation of this form. 

 



[ARK05] algorithm: state space 

 To use non-trivial evolutionary operators we add an 

additional “direction" register with four possible states:  

 

 

 

 Basis states for the combined space 

 are now 𝑥, 𝑦 ⊗ |𝑑⟩, where 

  𝑥, 𝑦 ∈ 1,… , 𝑁   and 𝑑 ∈ ⇐,⇒, ⇑, ⇓  

| ⇐⟩, | ⇒⟩, | ⇑ ⟩, | ⇓ ⟩ 

… 

… … 

… 



 Prepare initial state 

 

 
 

 𝑂( 𝑁 log𝑁) times repeat 
 

 Apply query transformation Q 

 Apply coin flip transformation C 

 Apply shift transformation S 
 

 Measure 

 

[ARK05] algorithm 

𝜓𝑠𝑡𝑎𝑟𝑡 =
1

4𝑁
 𝑥, 𝑦,⇐ + 𝑥, 𝑦,⇒ + 𝑥, 𝑦, ⇑ + |𝑥, 𝑦, ⇓ ⟩

𝑥,𝑦

 

Evolution operator U 



 [AKR05] algorithm uses standard query 

[ARK05] algorithm: query 

f (x,y) = 1 

… 

… … 

… 

𝑄 𝑥, 𝑦 ⊗ 𝑑 = −1 𝑓(𝑥,𝑦) 𝑥, 𝑦 ⊗ |𝑑⟩ 



[ARK05] algorithm: coin flip 

 Coin flip transformation C rearranges amplitudes in the 

direction register 

 

 [AKR05] algorithm uses Grover’s diffusion transformation 

… 

… … 

… 



 Shift transformation exchanges amplitudes associated 

with the ends of an edge 

[ARK05] algorithm: shift 

… 

… … 

… 𝑥, 𝑦,⇒ ↦ |𝑥 + 1, 𝑦,⇐⟩ 

𝑥, 𝑦,⇐ ↦ 𝑥 − 1, 𝑦,⇒  

𝑥, 𝑦, ⇑ ↦ |𝑥, 𝑦 + 1, ⇓⟩ 

𝑥, 𝑦, ⇓ ↦ |𝑥, 𝑦 − 1, ⇑⟩  



[ARK05] algorithm: running time 

 For 2-dimensional grid [AKR05] algorithm  
 

 Takes 𝑂( 𝑁 log𝑁) steps  
 

 Finds a marked element with 𝑂(1 / log𝑁) probability 
 

 Thus needs to be executed 𝑂( log𝑁) times (amplitude 

amplification) 
 

 Total runing time O 𝑁 log𝑁 × 𝑂( log𝑁) = 𝑂( 𝑁 log𝑁) 

Quantum walk Amplitude  

amplification 



Quantum walk on d-dimensional grid 

 N items arranged in d-dimensional hypercube can be 

searched in: 
 

  𝑂(𝑁)    steps for d = 1 (line)  
 

  𝑂( 𝑁 log𝑁 )  steps for d = 2 
 

  𝑂( 𝑁)           steps for d ≥ 3 

 

 

optimal 

optimal 

??? 



Numerical simulations 

 Quantum walk state: at the begining and close to the end 



Numerical simulations 

 Probability by distance from the marked location 
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Numerical simulations 

 Probability to be within ∜N distance from the solution 
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 Express the final state of the algorithm in terms of 

 the eigenvectors of one step of the algorithm 

 

 Obtain amplitudes of the final state 

 

 Lower bound the probability to be within 𝑁𝜖 neighborhood 

 of the marked location.  

Analysis 

Easy 

15 pages long proof 



 Theorem:  

 If we run quantum walk algorithm with one marked 

 location for 𝑡 = 𝑂( 𝑁 log𝑁) steps and measure the final 

 state, the probability to get item within  𝑁𝜖 neighborhood 

 of the marked location is Ω 𝜖 . 

 

 Taking 𝜖 =
1

2
 we get: probability to be within 𝑁 

neighborhood of the marked location is Ω(1/2). 

Our result 



 The algorithm: 
 

 Run [AKR05] quantum walk for 𝑂 𝑁 log𝑁  steps 
 

 Search for the marked item within ∜N distance from the 

measurement result. 
 

 The probability of success is Θ(1). 
 

 The total time complexity is O 𝑁 log𝑁 + 𝑂 𝑁 = O 𝑁 log𝑁  

 

Our result 

Quantum walk Classical  

post-processing 



 Denote Pr [0] the probability to find the marked location and 

 Pr [𝑅] the probability find an element at distance 𝑅 from the marked 

 location. 
 

 For small 𝑅 values (𝑅 ≪  𝑁), the Pr 𝑅 = Θ 
Pr 0

𝑅2
 

 

 There are 4R values at distance R from the marked location, thus the 

probability to be at distance 𝑁
4

 from the marked location is: 
 

𝑆 =  4𝑅 × Θ
Pr 0

𝑅2

𝑁
4

𝑅=1

= Pr 0 × 
1

𝑅
= Pr 0 × Θ(log𝑁)

𝑁
4

𝑅=1

= Θ 1  

On the proof 



Related woks 

 First 𝑂( 𝑁 log N) algorithm was introduced by 
 

A. Tulsi. Faster quantum-walk algorithm for the two-dimensional spatial 

search. Physical Review A volume 78, 012310, 2008 

 

 Another 𝑂( 𝑁 log N) algorithm was introduced by 
 

H. Krovi, F. Magniez, M. Ozols, J. Roland. Finding is as easy as detecting 

for quantum walks. ICALP'10 Proceedings of the 37th international  

colloquium conference on Automata, languages and programming, 2010 



 … 

 

Compare with Grover 
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 Tight lower bound for d = 2 case. 

 

 Better framework for analyzing quantum walks on general 

(non-regular) graphs.  

 

 Does the same property stays true for general            

(non-regular) graphs ? 

 

 Can our approach be used for an approximate search ? 

 

Things to be done 



Thank you ! 

European Social Fund project  

“Computer Science and its connections to Quantum Physics”  

Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044 

INVESTMENT IN YOUR FUTURE 

EUROPEAN SOCIAL 

FUND 

Supported by 

EUROPEAN UNION 



Bibliography 

 [AA03] A.Ambainis, S. Aaronson. 

      Quantum search of spatial regions. 

      FOCS '03 Proceedings of the 44th Annual IEEE Symposium on Foundations of   

      Computer Science, 2003 

 

 [AKR05] A. Ambainis, J. Kempe, A. Rivosh. 

 Coins make quantum walks faster. 

 Proceedings of SODA'05, pages 1099-1108, 2005. 

 

 [Ben02] P. Benioff. 

 Space searches with a quantum robot. 

 AMS Contemporary Math Series, Vol 305, (2002). 



Bibliography 

 [Gro96] Lov K. Grover. 

      A fast quantum mechanical algorithm for database search. 

      Proceedings, 28th Annual ACM Symposium on the Theory of Computing 

      (STOC), pages 212-219, 1996. 

 

 [KM+10] H. Krovi, F. Magniez, M. Ozols, J. Roland.  

      Finding is as easy as detecting for quantum walks.  

      ICALP'10 Proceedings of the 37th international colloquium conference on Automata,      

      languages and programming, 2010 

 

 [Tul08] A. Tulsi.  

      Faster quantum-walk algorithm for the two-dimensional spatial search. 

      Physical Review A volume 78, 012310, 2008 

 


