

IEGULDĪJUMS TAVĀ NĀKOTNĒ

EIROPAS SAVIENĪBA

The need for structure in quantum speedups

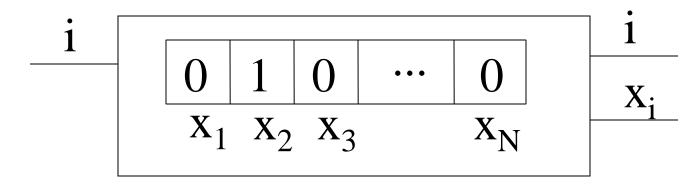
Andris Ambainis (Latvia) Scott Aaronson (MIT)

European Social Fund project "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Main quantum algorithms

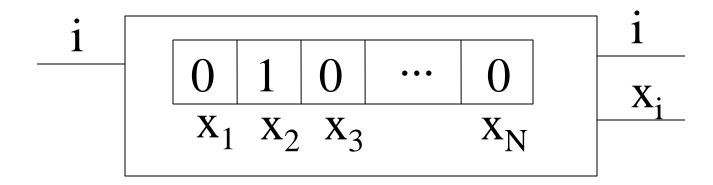
- [Shor, 1994] Polynomial time quantum algorithms for factoring and discrete log.
- [Grover, 1996] A quantum algorithm for searching a list of N elements in $O(\sqrt{N})$ steps.

When do we have exponential quantum speedups?



- Input x₁, ..., x_N accessed by queries.
- Complexity = the number of queries.

Quantum query model



Quantum query:

$$\sum_{i} \alpha_{i} |i\rangle \rightarrow \sum_{i} \alpha_{i} (-1)^{x_{i}} |i\rangle$$

Examples

- $x_1 x_2 x_3 x_N$
- Grover's search:
 - Is there i such that x_i=1?
 - N queries classically, $O(\sqrt{N})$ quantumly.
- Quantum counting [BHT00]:
 - Determine the fraction of i: $x_i=1$, with precision ε .
 - $O(1/\epsilon^2)$ queries classically, $O(1/\epsilon)$ queries quantumly.

Examples

- $\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3 \qquad \mathbf{X}_N$
- Period-finding:
 - Promise: exists p: $x_{i+p} = x_p$.
 - O(1) queries quantumly*;
 - $\Theta(N^{1/4})$ queries classically.
- * with some assumptions on x_i.

Polynomial vs. exponential speedups

- Search: is there i:x_i=1?
- Counting: estimate the fraction of i:x_i=1.

Symmetric

Period-finding: find p:

Non-symmetric

 $X_i = X_{i+p}$

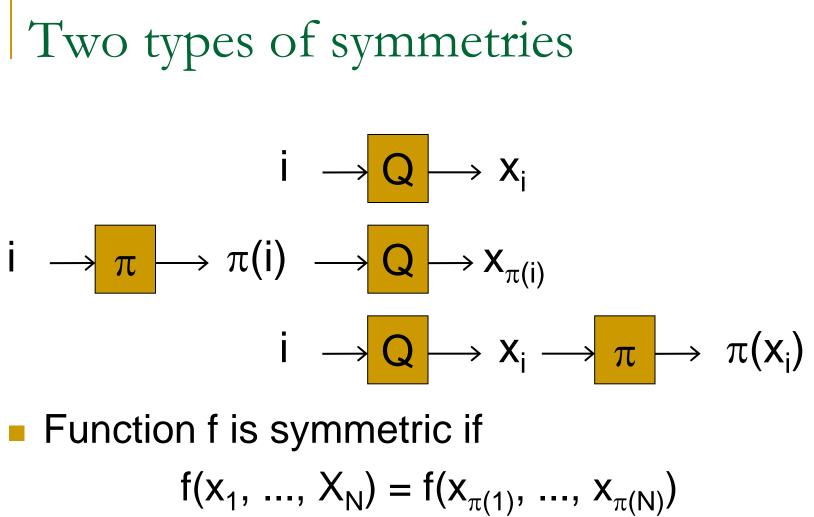
Conjecture (Watrous, 2002)

- <u>Conjecture</u> If f symmetric, then R(f)=O(Q^c(f)),
 - Q(f) quantum query complexity of f;
 - R(f) randomized query complexity of f.

Folk theorem (easy)

- Theorem For $f(x_1, ..., x_N), x_i \in \{0, 1\}$: R(f) = O(Q²(f)).
- Basic idea: quantum counting is optimal.

Non-boolean x_i?



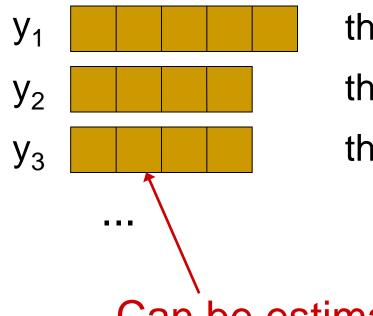
$$= f(\pi(x_1), ..., \pi(x_N)).$$

Main result

- <u>Theorem</u> If G has both types of symmetries, R(f)=O*(Q⁹(f)).
- * some log factors are omitted.
- Classical algorithm: random sampling.

Input types

Since G(x₁, ..., x_N) is symmetric, it only depends on:



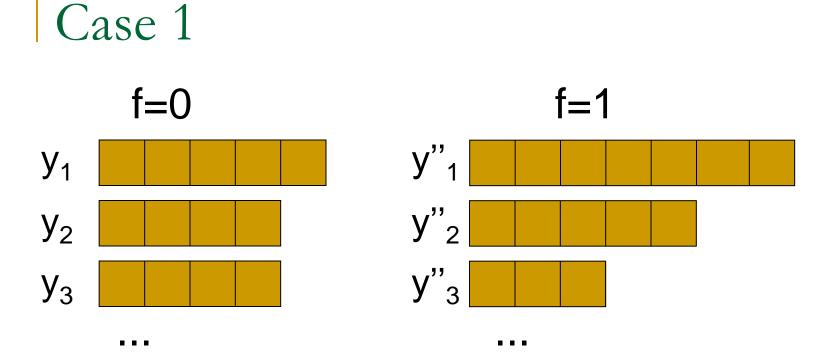
the number of $i:x_i=1$ the number of $i:x_i=2$ the number of $i:x_i=3$

Can be estimated by random sampling

Distinguishing problem f=0 f=1 y"₁ y_1 y"₂ y_2 У"₃ y_3

 y_i and y''_i differ by at most O(N/T).

<u>Claim</u> Distinguishing between these two types requires $\Omega(T^{1/7})$ quantum queries.



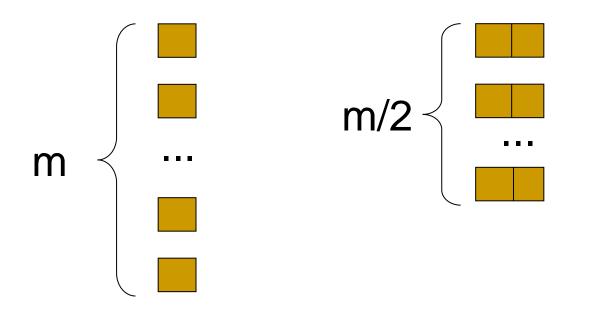
D – number of different rows

If D small, the types are hard to distinguish.

Folk lemma

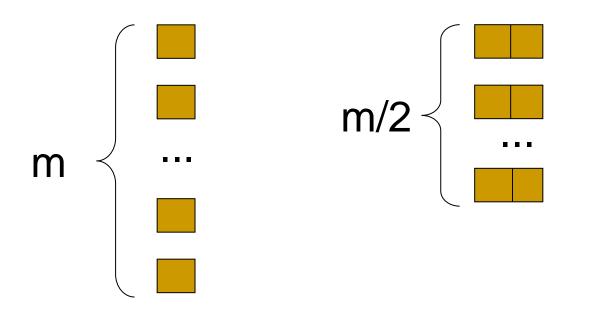
- Detecting a difference in ε fraction of x_i's requires
 - $\Omega(1/\epsilon)$ queries classically;
 - $\Omega(1/\sqrt{\epsilon})$ queries quantumly;
 - (as long as the ϵ fraction of possibly different x_i 's is randomly).
- Quantum adversary [A, 2000].

Many different rows.



$\Omega(\sqrt{m})$ queries to distinguish classically.

Many different rows.



[Aaronson, Shi, 2002] $\Omega(m^{1/3})$ queries to distinguish quantumly.

Open problems

- 1. Improve the exponent 9 in $R_2(G)=O^*(Q_2^{9}(G))$.
- 2. Prove $R_2(G)=O(Q_2^c(G))$ for functions $G(x_1, ..., x_N)$ that are only symmetric w. r. t. permuting $x_1, ..., x_N$.

Result 2

Beals et al., FOCS'1998

• Theorem If $f(x_1, ..., x_N), x_1, ..., x_N \in \{0, 1\}$ is total, then

 $D(f)=O(Q_2^{-6}(f)),$

- D(f) deterministic query complexity.
- Incomparable to our first result:
 - □ [Beals et al.]: total, possibly non-symmetric.

Folk conjecture (late 1990s)

• Conjecture 1 If $f(x_1, ..., x_N), x_1, ..., x_N \in \{0, 1\}$ is total, then

 $D_{\varepsilon}(f)=O(Q_{\varepsilon}^{c}(f)),$

 $D_{\epsilon}(f)$ and $Q_{\epsilon}(f)$ – deterministic and quantum query complexities of computing f correctly on $\geq 1-\epsilon$ fraction of inputs.

Our result: this follows from Conjecture 2.

Quantum algorithms => Polynomials

 [Beals et al., 1998] An acceptance probability of a t-query quantum algorithm is a polynomial p(x₁, ..., x_N) of degree 2t.

 [Dinur, et al., 2005] A p(x₁, ..., x_N) of degree t can be ε-approximated by a junta of 2^{O(t/ε)} variables.

$$D_{\varepsilon}(f) = 2^{O(Q_{\delta}(f))}$$

Conjecture 2

Let p(x₁, ..., x_N) be a polynomial of degree d with the following properties:

□
$$0 \le p(x_1, ..., x_N) \le 1;$$

 \square p is ϵ -far from being a constant.

$$\mathop{E}_{X,Y} \mid p(X) - p(Y) \mid \geq \varepsilon$$

Conjecture 2 (continued)

Then f has an influential variable: there exists i:

$$E_{X} \mid p(X) - p(X^{i}) \mid \geq \left(\frac{\varepsilon}{d}\right)^{O(1)}$$

• X^i – input X with x_i changed to opposite value.

Open problem

Prove Conjecture 2.