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Main quantum algorithms

[Shor, 1994] Polynomial time gquantum
algorithms for factoring and discrete log.

[Grover, 1996] A guantum algorithm for
searching a list of N elements in O(VN) steps.

When do we have exponential
quantum speedups?



Query model
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Input X4, ..., Xy accessed by queries.

Complexity = the number of queries.




Quantum query model
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Examples

O(2/0] 1|0
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Grover’s search:
o Is there i such that x;=17
o N queries classically, O(VN) quantumly.

Quantum counting [BHTOO]:
o Determine the fraction of i:x;=1, with precision «.
o O(1/e?) queries classically, O(1/¢) queries quantumly.



Examples

O(2/0] 1|0
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Period-finding:

o Promise: exists p: X;,,=X,.

o O(1) queries quantumly?;

o O(NY4) queries classically.

* with some assumptions on X.



‘ Polynomial vs. exponential speedups

= Search:is there i:x=1? = Period-finding: find p:
= Counting: estimate the Xi=Xj+p-
fraction of i:x.=1.

Symmetric Non-symmetric




Conjecture (Watrous, 2002)

Conjecture If f — symmetric, then
R(f)=0(Q*(1)),

o Q(f) - guantum query complexity of f;

o R(f) - randomized query complexity of f.




Folk theorem (easy)

Theorem For f(x,, ..., Xy), Xi€{0, 1}
R(f) = O(Q=(f)).
Basic idea: guantum counting Is optimal.

Non-boolean x;?



Two types of symmetries

i 1) Q%
-~ x - =00

= Function f Is symmetric if

f(Xq, ..y Xy) = f(xn(l), xn(N))
= f(m(Xy), ..rr T(XY))-




Main result

Theorem If G has both types of symmetries,
R(f)=0*(Q>(f)).

* some log factors are omitted.

Classical algorithm: random sampling.



‘ Input types

» Since G(Xy, ..., Xy) IS symmetric, it only
depends on:

y: BT the number of ix=1
Yo _ the number of I:x,=2
Y3 the number of i:x=3

Can be estimated by random sampling




‘ Distinguishing problem

f=0 f=1
v I v [
y, y",
Y3 _ y”3-

y; and y’; differ by at most O(N/T).

Claim Distinguishing between these two
types requires Q(TY7) quantum queries.




‘ Case 1
f=0 f=1

v N v
v, T v T
s ",

D — number of different rows

If D small, the types are hard to distinguish.




Folk lemma

Detecting a difference in ¢ fraction of x;’'s

requires

o Q(1/ €) queries classically;

o Q(1/ Ve) queries quantumly;

(as long as the ¢ fraction of possibly different x;'s is
randomly).

Quantum adversary [A, 2000].



‘ Case 2

Many different rows.

-, N
L m/2 < L[
m < -
_
N
.

Q(vVm) queries to distinguish classically.




Case 2

Many different rows.

s ~

m/2 <

m <

N

[Aaronson, Shi, 2002] Q(m13) queries
to distinguish quantumly.



Open problems

Improve the exponent 9 In
R,(G)=0*(Q,*(G)).

Prove R,(G)=0(Q,%(G)) for functions G(X,,

..., Xy) that are only symmetric w. r. t.

permuting Xy, ..., Xy



Result 2




Beals et al., FOCS’1998

Theorem If f(Xy, ..., X\),Xq, ---» Xy € {0, 1} 1S
total, then

D(f)=0(Q.°(f)),

D(f) — deterministic query complexity.
Incomparable to our first result:
0 [Beals et al.]: total, possibly non-symmetric.




Folk conjecture (late 1990s)

Conjecture 1 If f(Xq, ..., Xp):Xqs -y Xy € {0, 1}
IS total, then

D ()=0(Q.(1),
D_(f) and Q. (f) — deterministic and quantum query

complexities of computing f correctly on >1-¢
fraction of inputs.

Our result: this follows
from Conjecture 2.



Quantum algorithms

[Beals et al., 1998] An acr‘,geptance probability

of a t-query quantum alg

polynomial p(x,, ..., X\) of degree 2t.

=> Polynomials

orithm is a

[Dinur, et al., 2005] A p(X4, ..., X\) Of degree t
can be g-approximated by a junta of 20t

D (f)= 20(Qs (1))

variables.



Conjecture 2

Let p(Xy, ..., Xy) b€ a polynomial of degree d
with the following properties:

0 0 <p(Xyy ooy Xy) <1
o pis e-far from being a constant.

E [p(X)-p(Y)¢



Conjecture 2 (continued)

Then f has an influential variable: there exists i:

o)
E | p(X)-p(X') f)
X \d

X' — input X with x; changed to opposite value.




‘ Open problem

= Prove Conjecture 2.




