

IEGULDĪJUMS TAVĀ NĀKOTNĒ

R-trivial idempotent languages recognized by quantum finite automata

Marats Golovkins Joint work with Maksims Kravcevs, Vasilijs Kravcevs October 3, 2010

"Computer science applications and its relations to quantum physics", project of the European Social Fund Nr. 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Facts

Automata models

	"Classical" word acceptance	"Decide-and-halt" word acceptance
Deterministic Reversible Automata	Group Automata (GA) Class: Variety of group languages	Reversible Finite Automata (RFA) [Ambainis and Freivalds]
Quantum Finite Automata with pure states	Measure-Once Quantum Finite Automata (MO-QFA) [Moore et al] Class: Variety of group languages	Measure-Many Quantum Finite Automata (MM-QFA) [Kondacs and Watrous]
Probabilistic Reversible Automata	"Classical" Probabilistic Reversible Automata (C-PRA) [Golovkins and Kravtsev] Class: Variety of BG (block group) languages	"Decide-and-halt" Probabilistic Reversible Automata (DH-PRA) [Golovkins and Kravtsev]
Quantum Finite Automata with mixed states	Latvian Quantum Finite Automata (LQFA) [Ambainis et al, Golovkins and Kravtsev] Class: Variety of BG (block group) languages	Enhanced Quantum Finite Automata (EQFA) [Nayak]

Language variety

A class of recognizable languages is a function **C** that which associates with each alphabet A a set A***C** of recognizable languages of A*.

A language variety is a class of languages **C**, which is a) closed under union, intersection and complement, that is, for all languages L, L_1 , $L_2 \in A^*C$: $L` \in A^*C$, $L_1 \cup L_2 \in A^*C$, $L_1 \cap L_2 \in A^*C$;

b) closed under quotient operations, that is, for all languages $L \in A^*C$ and for all $a \in A$: $a^{-1}L \in A^*C$, $La^{-1} \in A^*C$

c) closed under inverse morphisms, that is, if ϕ is a morphism A* \rightarrow B*, then for all languages L \in B*C: L $\phi^{-1} \in$ A*C

• An intersection of two language varieties also is a language variety.

• We say that a class of languages **C** generates a variety **V**, if **V** is the smallest variety, which contains **C**.

Operations on languages: quotient

L - a language in an alphabet A, $a \in A$

$$a^{-1}L = \{v \in A^* \mid av \in L\}$$

 $La^{-1} = \{v \in A^* \mid va \in L\}$

Operations on languages: morphisms

 $L_1 - a$ language in alphabet A, $L_2 - a$ language in alphabet B

Morphism:

A function $\phi: A^* \rightarrow B^*$, such that for all $x, y \in A^*$ (xy) $\phi = (x\phi)(y\phi)$

Therefore,

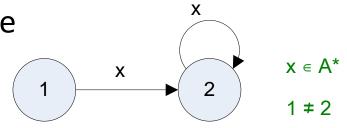
$$\mathsf{L}_1 \phi = \{ \mathsf{v} \in \mathsf{B}^* \mid \exists \mathsf{w} \in \mathsf{L}_1 : \mathsf{w} \phi = \mathsf{v} \}$$

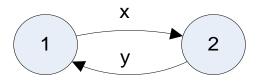
Inverse morphism:

$$L_2\phi^{\text{-1}} = \{ w \in A^* \ | \ w\phi \! \in \! L_2 \}$$

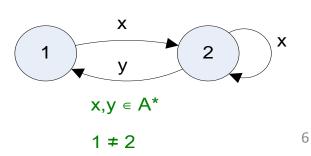
Language varieties: examples

- Variety of groups G: min. det. automaton doesn't have the following construction: Deterministic Reversible Automata, Measure-Once Quantum Finite Automata
- Variety **R** (R-trivial languages): min. det. automaton doesn't have the following construction:
- Variety R*G: min. det. automaton doesn't have the following construction:





x,y ∈ A*, 1 ≠ 2



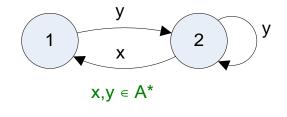
7

Language varieties: examples

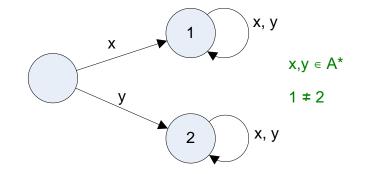
- Variety L*G: min. det. automaton doesn't have the following construction:
- Variety R*G: min. det. automaton doesn't have the following construction:
- Variety BG = R*G ∩L*G

Classical Probabilistic Reversible Automata,

Latvian Quantum Finite Automata



 1 ± 2

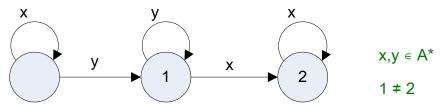


 $x,y \in A^*$

1 ± 2

Language varieties: examples

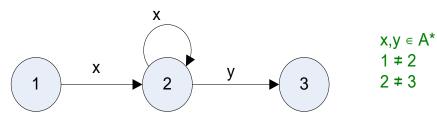
 Variety R₁ (R-trivial idempotent languages):
min. det. automaton doesn't have this construction.



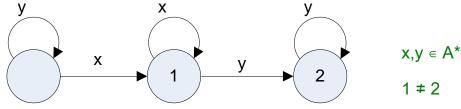
 Variety R₁*G: min. det. automaton doesn't have this construction.

Decide-and-halt automata: RFA

• An RFA recognizes L iff the respective min. det. automaton doesn't have the following construction: [Ambainis, Freivalds 98]:

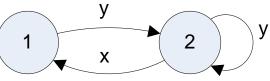


 The Boolean closure of RFA languages forms the language variety R₁*G (RFA generates R₁*G).



Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

 Languages don't have the following forbidden construction (the forbidden construction of the first type):



x,y ∈ A*, 1 ≠ 2

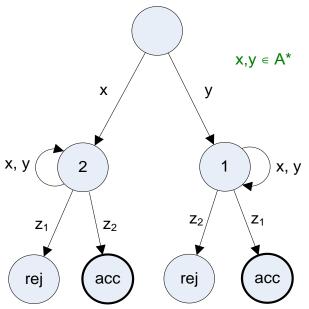
Hence they are contained in **R*G**.

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

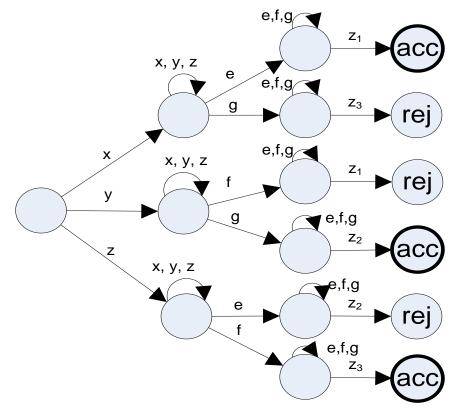
 Don't have a whole string of different forbidden constructions (thereafter – forbidden constructions of the second type), of whom the simplest one is the following:

[Ambainis et al., Golovkins et. al., Mercer]

In this case it's not essential whether the deterministic automaton having a forbidden construction and recognizing a language is minimal or not.



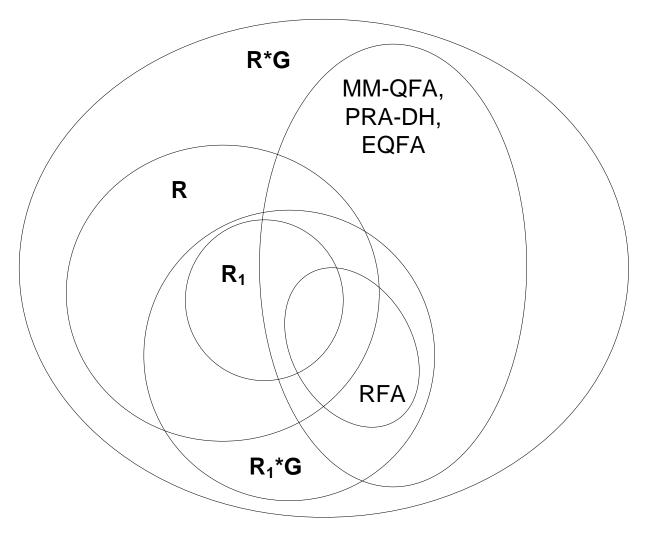
Decide-and-halt automata: forbidden constructions



Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

Hypothesis. MM-QFA = DH-PRA = EQFA.

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA



Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

Research guidelines:

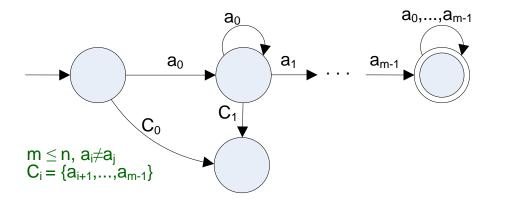
- Identify all the R₁ languages that may be recognized by decide-and-halt automata.
- Identify all the R-trivial languages and R₁*G languages, that may be recognized by decideand-halt automata.
- Identify all the R*G languages that may be recognized by decide-and-halt automata.

R-trivial idempotent languages (R₁ languages)

• Languages, that doesn't contain the following forbidden construction:

• Any R-trivial idempotent language in an alphabet of size n is a disjoint union of the following languages:

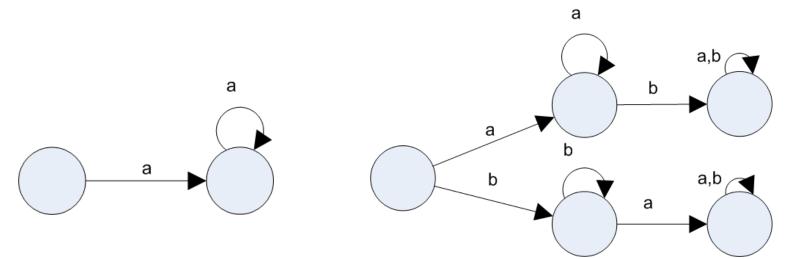
$$a_0a_0^*a_1(a_0,a_1)^*...a_{m-1}(a_0,a_1,...,a_{m-1})^*$$
, where $m \le n$ and $i \ne j \rightarrow a_i \ne a_j$

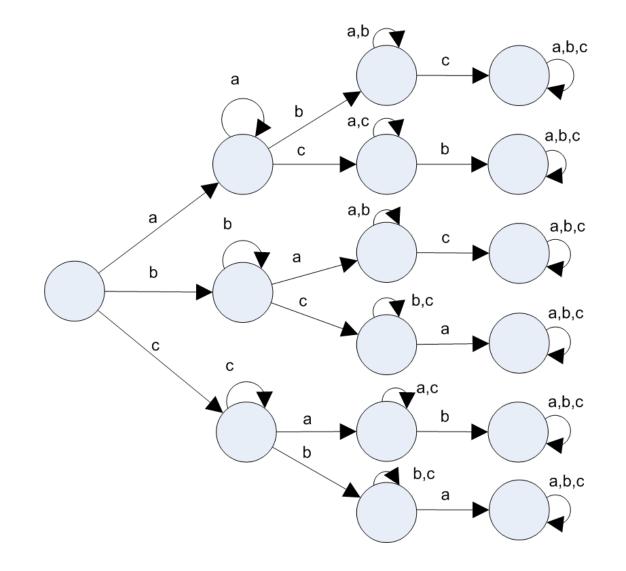


 Any R-trivial idempotent language in alphabet A is a Boolean closure of the following languages:

$$B^*a_iA^*$$
, where $B \subseteq A$ and $a_i \in A$.

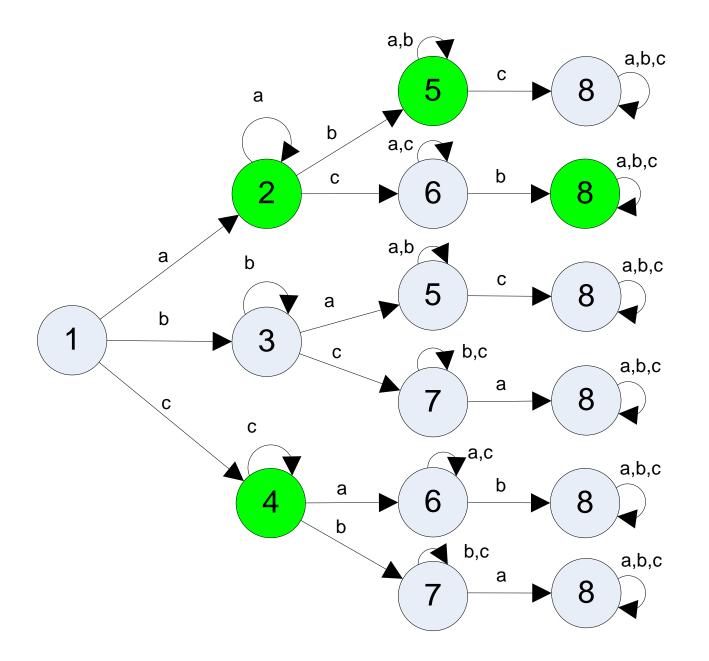
 Exists a deterministic finite automaton that can recognize any R₁ language in a given alphabet.

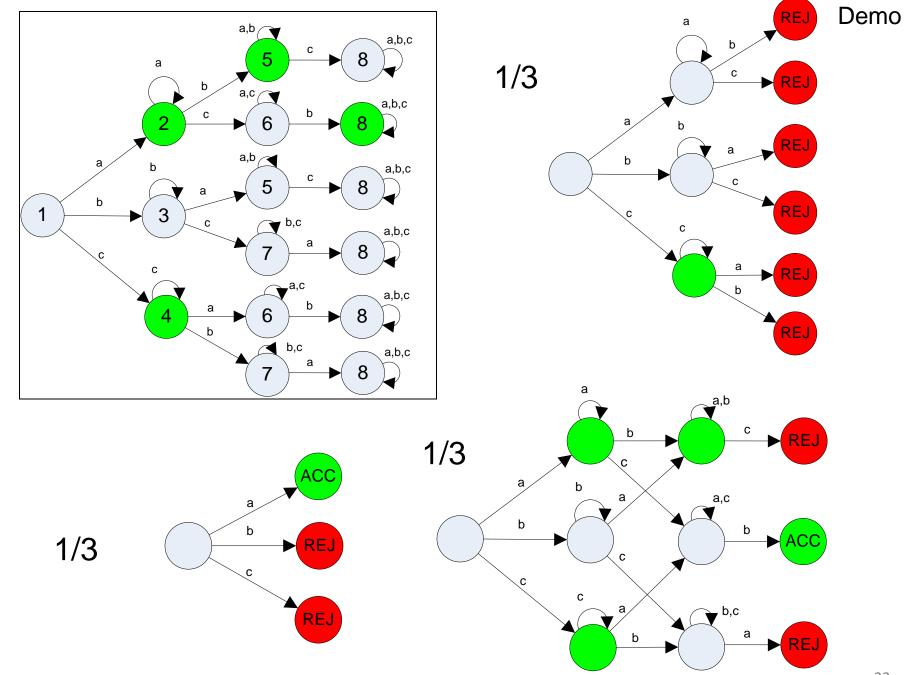




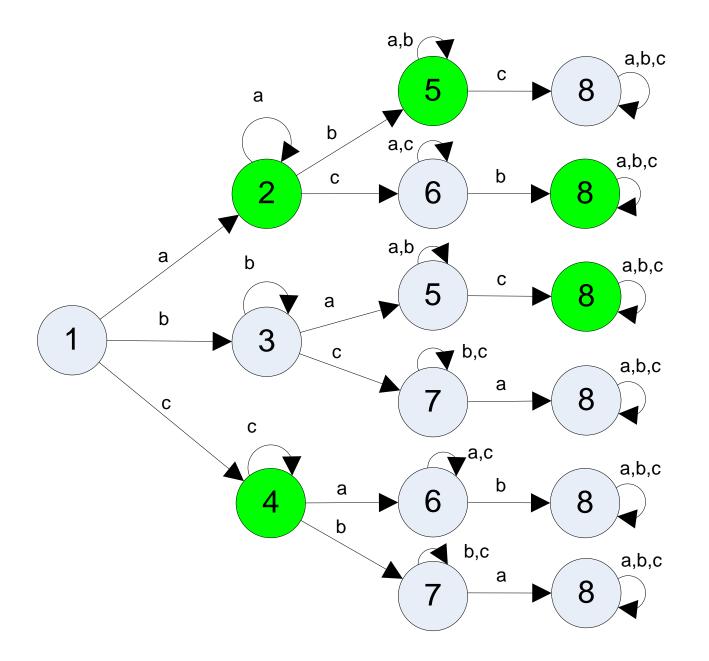
- For any R₁ language L, one may construct a linear system of inequalities with the following properties:
- a) The system has a solution if and only if the language L is recognizable by PRA-DH.
- b) The same system has a solution if and only if the language L is recognizable by QFA.
- c) If the system has a solution, one may use the solution to construct a PRA-DH and a QFA that recognize the respective language.

Demo





Demo



- Theorem 1. For any R₁ language L, it is decidable whether L can be recognized by PRA-DH or by QFA.
- Theorem 2. PRA-DH and QFA recognize the same set of R-trivial idempotent languages.

R-trivial idempotent languages: The relation between forbidden constructions and system of inequalities

 If an R₁ language has a forbidden construction of Ambainis et.al., then the related system of linear inequalities is inconsistent.

Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

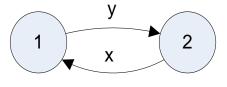
Research guidelines:

- Identify all the R₁ languages that may be recognized by decide-and-halt automata.
- Identify all the R-trivial languages and R₁*G languages, that may be recognized by decideand-halt automata.
- Identify all the R*G languages that may be recognized by decide-and-halt automata.

Facts

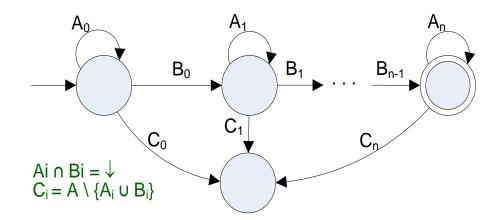
R-trivial languages

• Languages that don't have the forbidden construction:



x,y ∈ A*, 1 ≠ 2

• Any R-trivial language is a disjoint union of the following languages:



Decide-and-halt automata: MM-QFA, DH-PRA, EQFA

 Theorem 3. The Boolean closure of MM-QFA languages contains any R-trivial language.
Similarly, DH-PRA un EQFA also generate any R-trivial language.

Results

- PRA-DH and MM-QFA recognize the same class of Rtrivial idempotent languages.
- It is decidable whether MM-QFA recognize a given R₁ language.
- For any recognizable R₁ language, it is possible to construct the corresponding PRA-DH and MM-QFA by solving a system of linear inequalities.
- MM-QFA, PRA-DH, EQFA generate any R-trivial language;

Thank you!