
Quantum finite automata

on infinite words

Rūsiņš Freivalds

University of Latvia

European Social Fund project “Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku”

Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Computational complexity began with the natural physical

notions of time and space. Given a property, S , an important

issue is the computational complexity of checking whether or

not an input satisfies S.

For a long time, the notion of complexity referred to the

time or space used in the computation. A mathematician might

ask,

"What is the complexity of expressing the property S?"

It should not be surprising that these two questions - that of

cheching and that of expressing - are related.

In early sixties Bűchi , Elgot and Trakhtenbrot showed how a

logical formula may effectively be transformed into a finite

state automaton accepting the language specified by the

formula, and vice versa.

It demonstrates how to relate the specification of a system

behaviour (the formula) to a possible implementation

(the behaviour of an automaton) - which underlies modern

checking tools.

The monadic second-order (MSO) logic of one successor is a

logical framework that allows one to specify string properties

using quantification over sets of positions in the string.

Now we consider an example how an automaton can be described

by a formula.

Let the input word have the length n in the alphabet {a,b}. Then

the considered sets are subsets of the set {1,2,…, n}.

Pa (x) and Pb (x) are, respectively, predicates

Pa (x) = { the symbol number x in the input word equals a }

Pb (x) = { the symbol number x in the input word equals b }

We use also individual predicates

S(x,y) = { y = x+1 }

first(x) = { x = 1 }

last(x) = { x = n }

We use in our example three set-variables having the following

meaning:

X1 = {all the positions i such that i ≡ 1 }

X2 = {all the positions i such that i ≡ 2 }

X0 = {all the positions i such that i ≡ 0 }

Now we wish to show how the regular language

{the length of the input word is a multiple of 3}

can be described. The MSO formula is as follows.

Now we wish to show how the regular language

{the length of the input word is a multiple of 3}

can be described. The MSO formula is as follows.

 X1 X2 X0 ((x) (X0(x) X1(x)X0(x))&

(x)((X0(x)&X1(x))(X0(x)& X2(x)) 

(X1(x)& X2(x))) & x (first (x) →X1(x)) &  xy (S(x,y) →

((X1(x) & X2(x))(X2(x) & X0(x))  (X0(x) & X1(x))) &

 x (last(x) → X0(x)))

Now we wish to show how the regular language

{the length of the input word is a multiple of 3}

can be described. The MSO formula is as follows.

 X1 X2 X0 ((x) (X0(x) X1(x)X0(x))&

(x)((X0(x)&X1(x))(X0(x)& X2(x)) 

(X1(x)& X2(x))) & x (first (x) →X1(x)) &  xy (S(x,y) →

((X1(x) & X2(x))(X2(x) & X0(x))  (X0(x) & X1(x))) &

 x (last(x) → X0(x)))

Start = (x) (y)((first (x) &S(x,y)& Pa(x)) →

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y))

Start = (x) (y)((first (x) &S(x,y)& Pa(x)) →

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y))

 Transit = (x) (y)(S(x,y) →

 ((X0(x) & Pa(x) & X1(y)) 

 (X0(x) & Pb(x) & X2(y)) 

 (X1(x) & Pb(x) & X2(y)))

Start = (x) (y)((first (x) &S(x,y)& Pa(x)) →

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y))

 Transit = (x) (y)(S(x,y) →

 ((X0(x) & Pa(x) & X1(y)) 

 (X0(x) & Pb(x) & X2(y)) 

 (X1(x) & Pb(x) & X2(y)))

Accept = (x)(last(x) → (X0(x)  X2(x))

Start = (x) (y)((first (x) &S(x,y)& Pa(x)) →

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y))

 Transit = (x) (y)(S(x,y) →

 ((X0(x) & Pa(x) & X1(y)) 

 (X0(x) & Pb(x) & X2(y)) 

 (X1(x) & Pb(x) & X2(y)))

Accept = (x)(last(x) → (X0(x)  X2(x))

 FORMULA =  X1 X2 X0 ((x) (X0(x) X1(x)X2(x))&

(x)((X0(x)&X1(x))(X0(x)& X2(x)) 

(X0(x)& X2(x))) & START & TRANSIT & ACCEPT)

Start = (x) (y)((first (x) &S(x,y)& Pa(x)) →

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y))

 Transit = (x) (y)(S(x,y) →

 ((X0(x) & Pa(x) & X1(y)) 

 (X0(x) & Pb(x) & X2(y)) 

 (X1(x) & Pb(x) & X2(y)))

Accept = (x)(last(x) → (X0(x)  X2(x))

 FORMULA =  X1 X2 X0 ((x) (X0(x) X1(x)X2(x))&

(x)((X0(x)&X1(x))(X0(x)& X2(x)) 

(X0(x)& X2(x))) & START & TRANSIT & ACCEPT)

It needs to be reminded that Bűchi considers description of

automata on infinite strings.

On the other hand, up to now quantum automata have been

considered as processing finite words only. Perhaps

there is some quantum machanics based motivation behind

this restriction.

As for classical Bűchi automata, in the 1970's there was

relatively little interest in these automata. There was some

theoretical work on automata with infinite state spaces such

as pushdown tree automata. However, the decision problems

usually became undecidable. Thus, while of some theoretical

interest, it did not appear to have major impact on Computing

Science.

The situation changed on 1977 when Pnueli's paper

appeared. Pnueli proposed the use of Temporal Logic for

reasoning about continuously operating concurrent programs.

Temporal Logic is a type of modal logic that provides a

formalism for describing how the truth values of assertions

vary over time. While there are a variety of different systems

of Temporal Logic, typical temporal operators or modalities

include Fp ("sometimes p") which is true now provided there

is a future moment where p holds, and Gp ("always p”)

which is true now provided that p holds at all future moments.

As Pnueli argued, Temporal Logic seems particularly

well-suited to describing correct behaviour of continouosly

operating concurrent programs.

In 1974 Fagin gave a characterization of nondeterministic

polynomial time (NP) as the set of properties expressible

in second-order existential logic. Some the results arising

from this approach include characterizing polynomial time (P)

as the set of properties expressible in first-order logic plus a

least fixed point operator, and showing that the set of

first-order inductive definitions for finite structures is closed

under complementation.

Theorem (Fagin 1974) (ESO) = NP

Example. Let the structure G=({1,2,…,n}, E) represent a

graph of n vertices, and E be a single binary relation

representing the edges of the graph. We say that the

graph G is 3-colourable (in colors Red, Yellow, Blue) iff

its vertices may be coloured with one of three colours such

that no two adjacent vertices are the same colour.

Three colourability is an NP-complete property.

R,Y,B are set-variables expressing the set of the vertices

coloured correspondingly.

( R)( Y)( B) (x)

 (((R(x) &  Y(x) &  B(x))  ( R(x) & Y(x) &  B(x)) 

( R(x) &  Y(x) & B(x))) &

& (y) (E(x,y) → (( R(x) & R(y))  ( Y(x) & Y(y)) 

( B(x) & B(y))))

R,Y,B are set-variables expressing the set of the vertices

coloured correspondingly.

( R)( Y)( B) (x)

 (((R(x) &  Y(x) &  B(x))  ( R(x) & Y(x) &  B(x)) 

( R(x) &  Y(x) & B(x))) &

& (y) (E(x,y) → (( R(x) & R(y))  ( Y(x) & Y(y)) 

( B(x) & B(y))))

We now define (FO + LFP) to be the set of first-order

inductive definitions. We do this by adding a least fixed point

operator (LFP) to first-order logic.

Theorem (Immerman 1982, Vardi 1982) (FO + LFP) = P

Theorem (Stockmeyer 1977) (SO) = PH

Theorem (Immerman 1982) PSPACE =

 This way, famous open problems in Theory of

Computation turn out to be equivalent to purely logical

problems.

 For instance, P=?NP is equivalent to whether or

not every second-order expressible property over finite

ordered structures is already expressible in first-order logic

using inductive definitions.

Qubits

• Quantum analogue of a classical bit

• Takes on values 0, 1, or superposition of states:

| ω› = α | 0› + β | 1› where |α|2 + |β|2 = 1

| ω› = cos(θ / 2) | 0› + eiφ sin(θ / 2) | 1›

http://www.c3.lanl.gov/~knill/qip/nmrprhtml/img64.png

Quantum finite automata (QFA) were introduced

independently by Moore and Crutchfield (1997) and

Kondacs and Watrous (1997). They differ in a seemingly

small detail. The first definition allows the measurement

only at the very end of the computation process.

Hence the computation is performed on the quantum

information only. The second definition allows

the measurement at every step of the computation.

 q1 q2 q3

 q1 2/3 2/3 -1/3

 q2 -1/3 2/3 2/3

 q3 2/3 -1/3 2/3

a

 2/3 2/3 -1/3

 -1/3 2/3 2/3

 2/3 -1/3 2/3

a

() (1 0 0) (
1

0

0
)

 2/3 2/3 -1/3

 -1/3 2/3 2/3

 2/3 -1/3 2/3

a

() (1 0 0) (
1

0

0
)

aa

(100)

0 1 0

0 0 1

1 0 0
() (

1

0

0
)

 2/3 2/3 -1/3

 -1/3 2/3 2/3

 2/3 -1/3 2/3

a

() (1 0 0) (
1

0

0
)

aa

(100)

0 1 0

0 0 1

1 0 0
() (

1

0

0
)

The result of the matrix multiplication is the element shown in red color

These results repeat periodically:

2/3, 0, 2/3, 0, -1/3, 1, 2/3, 0, 2/3, 0, -1/3, 1, 2/3, 0, 2/3, 0, -1/3, 1,…

Hence we can consider this process as a recognition of whether the

length of the input word is a multiple of 6. Only 3 states of the

automaton! A deterministic automaton needs 6 states.

On the other hand, some probability of an error. The worst case error

equals 4/9.

What is the class of languages recognized by QFAs?

What accepting probabilities can be achieved?

How does the size of QFAs (the number of states) compare

to the size of deterministic (probabilistic) automata?

Regular MM-QFA MO-QFA

Theorem (Kondacs, Watrous, 1997).

1. All languages recognized by 1-way MM-QFAs are regular.

2. There is a regular language that cannot be recognized

by a 1-way MM-QFA with probability ½ + ε for any ε>0.

(0,1)*1

Theorem (Moore, Crutchfield 1997)

A language L is recognized by a MO-QFA if and only if L

is a permutation language.

Example (Ambainis, Freivalds 1998) The language a*b*

a
 q0 q1 qrej qacc

q0 1-p p(1-p) p 0

 q1 p(1-p) p -(1-p) 0

qrej (1-p) -p 0 0

qacc 0 0 0 1

The initial distribution ((1-p) , -p , 0 , 0)

Example (Ambainis, Freivalds 1998) The language a*b*

a
 q0 q1 qrej qacc

q0 1-p p(1-p) p 0 0 0 1 0

 q1 p(1-p) p -(1-p) 0 0 1 0 0

qrej (1-p) -p 0 0 1 0 0 0

qacc 0 0 0 1 0 0 0 1

The initial distribution ((1-p) , -p , 0 , 0)

b

Example (Ambainis, Freivalds 1998) The language a*b*

a
 q0 q1 qrej qacc

q0 1-p p(1-p) p 0 0 0 1 0

 q1 p(1-p) p -(1-p) 0 0 1 0 0

qrej (1-p) -p 0 0 1 0 0 0

qacc 0 0 0 1 0 0 0 1

 $ 0 0 1 0

 0 0 0 1

 1 0 0 0

 0 1 0 0

The initial distribution ((1-p) , -p , 0 , 0)

b

Theorem (Ambainis, Freivalds 1998) The MM-QFA described

above recognizes the language a*b* with the probability

P = 0.68… (where p is the solution of the equation p3 + p = 1).

Theorem (Ambainis, Freivalds 1998) The MM-QFA described

above recognizes the language a*b* with the probability

P = 0.68… (where p is the solution of the equation p3 + p = 1).

Theorem (Ambainis, Freivalds 1998) The language a*b*

cannot be recognized by an MM-QFA with a probability

exceeding 7/9.

Theorem (Ambainis, Freivalds 1998) The MM-QFA described

above recognizes the language a*b* with the probability

P = 0.68… (where p is the solution of the equation p3 + p = 1).

Theorem (Ambainis, Freivalds 1998) The language a*b*

cannot be recognized by an MM-QFA with a probability

exceeding 7/9.

Theorem (Ambainis, Freivalds 1998) If a language can be

recognized by an MM-QFA with a probability exceeding 7/9

then this language can be recognized by an MM-QFA with the

probability 1.

Theorem (Ambainis, Freivalds 1998)

1. For every prime p the language

Lp = { the length of the input word is a multiple of p}

can be recognized by a MO-QFA with no more than const log p

states.

2. For every p arbitrary deterministic FA recognizing Lp needs at

least p states.

3. For every p arbitrary probabilistic FA with a bounded error

recognizing Lp needs at least p states.

Theorem (Brodsky, Pippenger 1999) Let L be a language and

M be its minimal automaton (the smallest DFA recognizing L).

Assume that there is a word x such that M contains states q1, q2

satisfying:

1. q1 ≠ q2

2. If M starts in the state q1 and reads x,

it passes to q2,

3. If M starts in the state q2 and reads x,

it passes to q1,

4. There is a word y such that if M starts in q2 and reads y, it passes

to q1,

then L cannot be recognized by any 1-way quantum finite

automaton.

Theorem (Ambainis, Ķikusts, Valdats 2001)

Let L be a language. Assume that there are words x, y, z1, z2 such

that its minimal automaton M contains states q1, q2, q3 satisfying:

Then L cannot be recognized by any 1-way quantum finite

automaton.

then L cannot be recognized by any 1-way MM-QFA.

Theorem (Ambainis, Ķikusts, Valdats 2001)

Let L be a language and M be its minimal automaton.

If M contains a fragment of the form shown below

Theorem (Ambainis, Ķikusts, Valdats 2001) Let U be the

class of languages whose minimal automaton does not

contain "two cycles in a row"

A language that belongs to U can be recognized by a 1-way

MM-QFA if and only if its minimal deterministic automaton

does not contain the "forbidden constructions"

and

Let L1 be the language consisting of all words that start with any

number of letters a and after first letter b (if there is one) there

is an odd number of letters a .

L2 consists of all words which start with an even number of letters

a and after first letter b (if there is one) there is an odd number of

letters a .

L3 consists of all words which start with an odd number of letters

a and after first letter b (if there is one) there is an odd number of

letters a .

Theorem (Valdats 2000) There are two languages L2 and L3

which are recognizable by a MM-QFA but the union of them

L1 = L2 U L3 is not recognizable by a MM-QFA.

Theorem (Ambainis, Ķikusts, Valdats 2001) If the languages

L1 and L2 are recognizable by a MM-QFA with probabilities

p1 and p2 and 1/p1 + 1/ p2 < 3 then L2 U L3 is also recognizable

by QFA with probability (2 p1 . p2)/(p1 + p2 + p1 . p2)

Theorem (Ambainis, Ķikusts, Valdats 2001) If the languages

L1 and L2 are recognizable by a MM-QFA with probabilities p1 and

p2 and p1 > 2/3 and p2 > 2/3 , then L2 U L3 is recognizable by

MM-QFA with probability p3 >1/2 .

There is no good description of the class of languages

recognizable by quantum finite automata. Can one

produce such a description in terms of a suitable logic?

Regular MM-QFA MO-QFA

}

Thank you

