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Computational complexity began with the natural physical 

notions of time and space. Given a property,  S ,  an important 

issue is the computational complexity of checking whether or 

not an input satisfies S. 

 

For a long time, the notion of complexity referred to the  

time or space used in the computation. A mathematician might 

ask,  

"What is the complexity of expressing the property S?"  

 

It should not be surprising that these two questions - that of 

cheching and that of expressing - are related. 



In early sixties Bűchi , Elgot and Trakhtenbrot showed how a 

logical formula may effectively be transformed into a finite 

state automaton accepting the language specified by the 

formula, and vice versa. 

It demonstrates how to relate the specification of a system 

behaviour (the formula) to a possible implementation  

(the behaviour of an automaton) - which underlies modern 

checking tools. 

The monadic second-order (MSO) logic of one successor is a 

logical framework that allows one to specify string properties 

using quantification over sets of positions in the string. 



Now we consider an example how an automaton can be described 

by a formula.  

Let the input word have the length  n  in the alphabet  {a,b}. Then 

the considered sets are subsets of the set {1,2,…, n}.    

Pa (x)  and  Pb (x)  are, respectively,  predicates 

 

Pa (x) = { the symbol number  x  in the input word equals  a } 

Pb (x) = { the symbol number  x  in the input word equals  b } 

We use also individual predicates  

S(x,y) = {  y = x+1 } 

first(x) = { x = 1 } 

last(x) = { x = n } 



 

 

We use in our example three set-variables having the following 

meaning: 

 

X1 = {all the positions  i such that  i ≡ 1 } 

 

X2 = {all the positions  i such that  i ≡ 2 } 

 

X0 = {all the positions  i such that  i ≡ 0 } 

 



Now we wish to show how the  regular language  

 

{the length of the input word is a multiple of 3} 

 

can be described. The MSO formula is as follows. 

 

 



Now we wish to show how the  regular language  

 

{the length of the input word is a multiple of 3} 

 

can be described. The MSO formula is as follows. 

 

  X1 X2 X0  ( (x) (X0(x) X1(x)X0(x))& 

(x)((X0(x)&X1(x))( X0(x)& X2(x))  

( X1(x)& X2(x))) & x (first (x) →X1(x)) &  xy (S(x,y) → 

((X1(x) & X2(x))(X2(x) & X0(x))  (X0(x) & X1(x))) &  

 x (last(x) → X0(x)))  
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can be described. The MSO formula is as follows. 

 

  X1 X2 X0  ( (x) (X0(x) X1(x)X0(x))& 

(x)((X0(x)&X1(x))( X0(x)& X2(x))  

( X1(x)& X2(x))) & x (first (x) →X1(x)) &  xy (S(x,y) → 

((X1(x) & X2(x))(X2(x) & X0(x))  (X0(x) & X1(x))) &  

 x (last(x) → X0(x)))  

 

 







Start = (x) (y)((first (x) &S(x,y)& Pa(x)) → 

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y)) 

 



Start = (x) (y)((first (x) &S(x,y)& Pa(x)) → 

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y)) 

 Transit = (x) (y)( S(x,y) → 

 ((X0(x) & Pa(x) & X1(y))  

 (X0(x) & Pb(x) & X2(y))  

 (X1(x) & Pb(x) & X2(y))) 

 



Start = (x) (y)((first (x) &S(x,y)& Pa(x)) → 

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y)) 

 Transit = (x) (y)( S(x,y) → 

 ((X0(x) & Pa(x) & X1(y))  

 (X0(x) & Pb(x) & X2(y))  

 (X1(x) & Pb(x) & X2(y))) 

 
Accept = (x)( last(x) → (X0(x)  X2(x)) 

 

 



Start = (x) (y)((first (x) &S(x,y)& Pa(x)) → 

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y)) 

 Transit = (x) (y)( S(x,y) → 

 ((X0(x) & Pa(x) & X1(y))  

 (X0(x) & Pb(x) & X2(y))  

 (X1(x) & Pb(x) & X2(y))) 

 
Accept = (x)( last(x) → (X0(x)  X2(x)) 

 

 FORMULA  =   X1 X2 X0  ( (x) (X0(x) X1(x)X2(x))& 

(x)((X0(x)&X1(x))( X0(x)& X2(x))  

( X0(x)& X2(x))) & START & TRANSIT & ACCEPT ) 

 

 



Start = (x) (y)((first (x) &S(x,y)& Pa(x)) → 

X1(y))  ((first (x) & S(x,y)& Pb(x)) → X2(y)) 

 Transit = (x) (y)( S(x,y) → 

 ((X0(x) & Pa(x) & X1(y))  

 (X0(x) & Pb(x) & X2(y))  

 (X1(x) & Pb(x) & X2(y))) 

 
Accept = (x)( last(x) → (X0(x)  X2(x)) 

 

 FORMULA  =   X1 X2 X0  ( (x) (X0(x) X1(x)X2(x))& 

(x)((X0(x)&X1(x))( X0(x)& X2(x))  

( X0(x)& X2(x))) & START & TRANSIT & ACCEPT ) 

 

 



It needs to be reminded that Bűchi considers description of 

automata on infinite strings.  

 

On the other hand, up to now quantum automata have been 

considered as processing finite words only. Perhaps   

there is some quantum machanics based motivation behind 

this restriction. 

 

As for classical   Bűchi automata, in the 1970's there was 

relatively little interest in these automata. There was some 

theoretical work on automata with infinite state spaces such 

as pushdown tree automata. However, the decision problems 

usually became undecidable. Thus, while of some theoretical 

interest, it did not appear to have major impact on Computing 

Science.  



The situation changed on 1977 when Pnueli's paper 

appeared. Pnueli proposed the use of Temporal Logic for 

reasoning about continuously operating concurrent programs. 

Temporal Logic is a type of modal logic that provides a 

formalism for describing how  the truth values of assertions 

vary over time. While there are a variety of different systems 

of Temporal Logic, typical temporal operators or modalities 

include  Fp ("sometimes p") which is true now provided there 

is a future moment where p holds, and Gp ("always p”)  

which is true now provided that p holds at all future moments. 

As Pnueli argued, Temporal Logic seems particularly  

well-suited to describing correct behaviour of continouosly 

operating concurrent programs. 

 

 



In 1974 Fagin gave a characterization of nondeterministic 

polynomial time (NP) as the set of properties expressible  

in second-order existential logic. Some the results arising 

from this approach include characterizing polynomial time (P) 

as the set of properties expressible in first-order logic plus a 

least fixed point operator, and showing that the set of  

first-order inductive definitions for finite structures is closed 

under complementation. 

Theorem (Fagin 1974) (ESO) = NP 



Example. Let the structure   G=({1,2,…,n}, E)  represent a 

graph of  n  vertices, and  E  be a single binary relation 

representing the edges of the graph. We say that the  

graph    G   is   3-colourable  (in colors Red, Yellow, Blue) iff 

its vertices may be coloured with one of three colours such 

that no two adjacent vertices  are the same colour. 

 

Three colourability is an  NP-complete  property. 

 

 



R,Y,B  are set-variables expressing the set of the vertices  

coloured correspondingly.  

 

 

( R)( Y)( B) (x) 

 (((R(x) &  Y(x) &  B(x))  ( R(x) & Y(x) &  B(x))  

( R(x) &  Y(x) & B(x))) & 

& (y) ( E(x,y) → (( R(x) & R(y))  ( Y(x) & Y(y))  

( B(x) & B(y))))  

 

 



R,Y,B  are set-variables expressing the set of the vertices  

coloured correspondingly.  

 

 

( R)( Y)( B) (x) 

 (((R(x) &  Y(x) &  B(x))  ( R(x) & Y(x) &  B(x))  

( R(x) &  Y(x) & B(x))) & 

& (y) ( E(x,y) → (( R(x) & R(y))  ( Y(x) & Y(y))  

( B(x) & B(y))))  

 

 



We now define (FO + LFP) to be the set of first-order 

inductive definitions.  We do this by adding a least fixed point 

operator (LFP) to first-order logic. 

 

 

Theorem (Immerman 1982, Vardi 1982)    (FO + LFP) = P 

 

Theorem (Stockmeyer 1977) (SO) = PH 

 

Theorem (Immerman 1982)  PSPACE = 



             This way, famous open problems in Theory of 

Computation turn out to be equivalent to purely logical 

problems.  

 

               For instance, P=?NP is equivalent to whether or 

not every second-order  expressible   property over finite 

ordered structures is already expressible in first-order logic 

using inductive definitions.  











Qubits 

•  Quantum analogue of a classical bit 

•  Takes on values 0, 1, or superposition of states: 

| ω› = α | 0› + β | 1›    where   |α|2 + |β|2 = 1 
 
 
 

 

 

 
 

 

| ω› = cos(θ / 2) | 0› + eiφ sin(θ / 2) | 1› 

http://www.c3.lanl.gov/~knill/qip/nmrprhtml/img64.png


Quantum finite automata (QFA) were introduced 

independently by Moore and Crutchfield (1997) and 

Kondacs and Watrous (1997). They differ in a seemingly 

small detail. The first definition allows the measurement 

only at the very end of the computation process. 

Hence the computation is performed on the quantum 

information only. The second definition allows  

the measurement at every step of the computation. 
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The result of the matrix multiplication is the element shown in red color 

 



These results repeat periodically: 

 

 

2/3,  0, 2/3, 0, -1/3, 1, 2/3,  0, 2/3, 0, -1/3, 1, 2/3,  0, 2/3, 0, -1/3, 1,…  

 

Hence we can consider this process as a recognition of whether the 

length of the input word is a multiple of 6.  Only 3 states of the 

automaton! A deterministic automaton needs 6 states. 

 

On the other hand, some probability of an error. The worst case error 

equals  4/9. 



What is the class of languages recognized by QFAs? 

 

What accepting probabilities can be achieved? 

 

How does the size of QFAs (the number of states) compare 

to the size of deterministic (probabilistic) automata? 

 



Regular MM-QFA MO-QFA 



Theorem (Kondacs, Watrous, 1997).  

1. All languages recognized by 1-way MM-QFAs are regular. 

 

2. There is a regular language that  cannot  be  recognized 

by a 1-way MM-QFA with probability  ½ + ε     for any  ε>0. 

(0,1)*1 



Theorem (Moore, Crutchfield 1997) 

 

A language  L  is recognized by a MO-QFA if and only if L 

is a permutation language. 



Example (Ambainis, Freivalds 1998)                          The language  a*b* 

 

 

a 
        q0           q1           qrej      qacc 

q0         1-p        p(1-p)     p       0 

   q1     p(1-p)   p           -(1-p)   0 

qrej       (1-p)   -p             0         0         

qacc          0          0               0         1 

The initial distribution ((1-p) ,  -p ,   0 ,   0 ) 



Example (Ambainis, Freivalds 1998)                          The language  a*b* 

 

 

a 
        q0           q1           qrej      qacc          

q0         1-p        p(1-p)     p       0                 0       0       1      0 

   q1     p(1-p)   p           -(1-p)   0               0       1       0      0 

qrej       (1-p)   -p             0         0                 1       0       0      0 

qacc          0          0               0         1                 0       0       0      1 

The initial distribution ((1-p) ,  -p ,   0 ,   0 ) 

b 



Example (Ambainis, Freivalds 1998)                          The language  a*b* 

 

 

a 
        q0           q1           qrej      qacc          

q0         1-p        p(1-p)     p       0                 0       0       1      0 

   q1     p(1-p)   p           -(1-p)   0               0       1       0      0 

qrej       (1-p)   -p             0         0                 1       0       0      0 

qacc          0          0               0         1                 0       0       0      1 

 

                                                                $        0      0       1      0 

                                                                          0      0       0      1 

                                                                          1      0       0      0 

                                                                           0      1       0      0 

The initial distribution ((1-p) ,  -p ,   0 ,   0 ) 

b 



Theorem (Ambainis, Freivalds 1998) The MM-QFA described 

above recognizes the language   a*b*      with  the probability 

P = 0.68… (where p is the solution of the equation  p3 + p = 1).  
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above recognizes the language   a*b*      with  the probability 

P = 0.68… (where p is the solution of the equation  p3 + p = 1).  

 

Theorem (Ambainis, Freivalds 1998)    The language   a*b*    

cannot be recognized by an MM-QFA  with  a  probability 

exceeding  7/9. 

 

 



Theorem (Ambainis, Freivalds 1998) The MM-QFA described 

above recognizes the language   a*b*      with  the probability 

P = 0.68… (where p is the solution of the equation  p3 + p = 1).  

 

Theorem (Ambainis, Freivalds 1998)    The language   a*b*    

cannot be recognized by an MM-QFA  with  a  probability 

exceeding  7/9. 

 

Theorem (Ambainis, Freivalds 1998)    If a language can be 

recognized by an MM-QFA  with  a  probability exceeding  7/9 

then this language can be recognized by an MM-QFA  with  the  

probability 1. 

 



Theorem (Ambainis, Freivalds 1998)   
 

1. For every prime p the language  

Lp = { the length of the input word is a multiple of p}  

can be recognized by a MO-QFA with no more than  const log p  

states. 

2. For every p  arbitrary deterministic FA recognizing Lp needs at 

least  p  states. 

3. For every p arbitrary probabilistic FA with a bounded error 

recognizing Lp needs at least  p  states. 



Theorem (Brodsky, Pippenger 1999) Let L be a language and 

M be its minimal automaton (the smallest DFA recognizing L). 

Assume that there is a word x such that M  contains states q1, q2 

satisfying: 

1.  q1 ≠ q2 

2. If M starts in the state q1 and reads x, 

it passes to q2, 

3. If M starts in the state q2 and reads x, 

it passes to q1, 

4. There is a word y such that if M starts in q2 and reads y, it passes 

to q1, 

then L cannot be recognized by any 1-way quantum finite 

automaton. 



Theorem (Ambainis, Ķikusts, Valdats 2001)  

Let L be a language. Assume that there are words x, y, z1, z2 such 

that its minimal automaton M contains states q1, q2, q3 satisfying: 

Then L cannot be recognized by any 1-way quantum finite 

automaton. 
 



then L cannot be recognized by any 1-way MM-QFA. 

 

Theorem (Ambainis, Ķikusts, Valdats 2001) 

Let L be a language and M be its minimal automaton. 

If M contains                  a fragment of the form shown below  



Theorem (Ambainis, Ķikusts, Valdats 2001) Let U be the 

class of languages whose minimal automaton does not 

contain "two cycles in a row"  

A language that belongs to U can be recognized by a 1-way 

MM-QFA if and only if its minimal deterministic automaton 

does not contain the "forbidden constructions"  

and 



Let L1 be the language consisting of all words that start with any 

number of  letters  a  and after first letter  b  (if there is one) there 

is an odd number of letters  a . 



L2 consists of all words which start with an even  number of letters  

a  and after first letter  b  (if there is one) there is an odd number of 

letters  a . 



L3 consists of all words which start with an odd number of letters  

a  and after first letter  b  (if there is one) there is an odd number of 

letters  a . 





Theorem (Valdats 2000) There are two languages L2 and L3 

which are recognizable by a MM-QFA but the union of them  

L1 = L2 U L3 is not recognizable by a MM-QFA. 



Theorem (Ambainis, Ķikusts, Valdats 2001) If  the languages 

L1 and L2  are recognizable by a MM-QFA with probabilities  

p1 and p2 and 1/p1 + 1/ p2   < 3  then   L2 U L3   is also recognizable 

by QFA with probability  (2 p1 . p2 )/( p1 + p2 + p1 . p2 ) 
  

Theorem (Ambainis, Ķikusts, Valdats 2001) If the languages 

L1 and L2  are recognizable by a MM-QFA with probabilities p1 and 

p2 and p1 > 2/3 and    p2 > 2/3 ,  then   L2 U L3   is recognizable by 

MM-QFA with probability p3  >1/2 . 



There is no good description of the class of languages 

recognizable by quantum finite automata. Can one 

produce such a description in terms of a suitable logic? 



Regular MM-QFA MO-QFA 
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Thank you 




