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We demonstrate a case where the usage
of “write-only memory” (WOM), a com-
putational component that i1s used exclu-
sively for being written to, and never being

read, (which is little more than a joke in
the classical setup,) improves the power of
a quantum computer significantly.



For any standard machine model, say,
M, we use the name M-WOM to denote
M augmented with a WOM component.
A TM-WOM has an additional write-onl
tape associated with a finite alphabet 1.
In each step of the computation, either
a symbol from the alphabet, v € T, is
printed on the current tape square, and the
head moves one square to the right, or the
empty string, €, is “printed,” and so the
head remains at the same position. The
computational power of the PTM-WOM
1s easily seen to be the same as that of the
P'TM; since the machine does not use the
contents of the WOM in any way when it
decides what to do in the next move, ev-
ery write-only action can just as well be
replaced with a write-nothing action.




However, this is not the case for the (QTM-
WOM, as will be shown in the next sec-
tion. We will focus on quantum finite au-
tomata with WOM (QFA-WOM’s), which
are just QTM-WOM’s which do not use
their work tapes and move the input tape
head to the right in every step. The con-
figuration of a QFA-WOM is a pair (g, w),
where ¢ 1s an internal state, and w is the
string written in the WOM.



Fig. 1. Transitions of the QFA-WOM

In the table below, the amplitude of the transition that takes place when the machine
scans tape symbol ¢ while it is in state g, causing it to set the halting register to
symbol w, switch to state ¢ and add v to the string in the WOM can be read in
the row labeled by g, at the column labeled by (w,q’, v). Empty boxes indicate zero
amplitude. The columns corresponding to the “missing” elements of 2 xQ x(TU{=})
contain all zeros, and have been omitted. In order for the machine to be well-formed,
the rows of this table corresponding to the same tape symbol must be orthonormal
to each other.

q1 2
|I[II|1 E

44 1 qi |92 |95 (F4
E|IEI|1

]
]
m
]

q1

o 1
q3 1
94 1

1 1

e I i
i -1 i

<
bl
< =]
;;Il— m i
<
=

g3 1
4 1

qi 1

qs 1

71 1
g2 1
q3 1
g4 1

bl | bod| D] B[ = =2 =] =] 2] S S 2
L]
==
=t

@ i %
g% 1
4

<
I-DI

._.
I
-

<
E
<
v




It one changes the model in Theorem 1
so that the WOM is now an output tape,
the machine becomes a quantum finite state
transducer computing the function

flz) = (w, if x = w2w, where w € {0,1}*
Y= {undeﬁned? otherwise

with bounded error.



Definition. Language A is probabilis-
tically m-reducible to language B with prob-
ability p > % denoted by Ap.opm) pB, if
there is a PTM which outputs vy, ...,y
with probabilities pq, ..., p, respectively,
tor a given input x, satistying the following

conditions:
Y, eBPi > pwhen z € A and

z’yfpri > pWhEﬁIl i ¢ A.



Theorem. There exist recursively enu-
merable languages A and B such that

1. A<, B,

2 A <oy 2 B
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Let g, @1, ... be an enumeration of de-
terministic TM’s with output tapes. In the
tollowing, ¢; will be named marker-1. o;
has higher priority than p; 1t 7 < 7.

The algorithm based on Friedberg and
Muchnik’s priority method effectively con-
structs the languages A and B.



Fig. 2.

FORn=12,...
## STAGE n
MARK the first free number, say y, with marker-(n — 1), which becomes active
MARK y at linea and 3y, 3y + 1, and 3y + 2 at lineg with “ ="
LOOP
## markers with higher priority will be simulated earlier
SIMULATE each active marker (y;) for n steps with the associated number (x) as input
IF pi(x) returns a value, say ¢
CALL UPDATE SIGNS(x.t)
MAKE marker-i inactive
FOR j=i+1,....,n—1
MOVE marker-j to the first free number on line 4
MAKE marker-j active
END
GOTO NEXT STAGE
END
END
END




Fig. 3.

If t ¢ {3z,32 4+ 1,3z + 2}, then we have two cases:

If t has no sign, then mark f and its relatives at lineg and | | at lineq with =",
Mark x at lines and at least two of {32,324+ 1,32z + 2} at lineg with “+ 7.

If t+ has a sign, say S: If S is “ 4+ 7, there is no need for marking since x is
already marked with “ =", If § is “ =", then mark x at linea and at least

two of {3x,3x 4+ 1,3z 4+ 2} at lineg with “ 47,

Ifte 3z,3x+ 1,3z 42}

Mark t at lineg with “4+".




The main idea of the algorithm is that each marker
can be moved only a finite number of times, and so any

marker (;) remains ultimately at a number (z) on liney.
Thus, it is easy to make sure that the signs of # and

pi(x) =t contradict in order to get

r¢EAs p(z)=te€B,

while employing the additional numbers in the triples on
lineg to ensure that P works correctly. Note that some
markers may never halt, but this is not a problem, since
such markers are not proper reductions by definition.



Definition Language A is probabilistic
(respectively, quantum) Turing reducible
with k queries to language B with prob-

ability p > %? denoted A <, op1-k)p B
(respectively, A < uan(r-k)p B), if there
exists a PTM (respectively, QTM), which
1s restricted to query the oracle for B at
most k times, that recognizes A (that is,

responds correctly to all questions of mem-
bership in A) with probability at least p.



Theorem. There exist recursively enu-
merable languages A and B such that

L. Amob(T—l)?gB?

2. Aquan(T—l)?lB*



Bcj0o 112 3|4 5 2z 2z +1
ARV N
AcC| 0 1 2 T
We again put “+ "7 and “ — " signs on

the numbers to indicate their membership

status.



Bcjo 112 3|4 5 2x 2r + 1
ALY 7
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We again put “+ 7 and * — 7 signs on

the numbers to indicate their membership

status.



1. path; and path, respectively prepare 2z
and 2z + 1 on the oracle tape for their
single query.

2. 1t the answer of the oracle is negative,
the amplitude of that path is multiplied
with —1.

3. Both paths enter the twin configurations,
and then make the following Hadamard
transtormation:

path, — \;EReject + \}gAccept
path, — \}gReject — \}gAccept.



Table 1.

2y 241 T
— -+ -+
+ - +
+ + -




FOR =12, ..
## STAGE n
MAREK the first free number, say y, with marker-(n — 1), which becomes active
MARK y at lines and 2y and 2y + 1 at lineg with “—"
LOOP

#7 The markers with higher priority are simulated earlier
SIMULATE the first n levels of the probabilistic computation tree of each
active marker (y;) with the associated number (r) as input
## The oracle for B is assumed to respond with “no” to queries about num-

bers at line g which are not signed yet
LET T = {ti,ta,...,t, } be the set of numbers for which ¢; queries B's oracle

in the various branches of its simulation
FIND all subsets of T, T = {]HJ| =t} by, ...,t;},1 < m}, such that all
branches of @i(x) that query the oracle about the numbers in T' halt with the
same decision, say D, and the total probability of those branches exceeds _,15-
LET T be the biggest subset of 7 whose elements are associated with “no”,
and contain both 2z and 2x + 1
IFT =Tand T #0

PUT a temporary sign “ +"” on 2z at lineg

RE-SIMULATE ¢; for the first n levels on this new line g, and RE-FIND

T based on this new simulation
#+# The oracle for B is assumed to respond with “ves” to queries about

numbers with sign “ +”
SET T to#)
IF thereisa T € T \ T (pick one arbitrarily if there exists more than one
such set)
CALL UPDATE SIGNS(z, D, T')
MAKE marker-i inactive
FOR j=i+1,...,n—1
MOVE marker-j to the first free number on linea
MAKE marker-j active
END
GOT O NEXT STAGE
END
REPLACE any “ +” with “—"

1

END

END




1.

2,

Mark z at lines with the sign that contradicts D.
(Note that x could not have the sign “ <+ " before this step.)

¥

Mark all { € T’ having no sign with “ — ", and so mark |%-| at line4 and the

1

relative of ¢ at lineg with “ =",
Update the signs of 2x and/or 22+ 1 at lineg if needed. All possible cases for this
update are shown below. ,

In case 2, since 224+ 1 ¢ T | it is safe to change the sign of 22 + 1.

before step 3 || after step 3
case| condition [D || = |2z e +1|| = |22 2z +1
1 yes|| — | — — - | = —

2 hes| — #* - - |+ +
3alr4+1¢T [no|| + |- | - + |- +
3bPr+1eT |no|+ [ = | — [+ |+ ] -
4 noe || 4+ | # — + |+ =




Theorem. There exist sets A and B
such that A £, B but A ﬂ?{g B.



K ={z|p.(z) is defined }.

K = {z] (3y) [p. (2) = y and
truth-table condition y is satisfied by K'}

It is known that K Ly K



Theorem.If A<I® B with probability
p > %, then A <y B.

Theorem. If A <I/°" B with probabil-
ity p > %j then A <7 B.



Definition. We say that a set A is fre-
quentially reducible to the set B with tre-
quency (m,mn) if there is a totally defined
algorithm M which tor arbitrary input of
n pairwise distinct natural numbers

x1,T9,...,T, outputs an m-tuple of
natural numbers vyy,vs,...,vy, such that
for at least m numbers 7 € {1,2,...,n}

the equality z; € A <= vy; € B holds.



Theorem. For arbitrary natural num-
ber n there exist recursively enumerable

sets A and B such that A g"‘”/’”* B but

/ prob
A <yrop B
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Theorem. For arbitrary natural num-
ber n there exist recursively enumerable

sets A and B such that A gm/” B but

freq
A< B



We showed that write-only memory de-
vices can increase the computational power
of quantum computers, by demonstrating
a language, which is known to be unrec-
ognizable by both classical and quantum
computers with certain restrictions, to be
recognizable by a quantum computer em-
ploying a WOM under the same restric-
tions. As a separate contribution, we proved
that quantum reductions among compu-
tational problems are more powerful than
probabilistic reductions, which are in turn
superior to deterministic reductions.



Thank you
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