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Pascal and Fermat believed that every event of inde-
terminism can be described by a real number between
0 and 1 called probability. Quantum physics introduced
a description in terms of complex numbers called ampli-
tude of probabilities and later in terms of probabilistic
combinations of amplitudes most conveniently described
by density matrices.

String theory , chemistry and molecular biology have
used p-adic numbers to describe measures of indetermin-
isIm.



We consider a new type of indeterministic algorithms
called ultrametric algorithms. They are very similar to
probabilistic algorithms but while probabilistic algorithms
use real numbers r with 0 < r < 1 as parameters, ultra-
metric algorithms use p-adic numbers as the parameters.
Slightly simplifying the description of the definitions one
can say that ultrametric algorithms are the same proba-
bilistic algorithms, only the interpretation of the proba-
bilities is different.



Let pbe an arbitrary prime number. We will call p-adic
digit a natural number between 0 and p—1 (inclusive). A
p-adic integer is by definition a sequence (a; );c v of p-adic
digits. We write this conventionally as

Ty e A Gy

(that is, the a; are written from left to right).
[f n is a natural number, and

n =0 _10p_2 """ 0104

.o . . . —1 .
is its p-adic representation (in other words n = ) . a;p'

with each a; a
p-adic digit) then we identify n with the p-adic integer

(a;) with a; =0 if ¢ > k.



If o and 5 turn out to be natural numbers, then their
sum as a p-adic integer is no different from their sum as
a natural number. So 2 + 2 = 4 remains valid (whatever
pis but if p = 2 it would be written ---010 4+ ---010 =
---100). Here is an example of a 7-adic addition:

---251413
---121102

---402515

This addition of p-adic integers is associative, commau-
tative, and verifies o +0 = o for all a (recall that 0 is
the p-adic integer all of whose digits are 0),



Subtraction of p-adic integers is also performed in ex-
actly the same way as that of natural numbers in p-adic
form. Note that this subtraction scheme gives us the neg-
ative integers readily: for example, subtract 1 from 0 (in
the 7T-adics) :

---000000
---000001

- HH6666

(each column borrows a 1 from the next one on the left).
S50 —1 =---666 as T-adics.



Multiplying two p-adic integers on the other hand re-
quires some more work. Here is an example of a 7-adic

multiplication:
201413
121102
- 043126
00000
--1413
413
- 26
-3
--310426




We have described above the set of p-adic integers,
which we will call Z,, with two binary operations on it,
addition and multiplication. Z, is a commutative ring,
l.e., addition is associative and commutative, zero exists
and satisfies the properties we wish it to satisfy, that
multiplication is associative and commutative, and dis-
tributive over addition, and that 1 exists and satisfies

the properties we wish it to satisfy (namely, lao = o for
all av).



Division of p-adics cannot always be performed. For
example, % has no meaning as a p-adic integer , that is,
the equation pa = 1 has no solution, since multiplying a

p-adic integer by p always gives a p-adic integer ending
1

in (. There is nothing really surprising here: . cannot be
performed in the integers either.

Division by p is essentially the only division which can-
not be performed in the p-adic integers. This is one of the

reasons why the notion of p-adic integers is generalized
and p-adic numbers are introduced. They are formal se-

quences of p-adic digits such that the sequence is infinite
in the left-hand direction but finite in the right-hand di-
rection. The notion of p-adic dot is introduced.



For example, with our usual example of p = 7 we show

[(a e e L]

by adding it to it itself:
---333334
---333334
--000001

Thus, in the 7-adic integers, "one half” is an integer. And
so are "one third” (---44445), "one quarter” (- -- 1515152),
"one fifth” (---541254125413), "one sixth” (--- 55556),
"one eighth” (- --0606061), "one ninth” (--- 3613613614 ),
"one tenth” (---462046205), "one eleventh”
(---162355043116235504312) and so on.



However, "one seventh”, "one fourteenth” and so on,
are not 7-adic integers. They are expressed as follows.

--0000.1

---0000.01

[t is important that p-adic numbers not being p-adic in-
tegers and irrational real numbers are kind of incompat-
ible. It is known that no p-adic number corresponds to
V2,7, e and there is a continuum of p-adic numbers not
corresponding to any real number. Moreover, if p; #
then p;-adic and py-adic numbers also are incompatible.



However, p-adic numbers is not merely one of gener-
alizations of rational numbers. They are related to the
notion of absolute value of numbers.

I[f X is a nonempty set, a distance, or metric, on X
is a function d from pairs of elements (z,y) of X to the
nonnegative real mumbers such that

cd(z,y) =0if and only if z =y,

d(z,y) = d(y, ),
3.d(z,y) <d(z,z) +d(z,y) for all z € X



Absolute value of rational number z is called trivial if
it equals 0 for the number 0, and eqals 1 for all the other

numbers.
For a prime number p, the p-adic absolute value on
() is defined as follows: any non-zero rational x, can be

. . a ..
written uniquely as » = ;J”E with a,b and p pairwise

coprime and n € Z some integer; so we define

0, if =10
p " if w0,

]

] 2=

In 1916 Alexander Ostrowski proved that any non-trivial
absolute value on the rational numbers () is equivalent to
either the usual real absolute value or a p-adic absolute
value for some prime number p.



A. Ostrowski’s theorem shows that using p-adic
numbers is not merely one of many possibilities to
generalize the definition of deterministic algorithms
but rather the only remaining possibility not vet

explored.



The norm of an element r € X is the distance from (0:

1. || z ||=0if and only if z =y,
Ny ll=l = |2y,
Bz +yll<llz|l +1 vl

We know one metric on () induced by the ordinary
absolute value. However, there are other norms as well.
A norm is called wltrametric if the third requirement

can be replaced by the stronger statement: || =z +y ||<
max{| z ||, || y ||} Otherwise, the norm is called Archimedean.



Distances using the usual absolute value are called
Archimedean, and the distances using p-adic absolute val-
nes are called ultrametric. P. Turakainen proved that prob-
abilistic antomata can be generalized using arbitrary real
numbers instead of probabilities and the languages rec-
ognized by these Archimedean automata are the same
stochastic langunages.

We generalize probabilistic antomata in the same way,

only we use arbitrary p-adic numbers numbers instead of
probahilities.



There is an important feature that distinguishes p-adic
numbers from real numbers. Real numbers (both ratio-
nal and irrational) are linearly ordered. p-adic numbers
cannot be linearly ordered. This is why wvaluations and
norms of p-adic numbers are considered.

The sitnation is similar in Quantum Computation.
Quantum amplitudes are complex numbers which also
cannot be linearly ordered. The counterpart of valua-
tion for quantum algorithms is measurement translating
a complex number a-+bi into a real number a® +b*. Norms
of p-adic numbers are rational numbers.



Automata recognizing nonrecursive languages cannot
be considered natural. Hence we are to restrict our defi-
nition.

Definition. Finite p-ultrametric automaton is called
integral if all the parameters of it are p-adic integers.

Theorem. There exists a finite integral ultrametric
automaton recognizing the language {0"1"}.

Proof. When the automaton reads 0 it multiplies the

amplitude to 2, and when it reads 1 it multiplies it to 3—!



Theorem. There is a continunum of languages recog-
nizable by finite ultrametric automata.

Proof. Let 5 = --- 2a32a+2a, 2032 be an arbitrary p-
adic number (not p-adic integer) where p > 3 and all
a; € {0,1}. Denote by B the set of all possible such §.
Consider an automaton Az with 3 states, the initial am-
plitudes of the states being (3, —1,~1). The automaton
is constructed to have the following property. If the input
word is 2ap2aq2a92a32 -- - 2a,2 then the amplitude of the
first state becomes - - - 2a,,4 420, +32a,,.9 20,1 2. To achieve
this, the automaton adds —2, multiplies to p, adds —a,,

and again multiplies to p.

Now let 3; and s be two different p-adic numbers.
Assume that they have the same first symbols
Ay - - - 203209 207 2042 but different symbols a,, 1 and b, 1.
Then the antomaton accepts one of the words
Oyps1 20, - - - 203 209207 2042 and rejects the other one
bins1 20y, - -+ 203209 201 2a¢2. Hence the languages are dis-
tinct.



Definition. A square matrix with elements being p-
adic numbers is called balanced if for arbitrary row of
the matrix the product of p-norms of the elements equals

1.

Definition. A finite ultrametric automaton is called
balanced if all the matrices in its definition are balanced.

Theorem. If a language M can be recognized by a
finite ultrametric antomaton then M can be recognized
also by a balanced finite ultrametric automaton.

Proof. For every state of the antomaton we add its
duplicate. If the given state has an amplitude + then its
duplicate has the amplitude L.



Definition. A finite ultrametric antomaton is called
regulated if there exist constants ¢ > 0 and A such that
for arbitrary input word x the norm A—¢ <|| v || ,< A +e.
We say that the word = is accepted if || 4 ||,> A and it is
rejected if || v ||, < A

Theorem (1) If a language M is recognized by a reg-
ulated finite ultrametric antomaton then M is regular.
(2) For arbitrary prime number p there is a constant ¢,

such that if a language M is recognized by a regulated
finite p-ultrametric automaton with &k states then there

is a deterministic finite automaton with (c,)**** states
recognizing the language M.



We start with several examples showing that regulated
p-ultrametric automata are not as simple objects as one
may think.

Since the numbers 1 and 0 are also p-adic numbers,
every deterministic finite automaton can be described
in terms of matrices for transformation of amplitudes.
Hence every regular language is recognizable by a regu-
lated p-ultrametric automaton. There is a natural prob-
lem : are there languages for which regulated p-ultrametric
automata can have smaller complexity, 1.e. smaller num-

ber of states.

The following 3 theorems seem to present such an ex-
ample but there is a catch: these automata are not regu-
lated because the norm of the amplitude to be measured

can be arbitrary small (for lengthy input words).



Theorem. For arbitrary prime number p > 3 the lan-
guage

L,1={1"|n=p—1( mod p)}

is recognizable by a p-ultrametric finite automaton with
2 states.

Proof. A primitive root modulo n is any number g
with the property that any number coprime to n is con-
griuent to a power of g modulo n. In other words, g is a
generator of the multiplicative group of integers modulo
n. Existence of primitive roots modulo prime numbers
was proved by Gauss. The initial amplitude 1 of a spe-
cial state in our automaton is multiplied to an arbitrary
primitive root modulo p. When the end-marker is read
the amplitude —1 of the other state is added to this am-
plitude. The result has p-norm p" iff n = p— 1.



Theorem. For arbitrary prime number p > 3 the lan-

guage
L,={1"|n = p( mod p)}

is recognizable by a p-ultrametric finite automaton with
2 states.

Proof. The value 1 of the amplitude of the second
state is added to the amplitude of the accepting state
at every step of reading the input word. The result has
p-norm p! iff n = p.



Theorem. For arbitrary natural number m there are
infinitely many prime numbers p such that the language

Ly ={1" | n=0{ mod m)}

is recognizable by a p-ultrametric finite automaton with
2 states.

Proof. Dirichlet prime number theorem, states that
for any two positive coprime integers m and d, there are
infinitely many primes of the form m + nd, where n > 0.
In other words, there are infinitely many primes which
are congruent to m modulo d. The numbers of the form
mn +d form an arithmetic progression

d, m+d, 2m +d, 3m+d, ...,

and Dirichlet’s theorem states that this sequence contains
mmfinitely many prime numbers.

Let p be such a prime and g be a primitive root mod-
ulo p. Then the sequence of remainders g, ¢°, ¢°, - - - mod-
ulo p has period m and n = 0( mod m) is equivalent to
g" = d( mod p). Hence the automaton multiplies the am-
plitude of the special state to ¢ and and adds —d when
reading the end-marker.




Hence we restrict ourselves to consider only ultramet-
ric automata all parameters of which are p-adic integers.
However, even such a restriction allows some non-regular
langnages to be recognizable.

Definition. A finite ultrametric automaton is called
regulated if there exist constants ¢ > (0 and A such that
for arbitrary input word  the norm A—¢ <|| v ||,< A +e.
We say that the word = is accepted if || v ||,> A and it is
rejected if || v |[,< A




First, we consider a sequence of languages where the
advantages of ultrametric automata over deterministic
ones are super-exponential but the advantages are achieved

only for specific values of the prime number p.

It is known that every p-permutation can be generated
as a product of sequence of two individual p-permutations:

(123 p—1p
“=1234--- p 1

123---p—1p
213---p=1p

A string = € {a,b}* is in the language M), if the prod-
uct of these p-permutations equals the trivial permuta-

t1o1m.



Theorem. (1) For arbitrary prime p, the language M,
is recognized by a p-ultrametric finite automaton with
p 4+ 2 states.

(2) If a deterministic finite automaton has less than p! =
cP1987 gtates then it does not recognize M,

Idea of the proof. The ultrametric antomaton gives
initial amplitudes 0,1,2,--- ,p — 1 to pstates of the au-
tomaton and after reading any input letter only permutes
these amplitudes. After reading the endmarker from the
input the automaton subtracts the values 0,1, 2, --- , p—1
from these amplitudes. Notice that if a prime number p/
is such that ¢ < pthen the p'-ultrametric automaton can
need more than p 4+ 2 states.



Theorem. If 2 is a primitive root for infinitely many
distinct primes then there exists an infinite sequence of
regular langnages Ly, Ls, Ly, ... 1n a 2-letter alphabet and
a sequence of positive integers p(1), p(2), p(3),... such
that for arbitrary j:

1. any deterministic finite automaton recognizing L; has
at least 217 states,

2. for arbitrary prime number p > 3 there is a regulated
p-ultrametric finite antomaton with
(4p(7) + 1) states recognizing L;.

Corollary. Assume Artin’s Conjecture. Then Theo-
rem holds.

Corollary. Assume Generalized Riemann Hypothesis.
Then Theorem holds.



To explain the main idea, we consider the following
probabilistic automaton. The initial probability distribution:

1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 0, 0,0, 0,0, 0, 0,0

The first 8 states are accepting, the last 8 states are rejecting.
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There are 28 possible input letters. They interchange the
states ¢, = 0,g-

The input word is in the language Iif all the non-zero
probabilities have returned to the first 8 states. It Is easy to
prove that any deterministic automaton needs 28 states for this
language. Unfortunately, the probabilistic automaton has non-
Isolated cut-point.
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Linear codes is the simplest class of codes. The alphabet used
Is a fixed choice of a finite field GF(q)=F, with g elements.

For most of this paper we consider a special case of GF(2)=F.,,.
These codes are binary codes.

A generating matrix G for a linear [n, k] code over F is a k-by-n
matrix with entries in the finite field F;, whose rows

are linearly independent. The linear code corresponding to the
matrix G consists of all the gk possible linear combinations

of rows of G. The requirement of linear independence is
equivalent to saying that all the g* linear combinations

are distinct.
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Linear codes is the simplest class of codes. The alphabet used
Is a fixed choice of a finite field GF(q)=F, with g elements.

For most of this paper we consider a special case of GF(2)=F.,,.
These codes are binary codes.

A generating matrix G for a linear [n, k] code over F is a k-by-n
matrix with entries in the finite field F;, whose rows

are linearly independent. The linear code corresponding to the
matrix G consists of all the gk possible linear combinations

of rows of G. The requirement of linear independence is
equivalent to saying that all the g* linear combinations

are distinct.
001101001 0
101011100 1 — 000101101

101110001 1



The linear combinations of the rows in G are called
codewords. However we are interested in something more.
We need to have the codewords not merely distinct but also
to be removed as far as possible each from another in

terms of Hamming distance. Hamming distance between two
vectors v=(v, ..., V) and w=(w,, ..., w ) IS

the number of indices i such that v, # w..



The textbook P.Garret ,The Mathematics of Coding
Theory”(2004) contains

Theorem A. For any integer n24 there is a [2n, n] binary
code with a minimum distance between the codewords at

least n/10.

However the proof of this theorem has a serious defect. It is
non-constructive. It means that we cannot find these codes or
describe them in a useful manner. This is why P.Garret calls
them mirage codes.



Definition. A generating matrix G of a linear code is called cyclic
If along with an arbitrary row (v, v,, Vs, ..., V) the matrix G
contains also a row (v,, Vs,...,V,,V,).

We would wish to prove a reasonable counterpart of Theorem A
for cyclic mirage codes, but this attempt fails.

Instead we construct a slightly more complicated structure of
mirage codes for which a counterpart of Theorem A can be
proved.



We consider binary generating matrices. Let p be an odd
prime number, and x be a binary word of the length p. The
generating matrix G(p, xX) has p rows and 2p columns. Let x =
Xp Xp X3 en X,

The first p columns (and all p rows) make a unit matrix with
elements 1 on the main diagonal and O in all the other
positions. The last p columns (and all p rows) make a cyclic
matrix with X = X; X, X3 ... X; as the first row, x; X; X, Xz ... X, 4
as the second row, and so on.

1000...0Xx; X, X3 X4 X5
0100..0x;, X; X, X3...X

0010..0x,,X; X3 X5...X

p-1
p-2



Definition. We say that the numbering

W = Wo(X), Wy(x), Yy(X), ...

of 1-argument partial recursive functions is computable if the
2-argument function U(n, x) = g _(X) Is partial recursive.

Definition. We say that a numbering y is reducible to the
numbering ¢ if there exists a total recursive function f(n)
such that, forall n and x,  W.(X) =g, (X).

Definition. We say that a computable numbering ¢ of all 1-
argument partial recursive functions is a Gédel numbering if
every computable numbering (of any class of 1-argument
partial recursive functions) is reducible to .



Definition. We say that a Godel numbering Kk is a
Kolmogorov numbering if for arbitrary computable
numbering y (of any class of 1-argument partial recursive
functions) there exist constants ¢ >0, d > 0, and a total
recursive function f(n) such that:

-forallnand x, g, (x) = K,y (X),

-foralln, f(n)<cn+d.



There exist many distinct Kolmogorov numberings. We now fix
one of them and denote it by «k . Since Kolmogorov
numberings give indices for all partial recursive functions, for
arbitrary x and p, there is an i such that k(p)=x. Let i(x, p) be
the minimal i such that k(p) = X . It Is easy to see that if X;#X,,
then i(x;,p) #i(x,,p) . We consider all binary words x of the
length p and denote by x(p) the word x such that i(x,p)
exceeds i(y,p) for all binary words y of the length p different
from x. Itis obvious that i 22r-1,



Until now we considered generating matrices G(p, x)
for independently chosen p and x. From now on we con-
sider only odd primes p such that 2 is a primitive root
modulo p and the matrices G (p, z(p)). The essence of the
proof is that if p is sufficiently large and z(p) is the
p-digit word with the maximum Kolmogorov com-
plexity, then Hamming distances between arbitrary two

s " @ A _1
codewords in this linear code is at least l—f;



Under the input symbol « the states are permuted as follows:

q1 — g3 q2 — g4 q2p+1 —7 q2p+3 q2p+2 — q2p+4
q3 — g5 q1 — g6 q2p+3 — 42p+5 Q2p+4 — Q2p+6

a5 — q7 g6 — qg q2p+5 — Q2p+7 q2p+6 — q2p+8

92p—3 — q2p—1 q2p—2 — q2p q4p—3 — J4p—1 ip—2 — q4p
Q2p—1 — q1 Qop — Q2 Qip—1 — G2p+1 Qip — q2p+2

The permutation of the states under the input symbol b depends on G (p, z(p)).
Let be

gir g12 --- g1 2p
Gpa(p) = | 9 92 0 P2
9p1 Gp2 --- Gp 2p

For arbitrary 7 € {1,2,...,p},
( Qo 1 g1 Hif g1 =

g2 — q2i ,if g1 =0
q2i—1 — q%  Hifgy =1
L @i > @i Sifg =1




We introduce a language
L (pa(p)) = {w|CW (w) = 000...0}.

Lemma.If 2 is a primitive root modulo p and p is sufficiently large, then the
automaton R(p) recognizes the language L (pz(p)) With the probability %

Lemma. For arbitrary p and arbitrary deterministic finite automaton A recog-
nizing L¢, «(p)) the number of states of A is no less than 2P,



Theorem. If 2 is a primitive root for infinitely many
distinct primes then there exists an infinite sequence of
regular langnages Ly, Ls, Ly, ... 1n a 2-letter alphabet and
a sequence of positive integers p(1), p(2), p(3),... such
that for arbitrary j:

1. any deterministic finite automaton recognizing L; has
at least 217 states,

2. for arbitrary prime number p > 3 there is a regulated
p-ultrametric finite antomaton with
(4p(7) + 1) states recognizing L;.

Corollary. Assume Artin’s Conjecture. Then Theo-
rem holds.

Corollary. Assume Generalized Riemann Hypothesis.
Then Theorem holds.



Theorem. There exists a language T" with the follow-
mg properties.

(1) There is a regulated 3-ultrametric 1-way pushdown au-
tomaton recognizing the language T

(2) No deterministic 1-way pushdown automata can rec-
ognize the language T

(3) No probabilistic 1-way pushdown automata can rec-
ognize the language T can have bounded error.



Let A = {a,b,c,d,e, f,g,h, k,l,m, p,q,r, s, t,u,v}. Now
we consider a language T in the alphabet A U {#} for

which both the deterministic and probabilistic 1-way push-
down automata cannot recognize the language but there

exists an ultrametric 1-way pushdown automaton recog-

nizing 1t.

The language T is defined as the set of all the words

r in the input alphabet such that either z is in all 9

languages T; described below or in exactly 6 of them or

in exactly 3 of them or in none of them where

Ty ={z#y |z € A" ANy € A" A proju(z) = proju(y)},
Ty ={z#y |z € A" Ny € A* A proje(z) = proja(y)},
Ty ={z#y |z € A" Ay € A" Aprojes(z) = proje; (y)},
Ty, ={z#y |z € A" Ay € A" A progy(z) = proju(y)},

T; ={z#y |z € A" ANy € A" A proju(z) = proju(y)},
T ={z#y |z € A" Ny € A" A projup(z) = projmp(y)},
T ={zfty |z € A" Ny € A" A projy,(z) = projy,(y)},
Ts ={zfty |z € A" ANy € A" A projulz) = proju(y)},
Ty ={efy |z € A" ANy € A" A proju, () = projus (y)}-



Theorem. If a language M is recognizable by a prob-
abilistic Turing machine in a polynomial time then for
arbitrary p > 3 there is a p-ultrametric Turing machine
recognizing M in a polynomial time.

Proof. The class PP of all languages recognizable in
a polynomial time has natural complete problems, for
example, MAJSAT. MAJSAT is a decision problem
in which one is given a Boolean formula F. The an-
swer must be YES if more than half of all assignments
Ty, Ta,--- &, make Ftrue and NO otherwise. Hence M is
reducible to M AJSAT in deterministic polynomial time.
On the other hand, MAJSAT is recognizable by a p-
ultrametric Turing machine in a polynomial time. This
machine considers in parallel all possible assignments for
1, Ta,--- &, and adds a p-adic number 27" to the am-
plitude o of a special state. F'is in MAJSAT iff the
resulting amplitude « has p-norm 0.



We denote by pl/ P the class of all languages recogniz-
able by p-ultrametric Turing machines in a polynomial
time. This is a large class of languages.

Theorem. For arbitrary prime number p > 3 there is
a pl/ P-complete langnage.



Riemann surface is a notion useful to study functions
of complex variable.

Definition. A discrete Riemann surface on the rect-
angle [a, b] x [¢, d] is a map from (z,y, z) (where = € |a, b],
y € |e,d] and z is a string of symbols from a finite alpha-
bet X whose length equals y — ¢) to a finite alphabet A.
For each triple its neighbors are defined as the triples:
(1) (z,9', z) where either y/ =y +1ory =y +1,

(2) (2',y, 2') where either ' =2 — 1 and 2’ is z with the
last symbol omitted, or ' = z + 1 and 2’ is z with the
one symbol attached at its end.

Definition. A discrete Dirichlet condition is a >-tuple
consisting of: (1) a map from (z,y) where y = ¢ to 4, (2)
a map from (z,y) wherey =d to A, (3) (z,y) where z =
ato A, (4) (x,y) where x = b to A, and (5) neighboring
conditions that may forbid some simultaneous maps of
neighboring triples.

Definition.The discrete Dirichlet problem is whether
or not a Riemann surface is possible consistent with the
given discrete Dirichlet condition,



Theorem. For arbitrary prime number p > 3, there is
a pl/ P-complete language.

Idea of the proof. The language consists of all dis-
crete Dirichlet conditions such that the discrete Dirichlet
problem has a positive answer. The map in the Riemann
surface can be used to describe the work of a ultrametric
Turing machine. The symbols of A for all possible values
of x for a fixed y and z describe the configuration of the
tape at the moment y with the choices z made before the
moment ¢ and the amplitudes accumulated. The discrete
Dirichlet problem asks whether the ultrametric machine
accepts the input word. The difference d — ¢ represents
the computation time allowed.



Thank you



