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To explain the main idea, we consider the following 

probabilistic automaton. The initial probability distribution: 

 

 

1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 0, 0, 0, 0, 0, 0, 0, 0 

 

The first 8 states are accepting, the last 8 states are rejecting. 
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1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 0, 0, 0, 0, 0, 0, 0, 0 

 

The first 8 states are accepting, the last 8 states are rejecting. 

 

There are  28  possible input letters. They interchange the 

states   qi   qi+8 . 

 

The input word is in the language if all the non-zero 

probabilities have returned to the first 8 states. It is easy to 

prove that any deterministic automaton needs 28 states for this 

language. Unfortunately, the probabilistic automaton has non-

isolated cut-point. 
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Linear codes is the simplest class of codes. The alphabet used 

is a fixed choice of a finite field GF(q)=Fq with q elements.  

For most of this paper we consider a special case of GF(2)=F2. 

These codes are binary codes. 

 

 

A generating matrix G for a linear [n, k] code over Fq is a k-by-n 

matrix with entries in the finite field Fq, whose rows  

are linearly independent. The linear code corresponding to the 

matrix G consists of all the qk possible linear combinations  

of rows of G. The requirement of linear independence is 

equivalent to saying that all the qk linear combinations 

are distinct.  
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The linear combinations of the rows in G are called 

codewords. However we are interested in something more.  

We need to have the codewords not merely distinct but also 

to be removed as far as possible each from another in  

terms of Hamming distance. Hamming distance between two 

vectors v=(v1, ..., vn) and w=(w1, ..., wn)   is  

the number of indices i such that vi ≠  wi. 



The textbook       P.Garret „The Mathematics of Coding 

Theory”(2004)  contains 

 

 

Theorem A. For any integer n≥4 there is a [2n, n] binary  

code with a minimum distance between the codewords at  

 

least n/10. 

 

 

However the proof of this theorem has a serious defect. It is 

non-constructive. It means that we cannot find these codes or 

describe them in a useful manner. This is why P.Garret calls 

them mirage codes. 



Definition. A generating matrix G of a linear code is called cyclic 

if along with an arbitrary row (v1, v2, v3, ..., vn) the matrix G 

contains also a row (v2, v3,...,vn,v1). 

 

 

We would wish to prove a reasonable counterpart of Theorem A 

for cyclic mirage codes, but this attempt fails. 

 

Instead we construct a slightly more complicated structure of 

mirage codes for which a counterpart of Theorem A can be 

proved. 

 



We consider binary generating matrices. Let p be an odd 

prime number, and x be a binary word of the length p. The 

generating matrix G(p, x) has p rows and 2p columns. Let x = 

x1 x2 x3 ... xp.  

The first p columns (and all p rows) make a unit matrix with 

elements 1 on the main diagonal and 0 in all the other 

positions. The last p columns (and all p rows) make a cyclic 

matrix with x = x1 x2 x3 ... xp as the first row, xp x1 x2 x3 ... xp-1 

as the second row, and so on. 

 

1 0 0 0 ... 0 x1   x2   x3  x4... xp 

0 1 0 0 ... 0 xp   x1   x2  x3 ... xp-1 

0 0 1 0 ... 0 xp-1 xp   x1  x2 ... xp-2 

................................................ 

0 0 0 0 ...  1 x2   x3   x4  x5... x1 



Definition. We say that the numbering   

 

                         ψ = ψ0(x), ψ1(x), ψ2(x), ...  

 

of 1-argument partial recursive functions is  computable if the 

2-argument function   U(n, x) = ψn(x) is partial recursive. 

 

Definition. We say that a numbering  ψ  is reducible to the 

numbering  ξ  if there exists a total recursive function  f(n)  

such that, for all  n    and   x,      ψn(x) = ξ f(n)(x).  

 

Definition. We say that a computable numbering   φ  of all 1-

argument partial recursive functions is a Gödel numbering  if 

every computable numbering (of any class of 1-argument 

partial recursive functions) is reducible to  φ. 



Definition. We say that a Gödel numbering κ   is a 

Kolmogorov numbering if for arbitrary computable 

numbering ψ   (of any class of 1-argument partial recursive 

functions) there exist constants c > 0,  d > 0, and a total 

recursive function f(n) such that: 

 

-for all n and x,     ψn(x) = κf(n)(x), 

 

- for all n,     f(n) ≤ cn + d. 



There exist many distinct Kolmogorov numberings. We now fix 

one of them and denote it by   κ  . Since Kolmogorov  

numberings give indices for all partial recursive functions, for 

arbitrary x and p, there is an i such that    κi(p)=x . Let i(x, p) be 

the minimal i such that   κi(p) = x . It is easy to see that if x1≠x2,  

then   i(x1,p) ≠ i(x2,p) .     We consider all binary words x of the 

length p and denote by   x(p)  the word   x   such  that  i(x,p)  

exceeds    i(y,p) for all binary words y of the length p different  

from x. It is   obvious that i ≥2p-1. 
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