
Ultrametric automata and

Turing machines

Rūsiņš Freivalds

(University of Latvia)

European Social Fund project Nr. 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

To explain the main idea, we consider the following

probabilistic automaton. The initial probability distribution:

1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 0, 0, 0, 0, 0, 0, 0, 0

The first 8 states are accepting, the last 8 states are rejecting.

To explain the main idea, we consider the following

probabilistic automaton. The initial probability distribution:

1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 0, 0, 0, 0, 0, 0, 0, 0

The first 8 states are accepting, the last 8 states are rejecting.

There are 28 possible input letters. They interchange the

states qi  qi+8 .

The input word is in the language if all the non-zero

probabilities have returned to the first 8 states. It is easy to

prove that any deterministic automaton needs 28 states for this

language. Unfortunately, the probabilistic automaton has non-

isolated cut-point.

To explain the main idea, we consider the following

probabilistic automaton. The initial probability distribution:

1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 0, 0, 0, 0, 0, 0, 0, 0

The first 8 states are accepting, the last 8 states are rejecting.

There are 28 possible input letters. They interchange the

states qi  qi+8 .

The input word is in the language if all the non-zero

probabilities have returned to the first 8 states. It is easy to

prove that any deterministic automaton needs 28 states for this

language. Unfortunately, the probabilistic automaton has non-

isolated cut-point.

To explain the main idea, we consider the following

probabilistic automaton. The initial probability distribution:

1/8, 1/8, 0, 1/8, 0, 0, 1/8, 1/8, 0, 0, 1/8, 0, 1/8, 1/8, 0, 0

The first 8 states are accepting, the last 8 states are rejecting.

There are 28 possible input letters. They interchange the

states qi  qi+8 .

The input word is in the language if all the non-zero

probabilities have returned to the first 8 states. It is easy to

prove that any deterministic automaton needs 28 states for this

language. Unfortunately, the probabilistic automaton has non-

isolated cut-point.

To explain the main idea, we consider the following

probabilistic automaton. The initial probability distribution:

1/8, 1/8, 0, 1/8, 0, 0, 1/8, 1/8, 0, 0, 1/8, 0, 1/8, 1/8, 0, 0

The first 8 states are accepting, the last 8 states are rejecting.

There are 28 possible input letters. They interchange the

states qi  qi+8 .

The input word is in the language if all the non-zero

probabilities have returned to the first 8 states. It is easy to

prove that any deterministic automaton needs 28 states for this

language. Unfortunately, the probabilistic automaton has non-

isolated cut-point.

To explain the main idea, we consider the following

probabilistic automaton. The initial probability distribution:

1/8, 1/8, 0, 1/8, 0, 0, 1/8, 1/8, 0, 0, 1/8, 0, 1/8, 1/8, 0, 0

The first 8 states are accepting, the last 8 states are rejecting.

There are 28 possible input letters. They interchange the

states qi  qi+8 .

The input word is in the language if all the non-zero

probabilities have returned to the first 8 states. It is easy to

prove that any deterministic automaton needs 28 states for this

language. Unfortunately, the probabilistic automaton has non-

isolated cut-point.

To explain the main idea, we consider the following

probabilistic automaton. The initial probability distribution:

1/8, 1/8, 0, 0, 1/8, 1/8, 1/8, 1/8, 0, 0, 1/8, 1/8, 0, 0, 0, 0

The first 8 states are accepting, the last 8 states are rejecting.

There are 28 possible input letters. They interchange the

states qi  qi+8 .

The input word is in the language if all the non-zero

probabilities have returned to the first 8 states. It is easy to

prove that any deterministic automaton needs 28 states for this

language. Unfortunately, the probabilistic automaton has non-

isolated cut-point.

Linear codes is the simplest class of codes. The alphabet used

is a fixed choice of a finite field GF(q)=Fq with q elements.

For most of this paper we consider a special case of GF(2)=F2.

These codes are binary codes.

A generating matrix G for a linear [n, k] code over Fq is a k-by-n

matrix with entries in the finite field Fq, whose rows

are linearly independent. The linear code corresponding to the

matrix G consists of all the qk possible linear combinations

of rows of G. The requirement of linear independence is

equivalent to saying that all the qk linear combinations

are distinct.

Linear codes is the simplest class of codes. The alphabet used

is a fixed choice of a finite field GF(q)=Fq with q elements.

For most of this paper we consider a special case of GF(2)=F2.

These codes are binary codes.

A generating matrix G for a linear [n, k] code over Fq is a k-by-n

matrix with entries in the finite field Fq, whose rows

are linearly independent. The linear code corresponding to the

matrix G consists of all the qk possible linear combinations

of rows of G. The requirement of linear independence is

equivalent to saying that all the qk linear combinations

are distinct.
001101001

101011100

101110001 (

Linear codes is the simplest class of codes. The alphabet used

is a fixed choice of a finite field GF(q)=Fq with q elements.

For most of this paper we consider a special case of GF(2)=F2.

These codes are binary codes.

A generating matrix G for a linear [n, k] code over Fq is a k-by-n

matrix with entries in the finite field Fq, whose rows

are linearly independent. The linear code corresponding to the

matrix G consists of all the qk possible linear combinations

of rows of G. The requirement of linear independence is

equivalent to saying that all the qk linear combinations

are distinct.
001101001

101011100

101110001 (0

1

1

 000101101

The linear combinations of the rows in G are called

codewords. However we are interested in something more.

We need to have the codewords not merely distinct but also

to be removed as far as possible each from another in

terms of Hamming distance. Hamming distance between two

vectors v=(v1, ..., vn) and w=(w1, ..., wn) is

the number of indices i such that vi ≠ wi.

The textbook P.Garret „The Mathematics of Coding

Theory”(2004) contains

Theorem A. For any integer n≥4 there is a [2n, n] binary

code with a minimum distance between the codewords at

least n/10.

However the proof of this theorem has a serious defect. It is

non-constructive. It means that we cannot find these codes or

describe them in a useful manner. This is why P.Garret calls

them mirage codes.

Definition. A generating matrix G of a linear code is called cyclic

if along with an arbitrary row (v1, v2, v3, ..., vn) the matrix G

contains also a row (v2, v3,...,vn,v1).

We would wish to prove a reasonable counterpart of Theorem A

for cyclic mirage codes, but this attempt fails.

Instead we construct a slightly more complicated structure of

mirage codes for which a counterpart of Theorem A can be

proved.

We consider binary generating matrices. Let p be an odd

prime number, and x be a binary word of the length p. The

generating matrix G(p, x) has p rows and 2p columns. Let x =

x1 x2 x3 ... xp.

The first p columns (and all p rows) make a unit matrix with

elements 1 on the main diagonal and 0 in all the other

positions. The last p columns (and all p rows) make a cyclic

matrix with x = x1 x2 x3 ... xp as the first row, xp x1 x2 x3 ... xp-1

as the second row, and so on.

1 0 0 0 ... 0 x1 x2 x3 x4... xp

0 1 0 0 ... 0 xp x1 x2 x3 ... xp-1

0 0 1 0 ... 0 xp-1 xp x1 x2 ... xp-2

..

0 0 0 0 ... 1 x2 x3 x4 x5... x1

Definition. We say that the numbering

 ψ = ψ0(x), ψ1(x), ψ2(x), ...

of 1-argument partial recursive functions is computable if the

2-argument function U(n, x) = ψn(x) is partial recursive.

Definition. We say that a numbering ψ is reducible to the

numbering ξ if there exists a total recursive function f(n)

such that, for all n and x, ψn(x) = ξ f(n)(x).

Definition. We say that a computable numbering φ of all 1-

argument partial recursive functions is a Gödel numbering if

every computable numbering (of any class of 1-argument

partial recursive functions) is reducible to φ.

Definition. We say that a Gödel numbering κ is a

Kolmogorov numbering if for arbitrary computable

numbering ψ (of any class of 1-argument partial recursive

functions) there exist constants c > 0, d > 0, and a total

recursive function f(n) such that:

-for all n and x, ψn(x) = κf(n)(x),

- for all n, f(n) ≤ cn + d.

There exist many distinct Kolmogorov numberings. We now fix

one of them and denote it by κ . Since Kolmogorov

numberings give indices for all partial recursive functions, for

arbitrary x and p, there is an i such that κi(p)=x . Let i(x, p) be

the minimal i such that κi(p) = x . It is easy to see that if x1≠x2,

then i(x1,p) ≠ i(x2,p) . We consider all binary words x of the

length p and denote by x(p) the word x such that i(x,p)

exceeds i(y,p) for all binary words y of the length p different

from x. It is obvious that i ≥2p-1.

Thank you

