FIRST-PRINCIPLES MODELING OF OXYGEN INTERACTION WITH ABO₃-TYPE PEROVSKITE SURFACES

S. Piskunov, E.A. Kotomin, Yu.F. Zhukovskii, and V. Alexandrov

FMNT'2010, Riga, March 17

Motivation:

Oxygen adsorption on ABO₃ surfaces:

- gas sensors,
- photocatalysis,
- fuel cells,
- ...
- Excellent model materials for simulations on more complex perovskite solid solutions.

ABO₃ perovskites we study:

$$A = Sr^{2+}, La^{3+}$$

 $B = Ti^{4+}, Mn^{3+}$
 $O = O^{2-}$

Oxygen adsorption at (001) surface of:

- ► SrTiO₃
- \succ LaMnO₃
- \succ La_{0.875}Sr_{0.125}MnO₃ (LSM)

Computational details

Hybrid exchange-correlation functional within DFT

$$E_{XC} = E_{XC}^{LSDA} + 0.2 \left(E_X^{Fock} - E_X^{LSDA} \right) + 0.72 \Delta E_X^{B88} + 0.81 \Delta E_C^{PWGGA, LYP}$$

B3PW, B3LYP → A.D. Becke, J. Chem. Phys. 98 (1993) 1372, 5648.

- Computer code: CRYSTAL (http://www.crystal.unito.it/).
- > Method: LCAO(CO)-GTF.
- Basis sets adopted:

SrTiO₃: S. Piskunov *et al.*, *Comp. Mat. Sci.* 29 (2004) 165,
LaMnO₃, LSM: S. Piskunov *et al.*, *Phys. Rev. B* 76 (2007) 012410.

LCAO results have been critically compared with those obtained by means of PBE-GGA PW method (VASP code)

Modeling

Slab model:

- Less computationally demanding
- No spurious interactions
- Proper boundary conditions
- For adsorption Super Cell approach have been used

Models for simulating surfaces starting from a perfect 3D crystal.

(001) slab unit cells periodicaly repeated in *x-y* plane as adopted in present calculations.

Examined adsorption sites (SrTiO₃ (001), top view)

Top views of a) TiO_2 - and b) SrO-terminated surfaces with the possible positions for oxygen adsorption.

Atomic oxygen adsorption over SrTiO₃(001): Energy of adsorption

$$E_{ads} = \frac{1}{2} \left(E_{tot}^{system} - E_{tot}^{slab} - 2E_{tot}^{O_{triplet}} \right)$$

Site	PW PBE	LCAO B3PW	Site	PW PBE	LCAO B3PW
TiO ₂ -termination			SrO-termination		
Ti	2.13	0.70	Sr	0.57	0.37
0	2.51	1.76	0	2.44	1.54
bridge	2.96	2.03	bridge	3.06	2.43
hollow II	0.12	0.93	hollow	1.73	1.08

Calculated adsorption energies (in eV) in pure DFT plane wave method with the PBE functional (PW-PBE, VASP code) and in the hybrid HF-DFT LCAO method with the B3PW functional (LCAO-B3PW, CRYSTAL code). The adsorbed oxygen atom was considered in the ground (triplet) state.

Atomic oxygen adsorption over SrTiO₃(001): Atomic charge

Site	PW PBE			LCAO B3PW		
	O _{ads}	O _{surf}	Ti(Sr) _{surf}	O _{ads}	O _{surf}	Ti(Sr) _{surf}
TiO ₂ -termination						
0	-1.39	-1.31	2.05	-0.62	-0.77	2.29
bridge	-1.51	-1.29	2.13	-0.52	-0.79	2.28
SrO-termination						
0	-1.24	-0.89	2.03	-0.71	-0.90	1.86
bridge	-1.29	-1.18	1.56	-0.84	-0.88	1.85

Effective atomic charges in *e* (Bader analysis in PW-PBE and Mulliken analysis in LCAO-B3PW) for the adsorbed oxygen atom and the nearest surface O and Ti (or Sr) atoms for optimized adsorption structures of SrTiO₃ (001) substrates. Atomic charges at the pristine surface layer -- PW-PBE: **Ti 2.03**, **O -0.84** (TiO₂ termination); **Sr 1.56**, **O -0.72** (SrO termination); LCAO-B3PW: **Ti 2.31**, **O -1.32**; **Sr 1.84**, **O -1.52**.

Electronic charge redistribution for atomic oxygen atop bridge sites of SrTiO₃(001)

Two-dimensional difference electron density maps for O_{ads} over bridge site at a) TiO₂- and b) SrO-terminated surfaces. Black, red and blue isolines correspond to the zero, positive and negative values of electron density, respectively.

Adsorption of molecular oxygen

- ➢ O₂ in triplet state adsorbs on hollow sites. $E_{ads} = 0.02 \text{ eV}$ for adsorption on SrO-term. surface, and 0.09 eV if TiO₂ termination is considered. VASP yields 0.25 eV for bridge position.
- > No charge transfer between adsorbate and surface.
- \blacktriangleright Distance between surface and adsorbate ~ 3 Å.
- > Invariance of the O_2 bond length.
- > Weak physisorption.

ABO₃ adsorption: atomic oxygen

Calculated by means of LCAO E_{ads} (in eV) with respect to atomic O				
Adsorption site "atop":	SrTiO ₃	LaMnO ₃	LSM	

Adsorption site "atop":	SrTiO ₃	LaMnO ₃	LSM		
MnO ₂ -terminated (001)					
Mn/Ti	-0.70	-4.11*	-3.90		
OI	-1.76	-1.96	-1.81		
OII			-2.17		
Hollow I	-0.93	-1.78	-1.72		
Hollow II			-1.91		
La(Sr)O-terminated (001)					
La		-3.51	-2.98		
Sr	-0.37		-2.64		
0	-1.54	-2.22	-2.33		
Hollow I	-1.08	-4.43	-3.91		
Hollow II			-4.14		

•VASP GGA calculations yield -4.02 eV (Kotomin *et al.*, PCCP 2008, 10, 4644)

Adsorption sites: (a) MnO₂- and (b) La(Sr)O-term. Hatched atoms are from subsurface atomic plane.

ABO₃ adsorption: molecular oxygen

Energy of adsorption (in eV):

$$2E_{ads} = E_{tot}^{slab+adsorbate} - E_{tot}^{slab} - 2E_{tot}^{O_2}$$

Calculated E_{ads} (in eV)

Adsorption site "atop":	O ₂ /LSM		
MnO ₂ -terminated (001)			
Mn -1.41*			
Vacanov I	-2.53		
	$(E_{vac} = 2.21)$		
La(Sr)O-terminated (001)			
Hollow II	-2.67		
Vacanav I	-3.93		
vacancy 1	$(E_{vac} = 3.79)$		

 * VASP GGA calculations yield -1.13 eV for O₂/LaMnO₃(001) atop Mn (Kotomin *et al.*, PCCP 2008, 10, 4644)

 $E_{diss}^{O_2} = 5.30 \text{ eV vs. } 5.12 \text{ eV in exp.}$

Adsorption sites: (a) MnO₂- and (b) La(Sr)O-term. Hatched atoms are from subsurface atomic plane.

Energetically favorable O₂ adsorption on LSM(001)

LaSrMn

0

Summary and conclusions

- ✓ The most favorable oxygen adsorption sites are bridge positions for SrTiO₃(001) and Mn and "hollow" sites for MnO₂- and La(Sr)O-terminated LaMnO₃/LSM(001), respectively.
- ✓ O_{ads} tends to form peroxide ion with surface oxygen for SrTiO₃(001), while Mn dangling bond is saturated by O_{ads} for LaMnO3/LSM(001).
- ✓ Only weak physisorption is predicted for O_2 in case of SrTiO₃(001). O_2 is chemisorbed atop LaMnO₃/LSM(001).
- ✓ Much more mobile surface oxygen vacancies (activation energy 0.14 eV vs. ~1 eV for O_{ads} diffusion along (001)) are responsible for ionic transport along surface.

Acknowledgements

J. Maier, E. Spohr, E. Heifets, R. Merkle, and Yu. Mastrikov

For the many fruitful discussions!

Eiropas Sociālā fonda projekts "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

For the financial support!

Many Thanks For Your Attention!