

EIROPAS SAVIENĪBA IEGULDĪJUMS TAVĀ NĀKOTNĒ

Projekts Nr. 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

GLIVENKO OPERATORS ON HILBERT ALGEBRAS

Jānis Cīrulis University of Latvia

email: jc@lanet.lv

2nd International Conference on Order, Algebra, and Logics Kraków, June 06–10, 2011

OVERVIEW

1. Hilbert algebras

```
E.L.Marsden (1972), J.Cīrulis (2007)
```

2. Glivenko operators

```
J.Schmidt (1977), C.Tsinakis (1979), J.Cīrulis (1985)
J.Cīrulis (2005)
```

3. Lattice of Glivenko operators

```
J. Cīrulis (1985)
```

1. HILBERT ALGEBRAS

A *Hilbert algebra* is an algebra $(A, \rightarrow, 1)$, where

- $A:=(A,\leq)$ is a poset with the greatest element 1 and \to is a binary operation on A subject to the axioms
 - $x \le y$ iff $x \to y = 1$,
 - $x \leq y \rightarrow z$,
 - $x \to (y \to z) \le (x \to y) \to (x \to z)$.

The least lower bound of elements a and b in A will be denoted by ab.

Elements a, b of a Hilbert algebra A are said to be *compatible* (in symbols, $a \ C b$), if ab exists and any of the following equivalent conditions is fulfilled:

- $a \rightarrow ab = a \rightarrow b$,
- $a \leq b \rightarrow ab$,
- for all x, $a \rightarrow (b \rightarrow x) = ab \rightarrow x$,
- for all x, $(x \to a)(x \to b)$ exists and equals to $x \to ab$,
- for all x, $ab \le x$ iff $a \le b \to x$.

Proposition. $a \ C \ b$ if and only if $\min\{x: a \le b \to x\}$ exists.

We call this minimum the *compatible meet* of a and b, and denote it by $a \wedge b$.

Proposition $x = a \wedge b$ iff a C b and x = ab.

A *relative subsemilattice* of A is any nonempty subset closed under existing compatible meets.

A \land -subalgebra of A is a subalgebra that is a relative subsemilattice.

A \land -subalgebra S is called *special* if it satisfies the condition

• if $y \in S$, then to every x there is z such that

$$z \to x \in S \text{ and } z \to y = y.$$

A *closure retract* in A is the range of a closure operator on A.

A subset R is a closure retract if and only if, for every $a \in A$, $R \cap [a]$ has the minimum.

Consequently, given a closure operator φ ,

if
$$R = \operatorname{ran} \varphi$$
, then, for all x , $\varphi(x) = \min(R \cap [x))$.

An implicative filter of A is a subset J that satisfies conditions

- $1 \in J$,
- if $x, x \rightarrow y \in J$, then $y \in J$.

Equivalently, a filter is an upwards closed relative subsemilattice of A.

A filter J is said to be

comonomial, if every coset a/J has the maximum, convex, if it satisfies a condition

• if $x \to (y \to z) \in J$, then $u \to z \in J$ for some u with $x \le y \to u$.

In the latter condition, $x \wedge y$ may be taken for u when this meet exists.

2. GLIVENKO OPERATORS

A – a Hilbert algebra.

A *quasi-decomposition* of A is a pair (C,D) of relative subsemilattices such that

- every $a \in A$ can be presented as $a = c \wedge d$ with $c \in C$, $d \in D$, (then $1 \in C$ and $1 \in D$)
 - $d \rightarrow c = c$ for all $c \in C$, $d \in D$

(then the C-component of A is unique).

The operation γ which associates with every element $a \in A$ its C-component is called the *Glivenko operator* of the decomposition (C,D).

C is the *closed set*, and D, the *dense* set of γ . Then $C = \operatorname{ran} \gamma$, $D = \gamma^{-1}(1)$.

Proposition. A mapping $\varphi \colon A \to A$ is a Glivenko operator on A iff

- $x = \varphi x \wedge d$ for some d with $\varphi d = 1$,
- if $x \le y \to z$, then $\varphi x \le \varphi y \to \varphi z$.

The last condition implies that φ is \wedge -preserving:

if x C y, then $\varphi x C \varphi y$ and $\varphi x \wedge \varphi y = \varphi(x \wedge y)$.

Proposition. The following conditions on a mapping $\varphi \colon A \to A$ are equivalent:

- (a) φ is a Glivenko operator,
- (b) φ satisfies any two of identities

$$\varphi(x \to y) = \varphi(x) \to \varphi(y) = x \to \varphi(y) = \varphi(x \to y),$$

(c) is a closure endomorphism.

Thus, the closed set of a Glivenko operator is a \land -subalgebra of A, and the dense set is a filter of A.

Example. If A is bounded, and an operation * on A is defined by $x^* := x \to 0$, then the operation $x \mapsto x^{**}$ is a Glivenko operator. Then $C = \{x^{**} : x \in A\}$, and $D = \{x : x^* = 0\}$.

Example. The identity mapping ε and the operation ι : $x \mapsto 1$ are Glivenko operators.

For ε : C = A and $D = \{1\}$.

For ι : $C = \{1\}$ and D = A.

Example. For every $p \in A$, the operation α_p defined by $\alpha_p(x) := p \to x$ is a Glivenko operator.

Then $C = \{x \colon p \to x = x\}$ and D = [p).

Example. For every $p \in A$, the operation $\beta_p(x) := (x \to p) \to x$ is a Glivenko operator.

Then $C = \{x \colon (x \to p) \to x = x\}$ and $D = \{x \colon x \to p \le x\}$.

3. LATTICE OF GLIVENKO OPERATORS

A – a Hilbert algebra.

Let D_{φ} stand for the dense set $\varphi^{-1}(1)$ of a Glivenko operator φ .

- **Theorem 1.** (a) The set G of all Glivenko operators is closed under composition and pointwise defined compatible meets.
- (b) The algebra $(G, \circ, \wedge, \varepsilon, \iota)$ is a bounded distributive lattice (with \circ as join, ε as zero, and ι as unit).
- (c) The mapping $d: \varphi \mapsto D_{\varphi}$ is a (0,1)-isomorphism of G into the filter lattice of A.
 - $D_{\varphi \circ \psi} = D\varphi \nabla D_{\psi}$, $D_{\varphi \wedge \psi} = D_{\varphi} \cap D_{\psi}$
- (d) The range of d consists just of convex comonomial filters.
- (e) If $J = D_{\varphi}$, then, for all x, $\max(x/J) = \varphi(x)$.

Corollary. For all finite subset P of A, the operations α_P defined inductively by

$$\alpha_{\emptyset} := \varepsilon, \quad \alpha_{X \cup \{p\}} := \alpha_p \circ \alpha_X$$
 are Glivenko operators.

Thus, if
$$P = \{p, q, r\}$$
, then $\alpha_P(x) = p \rightarrow (q \rightarrow (r \rightarrow x))$.

Theorem 2. (a) The set G^{α} of all Glivenko operators of kind α_P is a subsemilattice of (G, \circ, ε) .

- (b) It is actually a subtractive semilattice $(G^{\alpha}, \circ, -, \varepsilon)$.
- (c) The mapping $p \to \alpha_p$ is an anti-isomorphism of A into G^{α}

$$\begin{array}{ll} \alpha_1 = \varepsilon, & \alpha_{p \to q} = \alpha_q - \alpha_p, \\ p \ C \ q \ \text{iff} \ \alpha_p \circ \alpha_q \in G^{\alpha}, \ \text{and then} \ \alpha_{p \wedge q} = \alpha_p \circ \alpha_q. \end{array}$$

- (d) The lattice of ideals of G^{α} is isomorphic to the lattice of filters of A.
- (e) Every Glivenko operator in G is the join of elements of G^{α} : $\varphi = \nabla(\alpha_p; p \in D_{\varphi}).$

Corollary. Every Hilbert algebra A is a subreduct of an implicative semilattice whose filter lattice is isomorphic to the filter lattice of A.

Let C_{φ} stand for the closed set $\varphi(A)$ of a Glivenko operator φ .

Theorem 3. (a) The mapping $c: \varphi \mapsto C_{\varphi}$ is a (0,1)-anti-isomorphism of the lattice G into the \wedge -subalgebra lattice of A.

•
$$C_{\varphi \circ \psi} = C_{\psi} \cap C_{\psi}$$
, • $C_{\varphi \wedge \psi} = C_{\varphi} \nabla C_{\psi}$.

- (b) The range of ${\bf c}$ consists just of those special \land -subalgebras that are closure retracts.
- (c) If $R = C_{\varphi}$, then, for all x, $\min(R \cap [x]) = \varphi(x)$.

Corollary (a) Every Glivenko operator γ on a Hilbert algebra is completely determined both by C_{γ} and D_{γ} .

(b) Every pair (A, γ) consisting of a Hilbert algebra and a Glivenko operator on it is completely determined by the pair (C_{γ}, D_{γ}) .